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ON SUPPORTS OF INDUCED REPRESENTATIONS FOR SYMPLECTIC
AND ODD-ORTHOGONAL GROUPS

By CHRIS JANTZEN

Abstract. Let G be Sp(2n, F) (resp. SO(2n + 1, F)), where F is a p-adic field of characteristic zero.
In this paper, we give a correspondence which associates to an irreducible representation = of G
an m-tuple of irreducible representations of lower rank symplectic (resp. orthogonal) groups based
on the supercuspidal support of 7. We show that this correspondence respects the induction and
Jacquet module functors (in a sense to be made precise), as well as verifying a number of other
useful properties. In essence, this correspondence allows one to isolate the effects of the different
families of supercuspidal representations of general linear groups which appear in the support of 7.

1. Introduction. Let F be a p-adic field of characteristic zero and S,(F) =
Soon(F) or SOn+1(F). Suppose 1, ..., %y, are inequivaent irreducible unitary
supercuspidal representations of GL;,(F),..., GL,(F) with ¢ # qu fori #j,
where ™ denotes the contragredient. Let

S@Wi) = {v°¢%i, v Vi Yaer,

where v denotes |det| on GL(F). Let 1) be an irreducible supercuspidal representa-
tion of S(F). Set S(¢1, . . ., Ym; ¥) = S(W1)U- - -US(Wm) U {2 }. In this paper, we
give a correspondence between representations  supported on S(1, . . . , ¥m; V)
and mtuples (o, - - ., om) Of representations supported on S(Y1; ¥), - - ., S(WYm; V).
In particular, suppose 7 is an irreducible representation of S,(F) supported on
S, ..., Ym; ). We define maps ), i = 1,...,m such that vj(x) is an irre-
ducible representation of S, (F) supported on S(vi; ). Further, if 7' is an ir-
reducible representation supported on S(v1, . . ., ¥m; 1) with «i(n’) = oi(r) for
i=1,...,m, then 7 = /. We aso show that this correspondence behaves rea-
sonably with respect to induction and Jacquet modules. The basic properties are
summarized in Theorem 9.3. Properly interpreted, this correspondence may be
viewed as an extension of Goldberg's results on R-groups, at least as they apply
to supercuspidal inducing representations.

A similar decomposition holds for representations of GL(F) by the work of
Zelevinsky. In particular, we get a correspondence between irreducible represen-
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1214 CHRIS JANTZEN

tations supported on U2, {v“4i},cr @and m-tuples of representations supported
on {v“Y1}acr, - - - {V*¥Um}acr. The correspondence is given by

Ind(7 (1) ® - - - @ T(¢pm)) «— (T (Y1), ..., 7(¥m)),

where 7(¢;) is an irreducible representation supported on {4 }4cr. Thet this
correspondence is well-defined is an immediate result of Lemma 5.6.

We now describe the contents section by section. In the next section, we re-
view notation and basic resultsto be used later. The third section is a discussion of
the Langlands classification, the Casselman criteria for square-integrability/tem-
peredness, and some of their properties. In the fourth section, we review the
duality operator of Aubert. We also give a corollary to this which tells us that
either (1) 7 is nontempered, (2) = is tempered with & nontempered (where 7
denotes the dual of 7 defined by Aubert), or (3) 7 is a component of igyp with
p unitary supercuspidal. The proofs of some of the main results will be broken
into cases along these lines. Roughly speaking, (1) will be dealt with using the
Langlands data, (2) by dualizing the results from (1), and (3) using R-groups. In
the fifth section, we discuss Tadi€'s p*. The sixth section discusses Goldberg's
R-group calculations and some consequences. In the seventh section, we define
a variation 4y, " of p* and discuss some of its properties. This alows us
to define (). It will also be needed to verify the existence and properties of
the correspondence. In the eighth section, we show that if ;(7) = v;(x’) for all
i, then = = 7/, establishing the correspondence. Further, we show that the cor-
respondence respects temperedness/square-integrability and determine its effect
on the Langlands data. In the ninth section, we verify that the correspondence
behaves as one would expect with regard to induction and Jacquet modules. Let
R = ®n>0R(GLn(F)) and R[S = &n>0R(Sh(F)), where R(GLq(F)) (resp. R(S:(F)))
denotes the Grothendieck group of the category of smooth finite-length represen-
tations of GLn(F) (resp. Sy(F)). Then, R[S is an Mg-Hopf module over the Hopf
algebra R. We close section nine by interpreting the correspondence as a tensor
product decomposition on R[S]. In the final section, we refine the results from
section nine: if 4 € R and ; as above, set Sg (1) = {v*Hivi, v % Adi}aen.
If 51,...,0n € R are such that the corresponding ng (Y1), ) =1,...,n, are pair-
wise digoint, set Sg, .. g,(¥i; V) = Sp,(¥i) U - - - U Sg,(1i) U 4 with +) as above.
We then get a similar correspondence between irreducible representations sup-
ported on Sg,, . 5,(%i; ) and n-tuples of irreducible representations supported
on Sg, (Vi ), ..., Sp,(¥i; ). This may also be interpreted in terms of a tensor
product decomposition.

Acknowledgments. Work on this project began as a result of discussions with
Henry Kim, so | would like to thank him here. Much of the work on this project
was done while a visitor at Purdue. | would like to thank the department in
general, and Freydoon Shahidi and David Goldberg in particular, for their hos-
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pitality. | would aso like to thank Anne-Marie Aubert and the referee for many
useful comments and corrections. Finally, my thanks go out to Marko Tadi¢ and
Guy Henniart: in comments on the first version of this paper, they pointed out
the interpretation of the correspondence as a tensor product decomposition and
suggested the refinements in section ten.

2. Notation and preliminaries. In this section, we introduce notation and
recall some resultsthat will be needed in the rest of the paper. Thislargely follows
the setup used in [Tadl].

Let F be a p-adic field with charF=0. Let | - | denote the absolute value on F,
normalized so that || = g1, @ a uniformizer. Asin [Z€l], we let v = |det| on
GLn(F) (with the value of n clear from context). Define x on GL(F) asin [Z€l]:
if p1,..., pk are representations of GLy,(F), ..., GLn,(F), let p1 x - - - x px denote
the representation of GLp,+...+n, (F) obtained by inducing p1 ® - - - ® px from the
standard parabolic subgroup of GLp,+...+n (F) with Levi factor GLn,(F) x - - - x
GLn, (F).

In most of this paper, we work with the components (i rreducible composition
factors) of arepresentation rather than with the actual composition series. That is,
we usually work with the semisimplified representation. So, for any representation
7 and irreducible representation p, let m(p, ) denote the multiplicity of p in .
Wewriter = my+- - -+ if m(p, 7) = m(p, w1)+- - -+m(p, ) for every irreducible
p. Similarly, we write m > mg if m(p, 7) > m(p, 7o) for every such p. We write
m ¥ 7 if we mean that they are actually equivalent.

We now turn to symplectic and odd-orthogonal groups. Let

denote the n x n antidiagonal matrix above. Then,

SOon1(F) = {X € SLone1(F)| XIone1X = Jonea},

Soon(F) = {x € GLan(F)|™X ( P - ) X = ( J - )}

We use S,(F) to denote either SOzn+1(F) or Soon(F). In either case, the Weyl
group is W ={ permutations and sign changes on n letters }.

We take as minimal parabolic subgroup in S,(F) the subgroup Py consisting
of upper triangular matrices. Let @ = (hy,...,nx) be an ordered partition of
a nonnegative integer m < n into positive integers. Let M, C $,(F) be the
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subgroup

X1

M, = X Xi € GLn(F), X € Si—m(F) ¢,

X1

where X = JX~1J. Then P, = M,Pnin is a parabolic subgroup of S, and every
parabolic subgroup is of this form (up to conjugation). For @ = (ny,...,NK),
let p1,...,pk be representations of GL,(F),...,GLn,(F), respectively, and p a
representation of S,_(F). Let p1 x -+ X pk X p denote the representation of
S\(F) obtained by inducing the representation p1 ® - - - ® px ® p of M,, (extended
trividly to P,). If m=n, we write p; x --- X px % 1, where 1 denotes the trivial
representation of S(F).

We recall some structures which will be useful later (cf. Section 1 of [Z€l]
and Section 4 of [Tad3]). Let R(GL,(F)) (resp. R(S,(F))) denote the Grothendieck
group of the category of al smooth finite-length GL,(F)-modules (resp. S,(F)-
modules). Set R = @n>oR(GLn(F)) and R[Y = ®n>0R(S\(F)). The operators x
and x lift naturally to

x: RRR— R and x: R RY — R[Y.

With these multiplications, R becomes an algebra and R[S a module over R.

Let 7 be an irreducible representation of S,(F). Then, thereis a standard Levi
M and an irreducible supercuspidal representation p1 ® - -+ ® pk ® p of M (with
pi an irreducible supercuspidal representation of GL,(F) and p an irreducible
supercuspidal representation of S,_m(F)) such that 7 is a subquotient of igm(p1®
- -Rpk®p). We say that the multiset {p1, . . ., pk; p} isin the support of . Further,
Mand p1 ® - - - ® px ® p are unique up to conjugation (cf. Theorem 2.9, [B-Z]).
By Propositions 4.1 and 4.2 of [Tad3],

PLX X Pi1 X Pi X Pl X o+ X PN P = p1 X+ X i1 X P X Pisd X =+ X Pk X,

where™ denotes contragredient. Thus, if {p1,...,pi—1, pi, pi+1,- - -, pk; p} iSin the
support of 7w, so is {p1,...,pi—1,Pi,pi+1,-- -, pk; p}. Therefore, every
{Ph, - Pl p}, with pl = pi or p;, is in the support of «. Further, these ex-
haust the support of . More generally, we extend the definition of support asin
[TadS]: if 7 is a finite-length representation and {p1, . . ., pk; p} IS in the support
of «’ for every irreducible subquotient ' of 7, we say that {p1,...,pk; p} isin
the support of .
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If ¥1,...,¢m are inequivalent irreducible unitary supercuspidal representa-
tionsof GL,,(F), ..., GL,(F) with ¢ # 4 for i 7] and ¢ an irreducible cuspidal
representation of S (F), we define the following multiset:

S, - - bmi ) = {1, v P1}aer U - - U {1 Ym, v*Om}acr U {1}

(Note that if 1o is an irreducible unitary supercuspidal representation of GL,(F)
with g # 1o, then v*g x 1 isirreducible for al o € R.)

The following fact about induced representations for GL,(F) will be needed
later.

THEOREM 2.1. (Zelevinsky) Let v1,...,1¢m be inequivalent irreducible uni-
tary supercuspidal representations of GL.,(F),...,GL,(F), respectively. Let
7(¢1), - . ., T(¥m) beirreducible GL(F)-representations supported on {v*91 } acr,
o Av*mtacr, respectively. Then, 7(11) x - - - x 7(1m) isirreducible,

Proof. See Proposition 8.5 of [Z€l]. m|

Next, we introduce some notation for Jacquet modules. If 7 isarepresentation
of some $,(F) and « is a partition of m < n, let s, () denote the Jacquet module
with respect to M,,. Note that, by abuse of notation, we also allow s, to be applied
to representations of Mg if Mz > M,, (cf. Section 2.1, [B-Z]). Further, we define
SsgL asin[Tadl]: for m < p1 x - - - X px X o With p; a supercuspidal representation
of GL(F) and o a supercuspidal representation of S,_m(F), we set sg.(7) =
Sny+-+n) (). We will occasionally use similar notation for representations of
GLy(F). If o = (ng,...,ny) is a partition of m < n, GLy(F) has a standard
parabolic subgroup with Levi factor L, = GLn,(F) x --- x GLp, (F) x GLr_m(F)
(L, consists of block-diagonal matrices; the corresponding parabolic subgroup of
block upper triangular matrices). If = is a representation of GL,(F), we let r, ()
denote the Jacquet module of = with respect to L,,.

We now give two theorems on Jacquet modules. Here, the notation is as in
[B-Z]. If L is the Levi factor of a standard parabolic subgroup P C G, let igL
denote induction from P to G; r g the functor taking the Jacquet module with
respect to P,.

THEOREM 2.2. (Frobenius reciprocity) Let G be a connected reductive p-adic

group, P = MU a parabolic subgroup, p an admissible representation of M, 7 an
admissible representation of G. Then

Homw (rme (), p) = Homg(, igm(p))-

THEOREM 2.3. (Bernstein-Zelevinsky/Casselman) Let G be a connected re-
ductive p-adic group, MU and NV standard parabolic subgroups. Let p be an
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admissible representation of M. Then, ryg o igm(p) has a composition series with
factors

iNny 0 Wo rvrm(p)

whereM’ = MNw~(N), N’ = w(M)NN, andw € WMN = {w € W | W(PinNM) C
Pmin, W_l(Pm'n NN) C Prin}.

Proof. See [B-Z] or [Cas]. m|

3. The Langlands classification and the Casselman criteria. In this sec-
tion, we review the Langlands classification ([B-W], [Sil]) and the Casselman
criteriafor square-integrability/temperedness ([Cas]) in the context of S,(F). This
discussion is largely based on those in [Tad3], [Tadl]. We also give some con-
sequences which will be needed later.

We begin by giving the Langlands classification for S,(F) (cf. [Tad3]). Sup-
pose that ¢ is an irreducible essentially tempered representation of GL,(F). Then,
there is an ¢(6) € R such that »—<®)§ is unitarizable. Let &1,...,8¢ be ir-
reducible essentially tempered representations of GLp,(F),. .., GLn, (F) satisfy-
ing €(61) < -+ < e(6k) < 0 and 7 a tempered representation of S,_m(F).
Then, 61 x --- x 6k x 7 has a unique irreducible subrepresentation which we
denote by L(61,...,0k; 7). At times, it will be convenient not to worry about
listing 61,...,0k in increasing order. So, if 61,...,6k satisfy ¢(6)) < 0 and
e(6i) 7 £(¢) for i 7, then there is some permutation é,,, . . ., 6,, Which satisfies
€(0sy) < -+ < €(be) < 0. Then, by L(61,...,6k; 7) we mean L(6yy,. .. 160, 7).
Note that we use the Langlands classification in the subrepresentation setting
rather than the quotient setting for the following reason: in the subrepresentation
setting, 61 ® -+ @ ok ® T < §ny,....n) (L (01, - - ., 0k; 7)) (by Frobenius reciprocity).

The Langlands classification for GL,(F) issimilar. If 61, ..., 6k areirreducible
essentially tempered representations satisfying e(61) < - - - < £(6k), then 61 x - - - x
6k has a unique irreducible subrepresentation which we denote by L(61, . . ., 6)-
Aswith §,(F), there will be timeswhen it is convenient not to worry about listing
61,...,0k in increasing order, so we adopt the same convention for GL,(F): if
e(6i) 7 (gy) fori 7 j, we let L(61,...,0k) = L(0oy,- -, 65,) for the permutation
satisfying e(6,,) < -+ < €(0qy)-

Next, by analogy with [K-R], we make the following definition.

Definition 3.1. Consider a representation of the form
=@ e 0ol e eue. 0wl e ouvkm)

with zﬂi(j) irreducible GL(F)-representations. By a shuffle of x, we mean any
permutation on  such that for all i, ®, ..., 4" appear in that order. (That is,

|
the relative ordersin the parenthesized pieces are preserved.) If ¢ isanirreducible
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representation of SF) and x’ = x ® v, we define a shuffle of ¥’ to be anything
of the form sh(x) ® v, where sh(y) is a shuffle of .

If x isarepresentation of a standard Levi M of GL(F) and sh(y) is a shuffle
of x, we let sh(M) denote the Levi subgroup of GL(F) for sh(y). Similarly, if x’
is a representation of a standard Levi M’ of S(F) and sh(y’) a shuffle of /, we
let sh(M’) denote the corresponding Levi subgroup of S(F).

Also, let us make the following definition:

Definition 3.2. Suppose 7 is a representation of S,(F). Consider
Min = {M standard Levi | ryc(m) #0 but r g(7) =0 for al L < M}.

Note that these are al conjugate. Then, formally set

Sin(m) = > rvg(n).

We now briefly review the Casselman criteria for temperedness/square-integ-
rability. Let = be an irreducible representation of S,(F) and v%p1 ® -+ ®
v*pk ® o < syin(m), with p; an irreducible unitary supercuspidal representation
of GLm (F), o an irreducible supercuspidal representation of Sn(F) and o € R.
Then, if 7 is tempered,

Moy > 0,

Moy + Mpap > 0,

Mo + Mpop + - - - + Moy > 0.

Conversdly, if the corresponding inequalities hold for every component of Syin(7),
then 7 is tempered. The criteria for square-integrability is the same except that
the weak inequalities are replaced by strict inequalities.

The criteriafor GLy(F) are similar. If 7 is an irreducible tempered represen-
tation of GLn(F) and v%1p1 ® - - - ® v px < rvc(m) for some standard Levi M
which is minimal for 7, then

Moy > 0,

Moy + Moo > 0,

Maq + Mpop + - - - + M_qok—1 > 0,

Moy + Mo + - - -+ Moy = 0.
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Conversely, if these inequalities hold for all such v%1p1 ® - - - ® v py, then 7 is
tempered. Again, the criteria for square-integrability are the same except that the
weak inequalities are replaced by strict inequalities.

We record the following corollary for future use.

CoroLLARY 3.3. Suppose T is an irreducible tempered S(F)-representation.

Write sgL(T) = > L(4i) ® o (possibly £(4j) = A essentially tempered). If 4 =
50 - @0 60, with 50, .., 60 tempered and 1 € R, then~{’ > 0.

Proof. This is an easy consequence of the Casselman criteria. If 69) is a
representation of GL ¢ (F) and 750 < 0, we can use ng) to violate the Casselman
1

Xkﬁ') p(i()i) be a component of a minimal Jacquet module
I(1

criteria. Let ympg) ® QU
for 6&”, with pj(i) an irreducible unitary supercuspidal representation of GLmi(i)(F)
and xq,...,X5 € R. Since 80 is unitary, milx; + .- + ms()i) o = 0. Now,
1 ) 1
M (i) Xk(i)+7g) M . .
UV @ @u T p 0 is the corresponding component of a minimal

Jacquet module for 171 6{). However,
mg)(xl + ’YS)) + ...+ ms()i) (Xk(li) + »yg)) = ng),-yg) < O’
1
contradicting the temperedness of T. O

The following results will also be needed later.

LEMMA 3.4. SUpposer®16; ® --- vy ® T isLanglands data for S,(F). Let
M denote the Levi factor for 1916, ® - -+ ® v%ég ® T. Then,

n'l(l/a151 R I/adéd QT, rMG(l/alél X oo X I/ad(sd X T)) =1
Further,
M6 ® - @ 464 ® S rug(®é1 X -+ x 1Yy x T)) =0

for any irreducible S# T.

Proof. For convenience, we shall do the case d = 2; the general caseissimilar.
Let M 2 GLy(F) x GLn(F) x S(F) be the standard Levi for v%161 @ v*26, @ T.
Consider another term vP1m @ 7215 @ S < ryg(r™61 x ™26, x T). By
Theorem 2.3, it has the form iywr o Wo ryrm (161 ® 126, ® T) for w e WMM,
We claim that if w # 1, then 81 > a1 or 1 = a1 and B2 > az. We do this
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by analyzing the components of syn(v* 11 ® v%27, ® S). Note that a component
of v M7 @ V7271, ® ), for Mpin € Mpin With Myin < M, has the form
w- ' for some X" < ryr w(v181 ® 26, ® T), where w € WMMmin and My, =
W_l(Mmin) <M.

Let (4 p1®- - @S p) @ (WP @ - @ ¥kpl) @ (VA @ - - @ V¥ p] @ o) be
iN Smin(r®161 @ v26, @ T). Here, 1 p1 @ ... @ VN pj comes from v*16,, etc., and
PL-- s P Phs- s Pl P1s - - -, py @eirreducible unitary supercuspidal representa-
tionsof GL, (F), ..., GLm(F), GLn,(F), ..., GLn, (F), GL(F), ..., GL,(F), o an
irreducible supercuspidal representation of S ((F), and Xa, ..., X, Y1, .-+, Yis Z1, - - -
zeR

Consider a component x < Syin(v®t61 X v*26, x T) associated to a Weyl
conjugate of (*1p1®- - -@V% p)) @Y p®- - - @k )R (VA pY @+ - - @V p] ®0). In
the first t terms in the tensor product decomposition of y, there must be a shuffle
of

(1) vp1@v2p®-- @ vy

(2 vip v 1@ @v Np,
(3) WP @2y ® - @ VMsp,

(4) y_ykp~|'( ® V*Vk_lpfll(\_/l R ,/—Yi4;i';
(5) V2P @ v2py @ - @ VsplL,
withip+(j—i2+ D) +iz+(kK—is+ D) +is=t. If ¥ < Smin(vP1 @21 ® ), we
must have

(M +- -y +(my+---+my) + (N +---+ng) + (N --my) + (e +---+ri) =m.

We claim (1 > a1, except for the trivial case (i.e,, i1 =1, i =i3 =iz =i5 = 0).
To see this, first observe that by considering the central character, we have

Moy = MXg + - - - + X
and

MBy = MuXp +MpXp + -« -+ My X, + (= MX — My_1%_1 — - — M,X,)
+Ngy1 + M2Y2 + - F Mg + (= NkYk — Mk 1Yk-1 — -+ — Ni,Yia)
+rlzl + r222 +... 4 r.I5Z|5

Also, the Casselman criteria for GL(F) tell us
MyXg + MpXp + -+ -+ My X, > (Mg + My + - -+ My .

Since Mxg + - - + MyX = May, we also get that mx + m_1Xj_1 +--- + m,x, <
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(M+m_g+---+m,)ay, or

—M = MoaXog = = MyX, > —(M+Mog+ee e+ my)ag > 0
> (my+mog+---+m,)as.

Similarly, we have
My1+npy2 + -+ +nigYi, > (M +ny+---+n)az > (M +np+---+ni;)an
and

—NYk — Me—1Yk—1 — == — NYi, = —(Mk — Mk — -+ — M) > 0

> (g + g+ - +n,)ar.

Finally, the Casselman criteria for S(F) tell us

r1zy+rpz+---+ri;z, > 0> (ry+ro+--- +ri)as.

Adding, we get
MuXg + MpXe + -+ My X+ (= MY — M_aXj_1 — -+ — M,X,) + Niy1 + N2yz
oY (= MYk — MkeaYke1 — - — MiYi,) +r1Ze + 122 + - - +1igZ

2[(m1+mz+---+m1)+(rq+r~q_1+---+m2)+(n1+n2+---+ni3)
+(M+ng g+ +n,)+(re+r2+--+ri)]aa
= Mayg,

as claimed. Further, the inequality is strict unlessi; =j andip =ig =iz =is =0.

We claimed that 51 > a1 or 81 = a1 and B2 > ap for w # 1. We now
have 81 > a1. If 81 > a1, the clam holds. Suppose 81 = a1. Then the above
calculation showsip =j and i, =iz3 =iz =i5 =0, i.e.,, w acts trivially on the first
GLm(F). A similar argument shows that in this case, 52> > a» with equality strict
unless w acts trivially on the second GLn(F). However, the only way for such
aw to act trivially on both the first GLy(F) and second GL,(F) isif w =1, as
claimed. This finishes the proof. O

CoROLLARY 3.5. Quppose A = v™H; ® --- ® v¥ddg with 61,. .., 6g tempered

andag < -+ < ag < 0. Let T beatempered S(F) representation; M the standard
Levi for £L(A) ® T. Then,

M(L(D) @ T, rma(L(B) x T)) =1
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and

M(L(D) ® i, Ima(L£(D) x T)) =0

for any irreducible u # T.

Proof. Observe that rim(L(Q) @ T) > v™61 ® --- @ v¥dég ® T, where L is
the standard Levi for v*6; ® - - - ® v%ddy ® T. Since

LA)XT v x --- x vy x T,
the corollary follows immediately from the preceding lemma. O

4. Duality. Inthissection, wereview Aubert’s generalization of the lwahori-
Matsumoto involution. We also give a corollary which will have important con-
sequences later. In particular, it tells us that for an irreducible representation ,
one of the following holds:

(1) = isnontempered.

(2) = istempered with 7 nontempered (where © = Dg(7) denotes the dual
of 7 defined by Aubert).

(3) = isacomponent of igup for some irreducible unitary supercuspidal p.

Some of the main results in this paper will be done by breaking the proof into
these three cases (using Langlands data to verify the first case, dualizing that to
verify the second, and using R-groups to get the third).

THeEOREM 4.1. (Aubert) Define the operator Dg on the Grothendieck group
R(G) by

Do =Y (- 1)®licL, orige,
ocn

where N denotes the set of simple roots and for ® C T, Ly is the Levi of the
standard parabolic obtained by adjoining the simple reflections from ® to the
minimal parabolic. Dg has the following properties:

(1) Dgo”="oDg.
(2) DgoigL, =icLe © Dig.
(3) riec o Dg = Ad(wWo) o D, oL, G, Where wy, is the longest element of
WALe = fw € W | W~ (Ppin N Lo) C Prin} and @' = wz'(®).
(4) D2 = identity.
(5) Dg(m) = £ for supercuspidal .
(6) Dg takesirreducible representations to irreducible representations.
For convenience, we write 7 for Dg().
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Proof. See [Aub]. m|

CoroLLARY 4.2. Let 7 be an irreducible representation of S,(F). If both 7 and
7 are tempered, then 7 is a component of igu(p) for some irreducible unitary
supercuspidal p.

Proof. Let v™p1 ® - - @ v¥%p ® 0 < rya(w) for some M € Min, Where p;
is an irreducible unitary supercuspidal representation of GL,(F), aj € R, and o
is an irreducible unitary supercuspidal representation of S (F). By the Casselman
criteria, 7 tempered implies
riog > 0,

riog +roop > 0,

r1a1+---+rkak26.
On the other hand, we note that (cf. p. 130, [Tad3])
Wo (Vo1 ® - @ vk @) =T (M)t @ T (M) Tt © o
=TSR QUK R 0.

Therefore, by duality, v*1p1 ® --- @ v*pr® o < ryg(r) if and only if v~ *1p1 ®
QUK ® 0 < Ive(®). By the Casselman criteria, this forces

ri(—a1) >0,

ri( —aa) +ra(—a2) >0,

r(—oag)+---+rn—ax) > 0.
Combining these inequalities gives ai; = - - - = ax = 0. The corollary follows. O

5. Structure of induced representations. In this section, we recall the p*
structure of Tadi¢ ([Tad4]). We also use some of the ideas in [Tad3] to give some
additional properties of Jacquet modules.

We begin by recalling the * structure of Tadi€.

Definition 5.1. (1) If 7 isarepresentation of GLk(F), set

k
m*(r) = Z I’(i)(T).

i=0
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(2) If 7 isarepresentation of $,(F), set
() = si)(m).
i=0

Note that m*: R— R® Rand p*: RI§ — R® R[S.

If 7 and 7> are representations of GL, (F), GLm,(F), respectively, let S(m1 ®
) =12 ® 11 and m(m1 ® 1) = 11 X 2. If 7 is arepresentation of GLy,(F) and
is a representation of S,(F), let (11 ® 12) x (7 ® ¥) = (11 X 7) ® (12 x ). Define
M R— R®Rby Mg =(m®1)o ("~ ®@m*)osom* (~ denotes contragredient).

THEOREM 5.2. (Tadi€) If T isa representation of GL»(F) and 9 a representa-
tion of S,(F), then

(T 3 9) = Mg(7) 3 p* ().

Proof. See [Tad4]. m]

We mention that this has a counterpart for general linear groups. If we let
(1@ 12) X (11 ®@75) = (11 X 71) ® (12 X 73), then m*(m1 x m2) = m* (1) x M* (7).
In particular, with multiplication defined by x and comultiplication by m*, R
becomes a Hopf algebra(cf. Section 1.7, [Z€el]). With x and 1*, R[] then acquires
the structure of an M$-Hopf module over R (cf. Theorem 7.2, [Tad4]).

CoroLLARY 5.3. Let p be a representation of GLy(F), o a representation of
S(F). If

SGL(pml):Zpi@)l

and

SeL(0) =) 7 ®%,
i

then

soL(p % 0) =D (o x 1) @ .
1)

Note that for supercuspidal 1, SeL(p @ 1) = > pi @ Lif and only if sgi(p % ¢) =
20 @ .
Lemma 5.4. (shuffling)

(1) Supposewisanirreduciblerepresentation of S,(F) suchthat ryg(7) > x,
where y has the form

X = (yalvlfl)[}l R ® ya1~j1¢1) X (yalewz R ® ]/azvqu[}z) X
Q@ (™ Ym @ - - - @ vIMIMYm) @ 9,
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with 41, ... ,%m inequivalent irreducible unitary supercuspidal GL(F)-represen-
tations, ¢/ an irreducible supercuspidal S(F)-representation, and «;jj € R. Then,
for every shuffle sh(x) of x (cf. Definition 3.1), we haverswc(m) > sh(x). Further,
if renavyc(m) > sh(x) for any such shuffle, we necessarily have ryc(m) > x, and
therefore renwyc(m) > sh(x) for every such shuffle.

(2) iem() = iasnm)(sh(x)) for any shuffle of x.

A similar result holds for representations of GL(F).

Proof. Recall that for i 7 j, % x v isirreducible, so that vy x v =
v x vy,
For the first claim, we begin by separating out the key observation. Suppose

AL® @M1 @ (MY @ vIY) @ A2 @ -+ @ M @ 1 < (),

withi Zj, A\, cuspida for al ¢ and M’ € M,in the Levi factor of the appropriate
parabolic subgroup. Then, we claim

MO @ M1 ® (V1 @ ) @ M2 @ - -+ @ M @1 < Pwrg(r)
4

AL® @ M1 @ (VN X VYY) @ A2 @ - - @ A @ P < ()
4

AL® @ A1 @ (YY) @ VYY) @ A2 ® -+ @ A @ ¢ < (),

where M” is obtained by fusing the ki and k+ 12 blocks of M’; M”’ by switching
them. The first implication follows from the fact that the only representation of
Gl (F) which has v%i); @ v as a component of its Jacquet module is
v x v*ipj. The second implication follows from the fact that v x vy =
vy x vy has vy ® v as a component of its Jacquet module.

At this point, the first part follows immediately from the observation that
every shuffle of x may be obtained by a sequence of transpositions like that
above.

As for the second part—the proof is similar to that of the first. The key
observation is that

AL X - X A1 X (UM X VYY) X A X X A X

AL X X Ak X (UMY X vMh) X Ao X X A X, O

We now give a simple but useful lemma.

Lemma 5.5. Suppose 7 isan irreducible representation of G, A anirreducible
representation of M and ©# — igm(A). If L > M, then there is an irreducible
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representation p of L such that

(1) 7 —icL(p)-
(2) pisasubquotient of ippm(N).

Proof. Since m — igm(\) = igL(iLm(A)), Frobenius reciprocity tells us
0 7 Homg(m,icm(A)) = Hom(rig(m), iLm(A)).-

Therefore, there exists an irreducible quotient p of r g(7) which is a subquotient
of iLm(A). By Frobenius reciprocity,

0 #Z Hom (r.e(), p) = Homg(m, icL(p))-
Therefore, m — igL(p), as needed. O

CoROLLARY 5.6. Let 1,...,1¥mbeinequivalent irreducible unitary supercus-
pidal representations of GL, (F), ..., GL,(F). Let 7(¢;) be anirreducible GL(F)-
representation supported on {v*; },cr. Let M be the standard Levi of GLy(F)
corresponding to 7(11) ® - - - & T(¥m)-

(D) 7(@W1) x -+ x 7(¥m) isirreducible.
@ Mr1)® - @ 7(Ym), Ime(T(¥1) X - X 7(¥m))) = L.

Further, if 7(¢;) is an irreducible GL(F)-representation supported on
{Va¢i}a€R, then

m(7' (1) ® - - @ 7' (Pm), IMa(T(Y1) X - -+ X 7(¢m))) =0

if (1) ® -+ @ 7'(¢hm) 7 7(4h1) ® - - - @ T(thm).-

(3) If wisan irreducible representation of GLy(F) and ryg(m) > 7(y1) ®
- @ 7(¢Ym), thenm = 7() X - -+ X 7(Pm).

Proof. (1) follows immediately from the work of Zelevinsky (cf. Theo-
rem 2.1). For (2), we use the Bernstein-Zelevinsky/Casselman characterization
of Jacquet modules (cf. Theorem 2.3). Observe that 1 € WMM gjves rise to
T(P1)®- - - T (Ym) < Tme(T(¥1) X - - - X 7(¢hm))- Any w Z Lin WM (or more gen-
erally, WMMo where Mg = GLy, (F) x - - - x GLy, (F) x - - - X GLy(F) X+ - - X GLy 1 (F))
gives rise to a nontrivial shuffle. Therefore, 7(¥1) ® - -- ® 7(v¥m) appears with
multiplicity one and no other 7/(11) ® -+ - ® 7'(1m) appears. For (3), suppose
rva(m) > 7(¥1) ® - - - ® 7(vm) for some irreducible 7. By the subrepresentation
theorem and shuffling, we have

T vy X - X VML X o X pOMh X e X pOMime)y
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for some q;; € R. By the preceding lemma, this forces

™ 7 (3h1) X - X 7' (Ym)

for some irreducible 7'(1;). Therefore, by irreducibility, 7 = 7/(¢1) x - - - X 7/ (¢m).
By (2), this forces 7/(3);) = 7(3);) for i =1,...,m, as needed. O

LemmA 5.7. Let,.. ., 1¥m beinequivalent irreducible unitary supercuspidal
representationsof GL,,(F), . . ., GL,(F) with¢; # @Zj fori #jand anirreducible
supercuspidal representation of S (F). Suppose 7 is an irreducible representation
of $,(F) with support contained in S(w1, - - ., ¥m; ¥). Then, there are irreducible
GL(F)-representations p1, . . ., pm With supports contained in S(1), .. .,Sm),
respectively, such that

T p1 X -+ X pm XN Y.

Further, for anyi € {1,...m}, thereisanirreducible subquotient o; of p; x ¢ such
that

T — p1 XX Pi—1 X Pi+1 X -+ X pm N 0j.

Proof. First, by the subrepresentation theorem, there exist supercuspidal
ALy At € S(1, - - -, ¥m) such that

T A1 X -+ X At X .
Shuffling, we get
e AP x - x Aj(ll))x cox M x)\j(ﬂ))xw,
with /\i(k) € S(yx). Rewrite this as m — igu(\). If L denotes the standard Levi
corresponding to (A x - - - x Aj(ll))®- oMM X x Aj(r':)) ®1), then Lemma 5.5
finishes the first claim.

For the second claim, observe that a shuffling argument (which holds since
pi X pj = pj x pi isirreducible for i #j, cf. Theorem 2.1) gives us

T prX X pm XY = pp X oo X pimg X pisr X o0 X pm X (pi X D).

Then, we can use Lemma 5.5 to see that there is an irreducible subquotient o; of
pi X 1 such that

T < p1 X -+ X Pi—1 X Pi+1 X -+ X pm X 0Oj. O
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6. R-groups. As mentioned in Section 4, the main results in this paper will
be done in three cases. In order to address the eventua third case, we explicitly
examine representations of the form

Y1 X Xahy X thp X X P X e X X X P X,
—_——

ny ny Nm

where 1, ...,¥m are inequivalent irreducible unitary supercuspidal representa-
tions of GL,(F),...,GL,(F), ¥ an irreducible supercuspidal representation of
S(F). Theresults we need follow fairly easily from the work of Goldberg ([Gol]).
(We will say a bit more about these in Case 3 of the proof of Proposition 8.4.)

ProrosiTiON 6.1. Let 1) beanirreducibleunitary supercuspidal representation
of GL;,(F), v an irreducible supercuspidal representation of S (F).
(2) If ¥o x 9 isirreducible, then

o X -+ X 1hg X
—_—

n

isirreducible aswell. Further,

SoL (%o X -+ X g X)) = (o + o) X - - X (tho + o) @b
—_——

n n

(2) If 19 x 9 isreducible, then

o X -+ x g 319 = TV (Wo; ) @ TS (Wi ),
—_— ————

n

with T (yo; ) # T8 (wo; ) both irreducible. Further,

oL (T W0y 1)) =21 4o x -+ X ho ® ¢
fori =1,2. (Recall that g x 1 reducible implies g = @Zo-)
Proof. All but the last claim follow immediately from [Gol] (in particular,
Theorems 6.4 and 6.5 (1)).
To show SGL(Ti(”)(%; ) = 2" by x - - X ho®1p, weinduct on n. If n =1,
note that

soL (TP (o; 1) = seL (T (o3 1)) = 1o ® ¢,
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as needed. Suppose n > 1 and saL (T (1ho; 1)) = 20 Le4hg x - - - X Yho® 1. Observe
that

o X -+ X 1ho X1 = 1ho 3 TSV (1ho; 1) + 1ho x TSV (Yo ).
N——————

n+l

Since i x -+ x 1 x 1 has only two components, both g x T{(¢0; 1) and
o x T (; 1)) areirreducible. So, we can write T (yo; 1) = 10 3 T (tho; ).
since [snin(T (W0 )| = Ismin(TS"(Wo; )], this shows [smin(T{™ (vo; )| =
ISmin(TS™ D (10; 4))| (using | - | to denote the length of the representation). As
SoL( 1o X - -- X 1hg X1p) = 2™ 4hg x - - - X 1hg @1, this forces

—_————— Y —

n+l n+l

oL (T (o; 1)) = 27 - o x - -+ X 4o @1,
— ——

n+l
as needed. O

ProrosiTiON 6.2. Letvn,..., 1m beinequivalent irreducible unitary supercus-
pidal representationsof GL,,(F), . . ., GL,(F), ¢ anirreducible supercuspidal rep-
resentation of S (F). Without loss of generality, supposethat 11 <1, . . ., Y X1 are
reducible and yy+1 X 1,...,1¥m X ¢ areirreducible. Then, 11 X -+ - X 11 X -+ - X

n
Ym X - -+ X 1hm X2 has 2X inequivalent components. Write

Nm
YL X XX X P X X Py = Ty ),
T T (1)
where (iy, .. ., ix) runsover all k-tupleswith ij € {1,2}. Further,
SoL (T (1, Ym)) = (@21 gy x+-xapg) X+ X (2% x4y )
—_——— ~—_——

~ M Nk
X [ (1 + hwer) X -+ X (Pran + Pira)] X - -
Nic+1

X[(¢m+7Zm)X "‘X(¢m+lzm)]®¢-

Nm

Proof. We induct on (ng, . . ., Nm).
First, suppose (ng, - - -, nm) =(@1,..., 1). Then,

SeL(Y1 X -+ X hm X ) = 2 ahg X -+ X i X (Yt + Pke1) X - -+ X (Phm+ Pm) 2D



ON SUPPORTS OF INDUCED REPRESENTATIONS 1231

Note that ¢ may or may not be equivalent to ¢; for i > k (if so, i+ = 2-¢;), but
in any case, the right-hand side above is a sum of 2™ irreducible representations.
Let mo be a component of 1)1 x - -+ X 1m % 1. Then,

T = Y1 X X b X (Prn X X Pm X Y)

¥ hy x e X P TED (e, dhmi )

Thus,

SeL(m0) = 11 X -+ X Y X (et + Pian) X - -+ X (m + P @ 2b.

On the other hand, by [Gol], we know that 91 x --- X 1m x 1) has exactly 2%
components. As noted above,

SoL (W1 X -+ X thm X 18) = 241 % - X X (et FPien) X -+ X (Y + D) @),
Thus, the only possibility is

SeL(mo) =91 X -+ kax(¢k+1+&k+1)X"‘X(¢m+lzm)®w

for every component g of ¢1 X - - - X ¥y x9p. Thisfinishesthe case (ny,...,Nm) =
@, ...,1).

We now turn to the inductive step. By the same argument as in Proposi-
tion 6.1, we can write

(nl,...,n]-,l,nj+1,n]-+l ..... Nm)

Tlari) (Y1, Pm ) = ¢ X T((irll""if)m)(%blv o Pm ).

..........

Therefore, by Corollary 5.3,

(N M= 1M+ L0 - .Nm)

SGL(T(il _____ ) (¢1s v 11/)m; 1/)))
= (¥ + ) % SeL(TEE ™ (@, -, o )).

The inductive step then follows immediately. O

7. Modified Jacquet modules. In this section, we introduce a variation
Tadi€'s p* operator (cf. Section 5) which will be useful in dealing with sup-
port questions. We then give a number of its basic properties. We close with a
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definition which will play a key role in the correspondence set up in the next
section.

Definition 7.1. Let ¢1,...,%m be inequivalent irreducible unitary supercus-
pidal representations of GL,(F),...,GL,,(F) with ¢ % @Zj for i # j; ¢ an
irreducible supercuspidal representation of S (F). Suppose 7 is a representation
of Sy(F) supported in S(¢1, .. ., ¥m; ). Write p*(r) = 3 pi ® oi, a sum of ir-
reducible representations in R® R[S]. Then, let Hoj.. ¢k(7r) denote the sum of
every pi ® oj in p*(m) such that the support of p; is contained in S(v1, .. ., %)
and the support of o; is contained in S(Yk+1, - - - » ¥m; V).

IS nonzero.

Proof. By Lemma 5.7, we can find p1, ..., pm irreducible and supported on
S(@1),. .., S(m) such that

T p1 X -+ X pm X Y.

Using Lemma 5.5, we can find an irreducible subquotient o of pg1 X - - - X pm X 9
such that

mT— pXo,

where p = p1 x -+ - x pk (irreducible by Theorem 2.1). By Frobenius reciprocity,
t, . (M) Z p® 0. O

.....

Definition 7.3. Suppose p is a representation of GL,(F) supported in S(«)1,
o, ¥m). Write ME(p) = X 7 ® 7/, asum of irreducible representationsin R® R.

support of 7; is contained in S(¢1, .. .,vx) and the support of 7 is contained in

S(Wet, - -+ hm).

ProrosiTION 7.4. SuUppose p is a representation of GL(F) with support con-
tained in S(¢1, . . ., ¥m) and o a representation of S(F) with support contained in

S(1, - .-, Ym; ). Then,

Proof. Recall that

1 (p @ o) = Mg(p) x p*(0)
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(cf. Theorem 5.2). Write

M5(p) = > pi @ pf',
i

1) = p ®oj.
j

Then,

wH(p > 0) =Y (o x ) @ (pi % o).
i

.....

have p{, p; with support contained in S(¢1, ..., %), pi’ with support contained
in S(Yk+1, - - -, ¥m), and oj with support contained in S(v+1, - - -,¥m; ). This
means pj ® pi’ isin My, w(p) and py @ oy isin py, o (0). O

CoroLLARY 7.5. Suppose p has support contained in S(v1, . . . , 1) and o has
support contained in S(Yx+1, - - - Ym; ).
(1) Suppose

SeLlpx1) =) nel
i
Then,

We note that sg (p x 1) = 37 ® Lifand only if sgL(p x ) = 371 @ o (cf.

Corollary 5.3).
(2) Suppose
pRYp= Z i
and
SeL(0) =) & .
j
Then,

]
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Proof. Part 1 of the corollary follows from the proposition once we establish
that

and

erything of the form 7 ® 1 in Mg(p). Now, suppose
M) =D 7 e
i

Then,
ppx1) =Y 1 %)
i
Now, 77 ® (i x 1) contributes to sg(p x 1) if and only if 7 is the trivia

representation of GLo(F), i.e., 77 ® 7" is of the form 7 ® 1. So, if we write
SoL(p x1) =37 ®1, we get

.....

and

Both are easy. m]

Suppose 7 is an irreducible representation of S,(F) supported on S(v1, - - -,
Ym ). Fix i € {1,...,m}. By Lemma 5.7, there is an irreducible p; ® o; with
pi supported on S(v¥1, . - ., ¥i_1, Yi+1, - - -, ¥m) ad oj supported on S(vji; 1) such
that

™ — pj X 0j.
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Further, by the preceding corollary,

> (n); ® ai.

i
Thus, the following definition makes sense:
Definition 7.6. () = oj.

One direction of the correspondence we are after sends = to (y1(n),...,

Ym(7)).

8. Correspondence, part I. In this section, we establish the correspon-
dence that is the subject of this paper and give a few of its basic properties. The
two key results are Propositions 8.1 and 8.4. Again, let v, . . ., ¥m beinequivaent
irreducible unitary supercuspidal representations of GL;,(F),...,GL,(F) with
v F @Zj fori #j, ¢ an irreducible supercuspidal representation of S (F). Suppose
that o1,...,0m are irreducible §F)-representations supported on S(w1; ), - ..,
S(vm; 1)), respectively. Proposition 8.1 shows the existence of an irreducible =
supported on on S, . .., ¥m; ) with ¢i(r) = oy for i =1,...,m (cf. Defini-
tion 7.6). Proposition 8.4 then shows that this 7 is unique. This establishes the
basic correspondence.

ProprosiTioN 8.1. Supposeosy,. . ., omareirreducible S(F)-representationssup-
ported on S(u1;),...,S(Wm; ), respectively. Choose ps, ..., pm irreducible
GL(F)-representationssupportedon S(#1), - . . , S(¥m), respectively, suchthat o; —
pi X 1. Then, thereisa component 7 of p1 X - -+ X pm % 3 such that ;(7) = o; for
i=1,...,m

Proof. The proof is by induction on m. If m= 1, the result is trivial.

Suppose the result holds for m— 1. Then, there is an irreducible representation
# which isacomponent of p; x- - - X pm_1 X1 such that ¥1(0) = o1,...,Ym-1(0) =
om-1. Consider pm x 6. Write

SeL(pm % ¥) = Zﬂ ® 1.
i
Then, by Corollary 7.5,

g (om 3 0) = ZT. ® 0.
i

In particular, this forces any component ©’ of pm x 6 to have v1(n') = o1,. ..,
Ym-1(r') = om_1.
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ij

Since i = oy for some i, we can choose a component = of pm x 6 such that
Py b1 () = & @ om. In particular, Ym(m) = om, as needed. m|

The following lemma will be enough for now. A more precise version is
given in the next section (cf. Proposition 9.1).

LemmA 8.2. Suppose 7 isan irreducible representation of S,(F) supported on
S, .., m; ). Write o) (m) = o for i = 1,. .., m. Suppose

SeL(01) = ) 67 ® 1,
j

where 7j(3/i) is an irreducible representation of GL(F) supported on S(z) and
Cj(v4) isitsmultiplicity. Then,

SGL(’/T) = ‘ Z ajl ..... jm’rjl(wl) X X ﬂm(@bm) & w’

j1r-m

Proof. First, we show that 73, (¢1) x - - - X 7j,,(¥m) ® are the only terms which
can appear. Suppose there were another term, say 7(v1) x - -+ X 7(1m) ® 1 with
7(¥1) 7 1(1) for any j. Since 7(p1) x - - - X 7(hm) = T(P2) X - - - X T(Pm) X 7(¢1)
(irreducible), ry,c(m) > (7(12) X - - - X T(¥m)) @7 (1) @ for the appropriate M, .

Sa((T(2) X - - - X T(Ym)) @0 (Y1; ) = (T(h2) X - - X T(Ym)) @7 (Y1) ®1p. However,
since 7(11) ® Y £ SeL(o1), we must have o (1; 1) # o1. This contradicts 1 () =
o1 (Corollary 7.5).

Next, we show that every 7j,(¢1) x - -+ X 7j,(¥)m) ® 9 occurs at least once.
The proof is by induction on m. The case m= 1 is trivial. Suppose it holds for
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m — 1. Choose p irreducible such that = < p x o, (cf. Lemma 5.7). Then,

.....

Su(m) > S0 @ (thm) @ ¥
j

|2
Sp(T) > Zﬂ@ﬁm) ®p Y
J

y
15 (M) 2D 7(1hm) © 65,
j

where M,,, is the standard Levi for p ® 7j(¢m) ® ¥, Mq, the standard Levi for
7j(¥m) ® p®7, and 6; some S(F)-representation supported on S(21, . . ., Ym—1; ).
Now, vi(6;) = vi(7) = oi fori=1,...,m— 1. So, by the inductive hypothesis,

sal(B) > Y (1) X - X T, (Pme1) ® .

JLieim-1

Therefore, if M, denotes the standard Levi for 7j,(v¥m) ® (75,(¥1) x ---
X Tim_1(Ym-1)) ® ¥,

Soz(ﬂ-) > Z Z ﬁm(l/}m) ® 7"11(¢1) XX 7"Jm_1(¢m—1) & ¢
ML Grreducibility)
Sal(m) = D m(tm) X (1) X - X Ty (Y1) © 9

j1reeim

= ‘ Z ﬂl(iﬁl) X -+ X ’ij(wm) ®¢,

j1rmjm
as needed. O

CoroLLARY 8.3. Quppose isanirreduciblerepresentation of S,(F) supported
on S, ..., Ym; ¥). Write ¢i(x) = o; for i = 1,...,m. Then, = is tempered
(resp. square-integrable) if and only if o4, .. ., om are all tempered (resp. square-
integrable).

Proof. Write

Smin(oi) = Z di (i) [x; (¥i) @ 4],
i
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with d;(+) the multiplicity of x;j(+i) ® 9. Further, write

Ty )k
i) = 0D @ g il N,

where 9" is y; or 4 for al (j,£) (only the exponents af) actually matter in
the proof).
 tempered = o tempered for i = 1,...,m. To show o; tempered, we show

xj(¥i) ® ¢ setisfies the Casselman criteriainequalities for all j. By the preceding
lemma,

Smin(m) > xj(¥1) @ x1(¥1) ® - - - @ x1(¢i—1) @ x1(Yi+1) @ - - - @ x1(¢Pm) @ .
Applying the Casselman criteria to this term, we get

rioai(j) > 0,

riai(}) + riai(? >0,

riai(}) +...+ riai(,lj(i) >0,

(k

i ) + rlaﬁ_ >0,

The first ki of these are exactly the inequalities the Casselman criteria requires
of xj(¥i) ® ¢ for temperedness of o;. Since this argument works for all i,j, we
have m tempered implies o4, ..., om al tempered.
o1,-..,om all tempered = 7 tempered. First, the Casselman criteria for o
tells us that for all x;j(vi) ® 9,
riai(}) >0,

riai(,}) + riozi(? >0,

ria +.-+rial) > 0.
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Now, consider a x ® 9 < Syin(m). Write x ® ¢ = v, ® - - @ vy, @ 9P
where k = k; + - - - + ky,. Then, we need

ri,ag > 0,

riyoq + ri,ap > 0,
Moy +---+rj,00 >0,

rpag +-- - +rj o > 0.

We show the general inequality ri, a1+ - -+rj,cp > 0. By the preceding lemma, we
know that x is a shuffle of some x;j,(11) ® - - - ® xjm(¥m). Therefore, rearranging,
we get

— 1 £
Mogt+...+r,0p = (rlotg_’j)l R rlag_,jll))
@ (¢2)
+(r20z2’j2 +---t fzaz,jz)

I
+Hrmaly + o+ rmalm).
But, by the Casselman criteria inequalities for o1, .. .,om, €ach of the parenthe-
sized terms is > 0. Thus, we have
oy + - +rj,ap >0,
as needed.

The proof for sguare integrability works the same way. O

ProrosiTioN 8.4. Suppose w and «’ are irreducible representations of S,(F)
supported on S(¢1, . . ., Ym; V). If i(m) = i(x’) fori=1,...,m thent = «'.

Proof. The proof is by induction on k, where k is the parabolic rank of an
eement of Myin. The case k = 1 is trivial. We consider three cases. (We note
that the third case is done directly, and does not require either of the first two
cases or the inductive hypothesis.)

Case 1. m nontempered. In this case, there is Langlands (subrepresentation)
data A(7) and m — igm(A()). Write

A(m) = (V@) X - X VI (Ym)) © -+ - @ (™ 7y(tha) X - - X v 7e(Ym))
®T(¢1! R 1me; 1/))’
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where 7i(¢;) is tempered and has support contained in S(v) (n.b.: 7i(v);) may be
the trivial representation of GLo(F)), T(¢1, ..., ¥m; 1)) is a tempered representa-
tion of some Sy (F), and a3 < --- < ay < 0. Write

T ) = i(T(W1, - . -, Ymi ).
By the preceding corollary, T(v; v) is tempered. Write
Mo @i ¥)) = v (i) @ - - - @ v 7(hi) @ T(Wi; ).

Then, A(o(; ¥)) is the Langlands data for some representation which we call
o(i; ). We begin by showing that o(¢i; ) = ¢i(r).

By Lemma 5.7, there are irreducible representations p(11), . . ., p(1¥m—1) such
that

T, .-, Ym; ) = p(h1) X -+ X p(bm-1) X T(Pm; ).
Therefore,

T = (VM71(Y1) X -+ X VU171 (Ym))
X e x (1) X - X vYT(Ym) X T (Y, .. ., Um; 1Y)
|3
T (VM7(Y1) X -+ X vOT(Pm)) X - X (WM T(ah1) X - X v¥T(Pm))
X p(p1) X -+ X p(thm=1) ¥ T(Ym; )
|3
T — (V71(Y1) X - X v¥T(P1) X p(2h1))
X X (T (Ym-1) X - X v T(Ym-1) X p(Ym-1))

AT (Ym) X - X v T(Ym) 2 T (hm; ).
Therefore, by Frobenius reciprocity,

rwa(m) > v*m(P1) @ - - - @ v¥1y(h1) ® p(i1)
® - VAT (Ym-1) @ - @ v T(Ym-1) ® p(t¥m-1)
QUT(Ym) ® -+ @ v T(Ym) @ T(Ym; ).

Thus, there is an irreducible R(vyq, . . ., Um—1) @ S¥m; ) with R(y,. .., Ym—1)
a GL(F)-representation supported on S(wq,. .., Ym-1) and Spm; ) an F)-
representation supported on S(im; ¢) such that R(iq, . . ., Ym-1) ® SYPm; ) <

Hen () @nd
M (R(Y1, - - - Ym-1) @ YYm; ¥))
> v (1) ® - @ vHry(Y1) ® p(¥1)
Q- @UMTI(Ym-1) ® -+ @ v 7(Ym-1) ® p(tm-1)
@ v (Ym) ® - @ v 7p(YPm) @ T(Ym; ¥).
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Further,

Hapen (M) < g ([ T(eh1) X - - - X V¥ 7(3h1) X p(31)
X o X v (Pme1) X - X vHT(Pme1) X p(YPm-1)]

)t T(hm) X - X v T(hm) X T (m; )]).

Therefore, by Corollary 7.5 we see that S(vm; ) must be a component of
v (Ym) X - - - X v¥1p(1m) X T(1m; ¢). By the Langlands classification, the only
component of v*171(Ym) X - -+ X v¥71p(1hm) X T(m; ) containing v*171(Ym) ®

@ vT(Ym) @ T(Ym; ) in its Jacquet module is o (m; ¥). Thus, S¢m; ¥) =
o(®¥m; ¥). On the other hand, R(vy,. .., Ym-1) ® SYm;¥) < py, g, (), SO

we must have S(¢m; ) = Ym(m). Thus, o(1pm, ¥) = ¥m(r), as claimed. The same
argument works for 41, ..., %¥m_1.

Next, by Corollary 8.3, we also know that =’ is nontempered. Therefore, 7’
has Langlands data

) = (5mi@) X - X V() @ - @ (VU T () X - X VT ()
® T,(Qﬁl’ LR :¢m; ¢)
As above, we can produce Langlands data
Mo" (i) = v () @ -+ @ v T () @ T' (Wi ).

As above, this is the Langlands data for o’(vi; 1) = i(n’') = 4i(r). Since the
Langlands data is unique, we must have ¢ = ¢’ and

Vi1 (W) = v (),

T'(Wi; ) = T(Wi; ).

By the inductive hypothesis, T'(y1, ..., %m; %) = T(¥1,...,¥m;¥). Therefore,
A(m) = X(n'), so # = «’. This finishes Case 1.

Case 2. 7 tempered, 7 nontempered. First, as a consequence of Aubert’'s
work—in particular, Theorem 4.1 (3)—we have ¢); () = 9 (7r) Therefore, 1/1, (7r) =
»i(n) implies (7)) = zp.(vr’) By Case 1, this means 7 ¥ T, forcing * = 7'/, as
needed. This finishes Case 2.

Case 3. 7, 7 both tempered. From Corollary 4.2, we have

TPy X - X Py X oo X Py X - X Py XY,
— —

ni Nm
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Without loss of generality, let us assume 11 x 1,...,¢x % 1 are reducible and

k1 X Y, ..., ¥m X 2 irreducible.
We now refine the results of Proposition 6.2 a bit. For notational convenience,
if 4 x 1 isirreducible, let

T (i) = i x - x ¢ X,

N

Now, by Proposition 8.1 (using p;i = % x --- x 1), we see that there is an
N————

N
irreducible representation (™M™ of S,(F) with
ﬂ(nl """ nm);),lp X oo X Py X oo e X
(j1seesim) F1 1 Pm X X m X
ny Nm

such that yi(x{™ ") = TMW(y;; ) for i = 1,...,m. Since j1,....jk can be

either 1 or 2, there are 2¥ distinct m-tuples

(M,--.,nm) (Mg,-.,nm)
(Yoo, (o)

As the maps 1, . . . , )m Of Definition 7.6 are well-defined, the Wé?i”:::”jnn:;) must be
distinct and therefore exhaust the 2 components of

fl/}lx...qulx...xq/}mx...xqﬁmxw_
~———— —_—————

ny Nm
If we write

Tt @, s ) = 7,

..........

we have

Y1x X X Y X X fmxp = @ TE Iy i )
(J1

m m U jm)

and T M (4, ..., Yhm; 9) is Characterized by

BT ) = T )

forali=1,...,m We can takethisas our definition of T((?ll"_'.'."'jrr‘;‘;)(qpl, o),

but we note that it is consistent with the inductive property used in the proof of
Proposition 6.2.



ON SUPPORTS OF INDUCED REPRESENTATIONS 1243

Now, returning to 7, suppose m = T M (g, .., 4hm; ). Then,

i) = i) = T (s )
fori =1,...,m By Lemma 8.2, 7' must be supported on {41, ..., %k, Y1,

szﬂ, .. wm, ¢m} In particular, we can unshuffle (using ¢| X ) = b X ) irre-
ducible for i > k) to get that

e X o XYL X e X P X e X Pm X,
— —_—

n Nm
However, this then forces
= T ) =
as needed. This finishes Case 3 and the Proposition. O
We now make the following definition.
Definition 8.5. Suppose o1, .. .,om are irreducible S(F)-representations sup-

ported on S(v1; ), . .., S@m; ), respectively. Let W(o4,...,om) denote the ir-
reducible representation supported on S(v1, . . ., ¥m; 1) which satisfies

i(W(o1,...,om)) = oi
fori=1,...,m
CoOROLLARY 8.6. Suppose
oi = L™ (i), - v (i) T(Wi: ¥))

fori =1,...,m(n.b.: recall that 7j(1;) may bethetrivial representation of GLo(F)).
Then,

Y(o1,...,om) =L@*rm1(y1) X -+ X v%71(Ym),
V(1) X - X VT (Pm); W(T (15 9), - - o T(m; 4))-

(In the quotient setting of the Langlands classification, the same result holds.)

Proof. In the subrepresentation setting, the corollary is an immediate conse-
guence of the proof of Proposition 8.4. For the quotient setting, just observe that
if = has subrepresentation data v*'71 ® - - - ® v*71, ® T, then it has quotient data
VUM Q- QrMn, QT. O
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Remark 8.7. It is worth noting that

—_~—

YG1,...,0m) =W(o1,...,0m)
(an easy consequence of the fact that ™ respects induction).

9. Correspondence 1. In this section, we give some important properties
of the correspondence set up in the preceding section. We begin by giving a
refinement to Lemma 8.2, which gives the exact multiplicities which appear in
o wk(LIJ(al, ...,om)), whichin turn allows us to determine how the correspon-
dence behaves with respect to induction. We summarize the basic properties of
the correspondence in Theorem 9.3. We close by interpreting the correspondence

in terms of tensor product decompositions of R and R[S.

ProposiTion 9.1. Suppose that o(y1;v), . . .,o(m; ) are irreducible S(F)-
representations supported on S(i1; ), - - ., S(¥Ym; ). Uppose that

SeL(a(i;9)) = Y G (W) © b,
i

where 7j(¢;) isan irreducible GL(F)-representation supported on S(v) and ¢j(v)
isits multiplicity. Then,

SoL(W(e(¥1;9), . .., o(¥m; )
= > (€ (@1) - G (Wm) Ty (1) X -+ X T (Um) @ .

= 2 (©u(1) - G () (¥e) x - - x 73, (Y1)

J1rmlk

® W(o(Yrs1; ), - . ., o (m; 1))).

T G o (ol CIETRT) PR o(Ym; 1))

Proof. Write m = W(o(y1;4), ..., o(1m; ¥)). The proof follows the same
basic lines as Proposition 8.4. Again, the proof is by induction on the parabolic
rank of an element of Mpin. We first look at sg, then move on to the general
clam.

Case 1. w nontempered. By Corollary 8.3, a least one of o(y1;%),...,
o(¥m; ) is nontempered. Without loss of generality, assume o(31; ) is non-
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tempered. In genera, write
o(i; ) = LAAW); T(is ) = Lw* 014, - - ., v 0e(hi); T(¥i; ¥))
(using the same ay,..., oy for al i, but allowing trivial representation of

GLo(F) to occur). Let T(vy,..., Um; ) = W(T (Y1 ¥),. .., T(v¥m; %)). By Corol-
lary 8.6,

T = LAW), - - Am); T(1, - - - thm; ).

By the inductive hypothesis,

.....

.....

claim.

First, if A isaset of Langlands data, let | (A) (resp. Z(A) for GL(F)) denote the
corresponding induced representation. In particular, L(A) < [(A) (resp. L(A) —
Z(A) for GL(F)). (Aswith L(A), £(4), if Aisnot in the proper order for Langlands
data, we permute it into order.) Note that (shuffling arguments)

Z(AW1) x - X Z(A®Wm) = ZA®@1), - - -, Am)).
Thus,
LAW1) x L(A2), - - -, Aom); T(41, - - -, hmi )

— LAW1)) X HAW2), -, Dhm); T(W1, - - -, Ym; 1))
= L(AW1)) X Z(A®2), - -, AYm)) X T(W1,- - . Ym; 1))
— Z(A(1)) X Z(A®W2), - - -, Am)) X T(W1,. .. thm; 1))
= Z(AW1), AW2), - - - B(hm)) ¥ T(1, - - ., Ym; )
1AW, - - AWm); T@W1, - - - Ymi )

Since 7 is the unigue irreducible subrepresentation of [(A(y4),..., A()m);
T(1,-- ., Ym; 1)), we get

*) T = LIAAW1)) ¥ LA®2), -, AWm); T(1, - - -, ¥mi ).
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Further, = appears with multiplicity one in L£(A(y1)) x L(A(®%2), - . ., AYm);

T@1, .. ¥m; ).
Next, by the inductive hypothesis and Proposition 7.4,

.....

Consequently,

M(75,(4p2) X - - X Tj(¥m) @ LIAW1); T(41; ),
Haj.. o (£(B(1)) 3 L(A(Y2), - . ., A(¢hm);

.....

(cf. Corollary 3.5). Any component

' < LAA@) 3 LA®G2), - .., Am); T(W1, - -, ¥m; ¥))

has
Yi(n') = hi(LA2), - - -, AWYpm); T(Y, - - -, Ym; ) = o (i; )

fori=2,..., m. Thus,

for any component ©’ < L(A(¥1)) x LAA®2), . - ., Atm); T(¢1, - - -, ¥m; 1)) With
' # m (if not, ¢i(n') = vi(x) for al i, contradicting Proposition 8.4). Conse-
quently, as m appears with multiplicity onein

L(A(1)) X LA(2), - - -, Apm); (W1, - - ., thm; ),

we have
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Further, by 11(7) considerations,

.....

as needed.

.....

U
T, (1h2) X -+ X Tj(¥m) ® 73,(¥1) ® ¢ appears with multiplicity
Cj,(¥2) - - - Cy(¥m) Gy, (11) N o ()
Y
S(3L(7T) = . Z (Cj1(¢1) T ij(llfm))m(lﬁl) X X ij(wm) & 1/}-

where M,, is the standard Levi for 7,(¢2) x -+ X 7,(¥m) ® 75,(¥1) ® 9. This
finishes Case 1.

Case 2.  tempered, m nontempered. First, by Theorem 4.1,
soL(o (Wi 9)) = Ad(We,) 0™ 0 SeL(0(¢i; 1))

= Ad(Wg,) o~ (ch(wi)ﬁ(tbi) ® 1/1)
i

= Ad(wg,) (ch (d}i)@ ® 1/1)
i

= Zq(zbi)g/(?i/) ® .
j

Note that, as in Case 2 of the proof of Proposition 8.4, 7 = w(a@) .....
o(m; ¥)). So, by Case 1,

e~

oL@ = Y. (G0 Gy (1) X -+ X T (i) @ 0.
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Since” and~ commute and both respect induction, we see that

—

o) = Y Git) G (M (1) X - X T (W) €

Next, again by Theorem 4.1,
seL(m) = Ad(We) o~ o seL ()

= Ad(Wo) 0" ( 3 Gu2) G () X - X Tin () @ w)

Ad(Wo) ( S G (1) -+ G (7 (@h1) X -+ X (W) @ ¢>

J1,om

- Z (le(wl) o 'ij(¢m))ﬂ1(¢1) X X ij(wm) & ¢:

j1r-dm
as needed. This finishes Case 2.

Case 3. 7, 7 both tempered. From Corollary 4.2, this means

Ty X oo XL X -+ X WPy X -+ X Py XY
— —_—

mn Nm

The claim then follows immediately from Propositions 6.1 and 6.2. This finishes
Case 3 and the sg () proof.

.....

is that

M(7,(¥1) @ - - @ T(¥m) @ ¥, Tm,6(T)) = Gy (Y1) - - Gn(¥m),

where M,, is the standard Levi for 7j,(¢1) ® - - - ® 7 (¥m) ® 4 (cf. Corollary 5.6).
Observe that

M(7, (1) ® - - - @ T(¥m) @ ¥, Tm, (7))
= Im(7, (1) ® - -+ @ 7, (i) @ W', ()
LP/

(7, (1h1) ® -+ @ Tj(¥om) @ ¥, Tmam (15, (11) ® - - - @ 75, (Y1) @ W),

where M3 is the standard Levi for

(1) @ - - - @ T, (i) @ W(o(Ywess 1), - . ., o (Pm; )
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and the sum is over al irreducible W' with 7, (¥1) ® - - - @7, (YK ) @ W' < rm6().
Now, by (), ..., Ym(m) considerations, we see that

M(7,(¥1) ® -+ @ 7, () @ W', T, 6(7)) = 0

for any irreducible W' # W(o (Yx+1; ), - - -, o(1m; ¥)). Therefore,

M(7,(41) @ - - - @ T(¥m) @ ¥, Fma (7))
=m(7},(41) ® - - - @ 7, (hi) @ P(o(Whr1; ¥), - - - o (bmi ), Tmy6(m))
(73, (%1) ® -+ @ T (Ym) @ P, Tmam (75, (Y1) @ -+ - @ 75, (Yk)
® W(o (e ), - - - 0 (Pms 1))

The sg-result applied to W(o (1x+1; ), - - -, o (1m; 1)) tells us that

m(le(wl) - ij(wm) ® ¢, rMaMﬁ(le(@bl) & 7-]k(wk)
QW(o(Yre1; ), - - -, o (¥m; 1)) = Gy, (V1) - - - Cin(¥¥m).

Thus,

(7, (Y1) ® - - - @ 7y, (i) ® PO (Wwr1s ¥), - -, 0 (hm; 1)), Tm6(7))
=Gy (Y1) - - G, (Y1)

tiplicity ¢j, (1) - - - G, (¥x) in [y Tl’k(ﬂ-)' This finishes the proof. O

CoroLLARY 9.2. Let p(1),- .., p(1m) be irreducible GL(F) representations
with supports contained in S(v1),.. ., S(m) and o(1;),. . ., o(Ym; 1)) irre-
ducible S(F) representations with supports contained in S(v1; ), .. ., S(Wm; ).
(We allow the possibility that p(i;) = 1 or o(vi; 1) = 1).) Suppose

p(ihi) 3 o) = > my(hi)oj(i; 1),
j

with oj(¢i; ¢) irreducible and my(v) its multiplicity. Then,

= 3 (M) M) W03 (1 6) Oy ).
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Proof. Write W for W(o(y1;4), .. ., o(1m; ). First, we consider p(ym) x V.
By Propositions 7.4 and 9.1, we have

'U’;Zl ..... zpm_l(p('l/}m) A l'IJ)
= Y @) Gy D)7 (1) X - X Ty (Y1)

j1remjmo1

® p(Ym) X o (tbm; )
= Y (M@m)G, (1) - Gy Wm-)) T, (1) X -+ X Ty (Pm-1)

ijs-im—1

® 0i(Ym; V).

For any component 7 of p(ym) xW, we have ¢i(w) = o(¢i; ) fori=1,..., m—1.
Thus,

p(hm) x ¥ = Z MW (1 9), ..., o(Wm-1;4), 0i(¥m; ¥))

for multiplicities m;. We claim that m = my(vm). This is straightforward. Write
Wi = Wo (1 ¥), - -, 0(¢m-1; 1), 0i(hm; ). By Proposition 9.1,

Bonetbm (W) = D (€1 - Gy (Ym0 (1) - -

j5eejm—1

X Tjm1 (¥m=1) ® oi(m; V).
Now, if M,, is the standard Levi for 7j,(11) X « -+ X Tjp_; (¥m-1) ® 7i(Ym; V),

M(73, (1) X - -+ X T_y (Ym-1) @ 01 (Ym; 1), Sa(W')) = 0
for any component W' < p(im) x W with W' Z W; (or else ¢;(W') = ¢;(W) for

i=1..., m, contradicting Proposition 8.4). Thus, we get my = m(vm), as needed.
To get the generd result, we iterate. The same argument tells us

pWm-1) % Wi = > My (Wm0 WP (@1 9), - .., 0 (Ym-2;9),
jm-1
Ujm—1(¢m—1; 7ﬁ)v Ujm(wm; 111))
Summing over jy, gives

(p(hm=1) x p(tm)) x ¥
= 3 My W )M @)W (1 ¥), - - . o (Wm—2; %),

jm—1,jm

Oim1(Wm=1; V), Gjm(m; V).
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Repeating the argument for m— 2, m— 3,..., 1 gives the corollary. O

We summarize the main results in the following theorem.

THEOREM 9.3. Suppose v, . . ., 1m are inequivalent, irreducible, unitary, su-
percuspidal representations of GL;,(F), ..., GL,(F) with ¢; % 1},- fori #j and
1 anirreducible supercuspidal representation of S (F). Let Irr(v1, . . ., ¥m; ) de-
note the set of all irreducible representations of all S,(F), n > 0, supported on

S, ..., m; ), and similarly for Irr(yq; ), ..., 1rr(vm; ¥). Then the maps (cf.
Definitions 7.6 and 8.5)

(¢1’ oo a¢m)
Irr(ys, - Ymi) < w Irr(a;40) X - - - X 1T (Pm; )

give a bijective correspondence with the following properties:

(D) Wand (1, .., 1m) are inverses of each other.

(2) It o(vis ) € Irr(yi; ) isarepresentation of Sy + (F), then m = W(o (y1; v),

o o(m ) is a/rgplesentati on of 511+.;n\nﬁ(':)- -

@)W1, 9), ..., o(@m ) = Wo(d1;¢), . .., o(Pm; ¥) and ¢i(7) = i(m),
where™ denotes ccﬂ@redi ent. - o -

@1 9), .., o(@m ) = Yo (P, 9), .. ., o(Ym; ¥)) andi(wr) = i(n),
where” denotes the involution of Aubert (cf. Theorem 4.1).

(5) Suppose that

SeL(o(¥i;v)) = ch (Vi) (Y1) @ P,
i

Hap,. .. (Pl (W15 9), - - -, o(¥m; ¥)))

= . Z (le(@bl) Tt Cjk(wk))ﬁ1(¢l) X oo X T]k(wk)

JE

@ W(o(Yre1s V), - - -y 0 (Pm; ).

(6) Let p = p(v1) x -+ X p(vm) be an irreducible representation of GL(F)
with support contained in S(y1,...,%¥m) and W = W(o(v1; ), ..,0(bm; ) an
irreducible representation of (F) with support contained in S(v1, . . . , ¥m; ). (\We
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allow the possibility that p(v) = 1 or o(1;; 1) = 1.) Suppose

p(hi) x o (i, ) = Z my (i) (¥i; ¥),
i
with oj(vi) irreducible and my(z;) its multiplicity. Then,

prW= > (M, (1) - My () P01 (Vs ¥), - O (i ).

j1reeim

(7)) W(o(Y1; ), - .., o(bm; ) istempered (resp. square-integrable) if and only
if o(y1;9),. .., o(ym; 1) are all tempered (resp. square-integrable).
(8) Suppose, in the subrepresentation setting of the Langlands classification,

o(¥i;¥) = L™ (i), . . ., v 1e(Wi); T(3i; )

fori=1,..., m(n.b.: recall that 7j(¢;) may bethetrivial representation of GLo(F);
T(¢i; ) may just be ). Then,

Yo ¥), - o(Pm; )

= L(l/alTl(wl) X - X UalTl(Q/}m) ..... l/ang(’(ﬂl) X - X I/aeTg(f(/}m);

W(T (1), - .- T(Wm; ¥)).
In the other direction, if
m = Lw* (1) X - x vr(Ym), .. v me(1h1)
X X v T(Ym); T(Y1, - - dmi ¥)),
then
Yi(m) = Lt @), - v (@) YiT (s, - - thmi ))).
(In the quotient setting of the Langlands classification, the same results hold.)

Remark 9.4. Proposition 5.3 in [Jan] contains a specia case of this result.

Recall, from Sections 2 and 5, that using x: R®R — Rand m*: R — R®R
to define multiplication and comultiplication, R becomes a Hopf algerba. Further,
using x: R® R — R[Y and p*: RIY — R® R[S, RI§ becomes an
Mg-Hopf module over R. In what follows, we interpret the correspondence of
Theorem 9.3 in terms of these structures. Thanks go to Marko Tadi¢ and Guy
Henniart for pointing out this interpretation to me.
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Definition 9.5. Let R(y1,...,¥m) denote the subalgebra of R generated by
representations supported on S(1, . . . , ¥m)-

ProPosiTiON 9.6. R(#1, . ..,Ym) = R(Y1) ® - - - ® R(ym) as Hopf subalgebras
of R

Proof. This is an immediate consequence of Remark 8.7 of [Zé€l]. O

Let WCL: R(1) @ - -- ® R(¥m) — R4, . .., 1m) denote the isomorphism
from Proposition 9.6. It is defined by

WO (r (1) @ - @ T(thm)) — T(1h1) X -+ X T(¢hm)-

If we use m to denote multiplication in the following diagrams (and this is the
only place where we use m for multiplication), then Proposition 9.6 tells us that
the following diagrams commute;

meg:---@m
[R(¥1) @ R@1)] @ - - - @ [R(¥m) @ R(¥m)] ——— R¥1)®---®R@Ym)
l.|JGL ® qJGL LIJGL
m
R, ..., ¥m) ® R, ..., ¥m) R, ..., m)
and

m e ---@m*
R(%1) ® - - - @ R(¥m) — [R@¥1) @RI ® - @ [R¥m) ® R{¥m)]

wGL WGL ® WGL

R(1, ..., ¥m) >~ R1,..., ¥m) @ R@1, . .., Pm),

where WO @ WOL sends [7/(v1) @ 7"(W1)] ® - @ [T (¢¥m) ® 7" (¢bm)] tO
WeL(r (1) ® - @ T/(¥hm)) @ WE("(4h1) @ - - @ 7" (¥om)).

Definition 9.7. Let R(v1, . .., ¥m; ¢) denote the (additive) subgroup of R[S
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ProposITION 9.8. R(/1,...,Ym¥) = R@W;v) @ -+ @ R@Wm ) as
R(1, - -+ m) = R(1) @ - - @ R(¥m) M&-Hopf modules.

Proof. Write u(p ® o) = p x o for p € Rand ¢ € R[S. Then, we need to
check that the following diagrams commute:
p® @ p
[R(¥1) @ R@1; )] @ - - - @ [R(¥m) @ R(ypm; ¥)] — R@u¥)© - @ RYm;¢)

Yol o W

R(djl ffff T/Jm) ® R(’lr/)l !!!! 'lljm, dj) > R(djl ffff QZJm’ 1/))

and

* e *

K@ Qp
R14) @ -- @ RWUm¢) ————— [RU1)QR@1¥)] @ -+ ® [R¥m) @ R¥m; ¥)]

W Yol g y

R(Y1, ..., Ym; ) R1, ..., Ym) @ R(@1, ..., pm; ),

where WO @ W takes [7(1) @ o(@1;9)] @ -+ @ [7(¢m) @ o(Ym )] to
YE(r (1) © -+ @ T(Ym) ® W(o(¥1;9), - -, 0(bm; ), with W extended to
R(11; %) ® - - - @ R(3m; ¥) multilinearly.

That the first diagram commutes follows immediately from Theorem 9.3(6).
The commutativity of the second diagram follows from Lemma 9.9 below. O

LemmA 9.9. Suppose 1, ...,%m are as in Theorem 9.3. Let o(¢i;v¢) €
Irr(yy; ) fori=1,...,m Suppose,

o @i v)) = (i) (i) @ 05, (i ),

Ji
with 75, (4i) ® 0j;(4i; 1) irreducible and nyj, (1) its multiplicity. Then,

p(WPlo@Wn ), ..., o(m )
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= Z (M, (¥1) - - Ny (Pm)) (5, (01) X - -+ X My (b))

@ W0, (Y1, 9), - - - O (1hm; 1))

Proof. Write o = W(o (v1;9), . . ., 0(¥m; ). Suppose 7;; () is a representa-

tion of Gij(i)(F). We begin by showing
i

Nim(m) @ W(o (@1, 9), - - -, 0 (Ym-1, ), Oj(¥m; ¥))

appears with multiplicity nj,(m) in S(k(m))(O'). From Theorem 9.3(5),
m

Ko ima @G0 Gy Wme ), (1) X -+ X 7, (m-2) © o (Y )

jl ----- jm—l
4
m(7j, (Y1) X -+ X 75, (¥m-1) @ 0j,, (¥m) @ 6, (Ym; ¥), Sy (0)) = ¢, (1) - -~ ¢, Wm-1)nj (¥m)
4

M, (¥m) @ 75, (Y1) X -+ X 75 (¥Pm-1) @ 6, (¥m; ¥), Sa,(0)) = ¢, (1) - - - G, Wm—1)nj (¥m)
where M, is the standard Levi for 7, (1) X - -+ X Tjm_, (¥m-1) ® Tjm(@m) @

Hjm(Q/JmJ 7;[1) and Maz the standard L evi for ﬁjm(¢m) ®T]1(¢1) XX 7-jm—l(wmfl) &
O (¥m; 1). Observe that

I’\'\(??jm(lﬁm) & ﬂl(lpl) X oo X TJmfl(@bmfl) ® 9jm(¢m; ), S0y (0))
= Z[m(nim(wm) Q@ W, u*(0))
LIJ/
() @ T3y (W01) X -+ X T (Ym-1) © B (Wi 1), Sy () @ W),

where the sum is over all irreducible W' such that 5j,,(m) @ ¥' < p*(o). Now,
consider any irreducible 7, (¢m) ® W' < p*(o) such that

77]m(¢m) b2y le(djl) X X ijfl(,l/}mfl) & 91m(¢m, 1/}) < Saz(njm(wm) & l'IJ,)
By ¥1(W'),...,9¥m(WV') considerations,

W' =W (1), - - - o (hm-1; ), Ojm(Pmi )

From Theorem 9.3(5), we have

m(njm(wm) ® 7—]1(¢1) XX 7"Jm—1(¢m—1) & 91m(¢m, ¢),
Socz(njm(qpm) & LP(O'(i]bl, 1;D)1 s ’U(¢m—1; 1/))! 91m(¢m, 1/1))))
= le(wl) o 'ijfl(lﬁmfl)'



1256 CHRIS JANTZEN

Thus,
M (im) © W01 9, 10 (Yt ), By (W) Sy (0)) = (i)
as claimed. More generally,

;i (i) @ Yo (1), - .., o(¥i-1;¥), 0 (i; ¥), o (Yisg; ¥), - -, o (Ym; )

appears with multiplicity nj; () in S(ki(-i))(a)'
We now turn to the lemmaitself. First, we show that if n(t1) X - - - X 7(thm) &
WO 1 9), -+, 0(m; ) < (o), then n(yy) @ 0(y; ) < p*(o(¥y; ), so only

those terms in the statement of the lemma can appear in p*(o). Now,

p*(0) = n(w1) x - x n(hm) @ W(O@1; ), - - ., 0(tbm; 1))
]
Sﬁl(a) > n(h1) X - x N(Wm) @ 0’ (1) X -+ X ' (Ym=1) @ O(Ym; V)
|2
Sg,(0) > (1) X -+ X N(Wm-1) ® 7' (Y1) X -+ X 7' (Ym-1) ® N(tm) @ O(tbm; ),

wheren' (1) x- - xn' (m-1)@0(bm; ) < 1, e, (PO@1 ), -, 0%m; 1)),
M, is the standard Levi for 7(41) x - - - x(thm) @ (1h1) X - - - x 1) (Pom_1) RO (to; 1)
and Mg, the standard Levi for (1) x - - - X n(¥m-1) @ 7' (¥1) X - - - X 7' (Ym-1) ®

N(Ym) ® 8(ym; ). Therefore, there must be some irreducible (w4, . . ., Um-1) ®

[7(¥1) X -+ x n(m-1) @ '(1P1) X -+ X 7' (Pm-1)] @ [(¥m) @ O(m; )]
< 85, (7(¥1, - - -, Ym-1) ® 0(Ym; 1)).

In particular, this forces n(v¥m) ® 0(¥m; ¥) < p*(o(¥m; ). A similar argument
shows () ® (13 ¥) < i (o(yy; ), as claimed.

The final step is to show that the terms which appear in the statement
of the lemma have the multiplicities claimed. We do this by induction on the
parabolic rank of an element of My, as we did in Proposition 8.4 and Propo-
sition 9.1. First, observe that 1 ® 0 = 1 ® W(o(¥1;v), ..., o(1m; 1)) appears
with multiplicity one in p*(o). Now, consider a term 7, (¥1) X - -+ X 0, (¥m) ®
W0, (1 ). - Ot 1)) With 1, (162) X -+ - X 1jm(tfm) 7 1. Then, 65, (ti; ) 7
o(i; ) for some i; without loss of generality, assume 6;.,(¢m; V) 7 o(¥m; ).
By the inductive hypothesis, we have

N2 (1) X -+ X Ny (Pm-1) @ P(O;, (V15 9), - - -, Oy (Y15 90), (Y )
appears with multiplicity nj, (11) - - - Njp_; (¥m—-1)
in (Yo 9), .-, o (Ym-1, 1), 0 (¥m; ¥))).
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Now, observe that

M (Pm) @ 1j3 (Y1) X -+ X N1 (Ym-1) @ V(O (V1Y) - . -, Ojn(Pmi 1)), Sy ()
= M (thm) @ W', 1*(0)) - (i (brm) @ my (101) X -+ X My (Pm-1)

Lp//

® WO, (W1 ¥), .- - O (o 1)), Sy (0 (Ym) @ W),

where M, is the obvious standard Levi and the sum is over all irreducible W
such that 7, (1ym) ® W < p*(o). Note that for such a W”, 4i(W") = o(¢i; o) for
i=1..., m — 1. Further, if

Nim(¥m) @ My (V1) X -+ X Ny (Y1) @ WO (V15 9), - - -, Ojen (Vs )
< 8 (jm(m) @ W),

then ¢Ym(WY”) = 0, (¥m; ¥). Thus, we must have

W' =W 9), . o(bm-1; ), Oim(¥m)).
Therefore, we can argue as follows:

T]Jm(wm) X LIJ(O-(d)la 1/))’ s 1U(¢m—1; 1;D)1 ajm(qpmv 1;D))
appears with multiplicity nj,(¢Ym) in p*(o)
U
ﬁjm(wm) ® 77j1(”¢1) X X njmfl(wmfl) & W(9jl(’¢1; ¢)1 S ’ajmfl(qﬁmfl; w),
Oim(vm; ¥)) appears with multiplicity njg, (m)jy (1) - - - Njp_; (¥m-1) in $,(0)
4
N2 (1) X -+ - X Ny (m) @ WO, (1P1; ), - - -, O (thm; )
appears with multiplicity nj, (41) - - - Nj,(¥m) in p* (o),

as needed. This finishes the proof of the lemma (and that of Proposition 9.6). O

10. Refinements. In this section, we give a refinement of Theorem 9.3
and a corresponding interpretation in terms of a tensor product decomposition. |
would like to thank Marko Tadi€ and Guy Henniart for pointing it out to me.

Fix v;,1 from Theorem 9.3. For S € R, set

Ssh) = {7, v A }oez

If i > ¢, we assume 0 < 3 < 1/2; if ¢ ¥ i, we assume 0 < 8 < 1. Then, if
B1 7 B2, Sp,(¥i) N Sp, (i) = 0. For B, ..., By distinct, we set

Spy.o.. 80 (W) = S, (i) U - - - U S, (4h1)
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and
Spy,...o0 (i3 ) = Sp (i) U - - - U S (vi) U {9},

We are going to produce a correspondence between representations supported
..... s (Wi 1) and n-tuples of representations supported on Sg, (¢i; ), . . .,
S, (1i; 1) analgous to Theorem 9.3. The proof is the same with the exception of
one simplification noted below. Therefore, we will give a precise statement of the
main result—the analogue of Theorem 9.3—as well as the required definitions,
but be less detailed in discussing the results that go into the proof of the theorem.
(In any case, most of the main propositions, etc., that go into the proof of the
theorem are more-or-less repeated in the statement of the theorem.)

First, we note that if we replace the sets {v“¥1}acr, - -« {V*Um}acr With
the sets {1 %)} ser, . . ., {vP %} 2c2, Lemma 5.4 and Corollary 5.6 hold, and
for the same reasons. Similarly, replacing S(¥1,...,Ym;%) and
SW19), -, SWmv) with Sg, g, (¥i;) and S, (i), - - . Spa (Wi ¥)s
Lemma 5.7 holds, aso with the same proof. (As Theorem 2.1 is repeated in
Coroallary 5.6, these are the only results before Section 7 which need any changes.)

We need the following analogues to Definitions 7.1 and 7.3:

Definition 10.1. Suppose « is a representation of Sy(F) supported in

..........

The obvious analogue of Lemma 7.2 holds; same proof.

Definition 10.2. Suppose p is a representation of GL(F) supported in

.....

...............
.....

is defined by sgi(p x 1) = 37 73 ® 1. Suppose  is an irreducible F) representar
tion supported on Sg, ... 5,(¥i; 1). Choose p; an irreducible GL(F) representation

ported on S (¥i; ¢) such that ™ — pj x 0y (by the analogue of Lemma5.7). Then,
we have

N

<> (M) ® o
l
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and the following definition makes sense:
Definition 10.3. Yg () = 0j.

Next, if we replace S(vy1, - . -, Ym) and Sy, - - -, Pm; ) by Sg,.... 5,(¥i) and
_____ 8 (415 1), the analogues to Proposition 8.1, Lemma 8.2, and Corollary 8.3
al hold; same proofs. Proposition 8.4 also holds. It has the same proof, except
that Case 3 becomes trivia (since only 6 = 0 can contribute). Thus, we are led
to the following definition:

Definition 10.4. Suppose o(51), - - -, o(6n) are irreducible S(F) representa-
tions  supported on  Sg,(¥i; 1), ..., Ss, (Wi ), respectively. Let
Ws,...5.(0(B1), - .., 0(Bn)) denote the the irreducible representation supported on
Say,....5:(Wis ¥) which satisfies

forj=1,..., n.

Finally, the analogues of Proposition 9.1 and Corollary 9.2 aso hold in this
setting. The proofs are the same, except that like Proposition 8.4, Case 3 in
Proposition 9.1 is now trivial. Thus, we get the analogue to Theorem 9.3, which
we now state precisely.

THeEOREM 10.5. Suppose i, ¢ areasin Theorem 9.3 and 34, .. ., B, as above.
Let Irr(By,. .., (n) denote the set of all irreducible representations of all S;(F),
s > 0, supported on S, .. ,(¢i; %), and similarly for Irr(3y),...,Irr(8n). Then
the maps (cf. Definitions 10.3 and 10.4)

(Ypys- -2 pn)
Irr(61,...,05n) Irr(By) x -+ x lrr(Bp)

give a bijective correspondence with the following properties:
(1) Ws,,.. 3, and (Yg,, . . ., 1g,) areinverses of each other.

(2 1fa(Be) € Irr(By) isarepresentationof Sy, + (F), thenm = Wgs, 5 (0(v1; 1),
..., 0(m; 1)) isarepresentation of Sy, +...+n,+r (F) (recall + is a representation of

S(F)).

@ W (08D, 0(B) = Yo sa(@(B0), 0 (Be)) and v, (7) =
1,(m), where™ denotes the involution of Aubert (cf. Theorem 4.1).
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(5) Suppose that

SeL(0(Br)) = ZCJ' (Be)11(Be) @ 1),
i

(6) Let p = p(B1) x --- x p(Bn) be an irreducible representation of GL(F)
with support contained in Sg, .. g,(¢i) and W = Wg, 3 (0(B1),..., o(6nh)) an
irreducible representation of SF) with support contained in Sg, ... ,(¥i; ¥). (We
allow the possibility that p(5,) = 1 or o(5,) = v.) Suppose

p(Be) @ o(B)) =D M(Be)oj(Be),
j

with oj(/3,) irreducible and my(3,) its multiplicity. Then,

pruW= 37 (M, (5) - My (B)Wsu,...on(012(B0): - -, 01n(5n)-

(N Ws,.,..8000(B), . . -, o(6n)) istempered (resp. square-integrable) if and only
if o(B1),-- ., o(6n) are all tempered (resp. square-integrable)
(8) Suppose, in the subrepresentation setting of the Langlands classification,

a(Be) = L™ 1(By), . - -, v(Be); T(Be))

fori=1,..., n (n.b. 7;(3,) may be thetrivial representation of GLo(F); T(3,) may
just be ). Then,

=L@ m(B) x -+ X v 7(Bn), - vHn(Br) X - X vHnd(Bn);

In the other direction, if

T =L (B) X - - x v (Bn), . . vk (Br) X X vk (Bn); T(B, - - - Bn)),s
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then
Vs, () = L™ (B, - - -, v *7(Be); ¥, (T(B1s - - -, Bn)))-
(In the quotient setting of the Langlands classification, the same results hold.)

Remark 10.6. Special cases of this correspondence may be seen in Proposi-
tion 3.5 of [Tad2] and Theorem 9.8 of [Tad5].

This refinement has an interpretation in terms of tensor products analogous
to that of Proposition 9.6.

Definition 10.7. Let ;¢ and f1,...,0n be as in Theorem 10.5. Let

Again, an immediate consequence of Remark 8.7 ([Z€l]) is the following:

ProposiTION 10.8. Rg, . 3,(¢i) = Rs, (i) ®- - - ®Rg,(1)i) asHopf subalgebras

of R(¢i).

The same argument as in Lemma 9.9 allows us to show the following:

.....

Lemma 10.9. Supposej,tp and B, ..., fnareasin Theorem10.5. Let o(/3) €
Irr(g) forj=1,..., n. Suppose that

wH () =D ne (5)ng (5) © 0¢,(5),
4

with un (Bj) ® 04. () irreducible and ny () its multiplicity. Then,

1 (Wa,,...s0(0(B1), - . ., o (Bn)))
= (e, (B1) + - gy (Bn)) (e, (B1) X -+ X 14, (Bn))

l1,..., n
& Lpﬁl ..... ﬁn(ezl(ﬂl)! s 10Zn(6n))'

From this lemma and Theorem 10.5, we obtain the following result:

PropPosiTion 10.10. Let v, and Sy, . . ., Bn beasin Theorem 10.5. Then,

Ra,...50 Wi 1) = Ra, (Yi; ) @ - - - @ Rg, (¥i; )

asRa,.. 6, (¥i) ¥ Ra,(¥) @ - - - @ Ra, (1) M&-Hopf modules.
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