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ON THE IWAHORI-MATSUMOTO
INVOLUTION AND APPLICATIONS

BY CHRIS JANTZEN

ABSTRACT. - We begin by collecting some results on the Iwahori-Matsumoto involution. These are then used to
verify a special case of a conjecture of Arthur on R-groups.

1. Introductory material

1.1. Introduction

The purpose of this paper is to address a special case of a conjecture of Arthur. Suppose
G is a split, connected, reductive p-adic group, M the Levi factor of a standard parabolic
subgroup of G, and a a square-integrable representation of M. Then, the reducibility of
the induced representation ZGM^ (in the notation of [B-Z]; see section 1.2) is governed
by the R-group. The R-group is a subgroup of the Weyl group which gives a basis of the
intertwining algebra consisting of (normalized) standard intertwining operators. Classically,
the R-group is defined in terms of the Plancherel measure, hence requires that a- be square-
integrable. There is an alternate description of the R-group, in terms of the L-group and the
Langlands correspondence. Arthur conjectured that in this context, one should be able to
define an R-group, with the right basic properties, for certain cases of nontempered <r. For
example, if a is one-dimensional unitary, then the R-group for IGMO' should be the same
as the R-group obtained if a is replaced by the corresponding Steinberg representation.

In what follows, we restrict ourselves to the case where the representations are
generated by their Iwahori-fixed vectors. This allows us to work with the corresponding
representations of the Hecke algebra H ( G / / B ) (B=Iwahori subgroup). Our main tool is
the Iwahori-Matsumoto involution.

We now describe the contents of this paper section by section. The next section introduces
some notation and basic results that are needed in the rest of the paper.

In section 2.1, we recall that the study of representations of G generated by their Iwahori-
fixed vectors may be reduced to studying the associated representation of H = H { G / / B ) .
We also review two ways of constructing induced representations for 7^-taking Iwahori-
fixed vectors of induced representations of G and tensoring up from subalgebras-and
how they are related. Both settings will be used-it is preferable to discuss the Iwahori-
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528 C. JANTZEN

Matsumoto involution in terms of tensoring, while standard intertwining operators are best
dealt with in the Iwahori-fixed vector setting.

In section 2.2, we discuss the Iwahori-Matsumoto involution. In the tensor product
setting for induced representations of T-i, it is not difficult to show that

Ind^a-Ind^a.

Therefore, the corresponding fact holds for representations of H in the Iwahori-fixed vector
setting, hence for representations of G. If TT = ZGAX (A=split torus), set 71-0 = ZGAX~1' w^
will also need to know something about the map M : V3 —> V^ giving the equivalence
TT ^ 71-0. So, we close section 2.2 with a characterization of M which will suffice for
the purposes of chapter 3.

Section 3.1 reviews the construction and properties of standard intertwining operators
and R-groups.

In section 3.2, we look at unnormalized standard intertwining operators. If s is a simple
reflection, the operator As{x) intertwines ZGAX and ZGA^X- We give As(x) '' ^^x —^
^ASX ln P1"0?05!1^ 3.2.1. Now, As{x) must B^O intertwine ZGAX Bnd ^GA^X- In
particular, it gives rise to

MMx)M-1: Vs . — Vs
t-GAX~ 'iGAS\~

By comparing this with As(x~1) '' ^^-i —^ ^A^x-1"11^ the results on As^
and the results on M. from section 2.2-we show that A4As(x)^~1 = ~As(x~1)' More
generally, for w € W

MAMM-1 = (-l/MA.Or1)

Finally, in section 3.3, we bring normalizing factors into the picture. If we take a discrete
series (with suitable properties), we get a relation similar to that above for normalized
intertwining operators: suitably interpreted,

MA^(a)M~1 = \(w,a)A^(a)

where A^(a) (resp. A^(a)) denote the normalized intertwining operators for TT = IGM^
(resp. TT ^ IGM^) and A(w,cr) is a scalar. Further, we have that A(r,a) = pst(r) for
r G R =R-group of TT, where pst is a certain one-dimensional representation of R. Then
we can easily show that if we set (^)p = if^p for all p G R (dual of R), then R will
have the properties we want for an R-group of TT.

Finally, there are a number of individuals that I would like to thank. The work in
this paper was done while at the University of Toronto. I would like to thank J. Arthur,
F. Mumaghan, and J. Repka for their hospitality during my stay. The following people have
also contributed to this paper, and their contributions are greatly appreciated: D. Goldberg,
D. Keys, R. Kottwitz, A. Moy, M. Reeder, P. Sally, M. Tadic, and the referee.
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ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS 529

1.2. Notation and preliminaries

In this section, we introduce some notation and basic facts that will be needed in the
rest of the paper.

In this paper, G will denote a split connected reductive j?-adic group. We also assume
that G has a reduced root system.

Let F be a p-adic field with charF = 0. We let 0 denote the ring of integers and V
the prime ideal. Then, 0/P is a finite field with q elements; we write Fq = 0/P. Let
w be a uniformizer. We normalize absolute value so that \w\ = q~1. A character of ^rlx

is called unramified if its restriction to Ox is trivial (for our purposes, a character does
not need to be unitary). Such a character necessarily has the form | • Is. These are the
characters of Fx that will be needed later.

Fix Pymn, a minimal parabolic subgroup. It has Levi factorization Pmin = AUmin, where
A denotes a maximal split torus. We let A denote the roots of G with respect to A, A+ the
positive roots corresponding to Pmm. and II the simple roots. For a G A, let s^ denote the
corresponding reflection and ha '' Fx —> A the associated one-parameter subgroup. The
Weyl group of G is W = Normc '(A)/A. We will not be too careful about distinguishing
between elements of W and their representatives, but their representatives will always
be taken in K = G(0). Note thait if II = { a i , . . . , On}, then W = {s^,..., <9aJ. For
w G W, let l{w) denote the length of w, i.e., the smallest t such that w may be written
w = Sa^ . . . Sa, - There is a unique element of W having maximal length; we denote it
by wo. Note that w§ = 1.

We now discuss parabolic subgroups. The standard parabolic subgroups may be
parameterized by subsets $ of II. In particular,

1 — V-^rmn^t '^Q' jQ'G^/*

is the parabolic subgroup of G associated to <I>. P has a Levi factorization P =- MU, with
M reductive and U unipotent. We let 6p denote the modular function for P; we just use
8 if P == Pmin' For L, M Levis of standard parabolics, let

W^ = {W G W\W • (P^in n L) C Pmzn. W-1 • (P^in H M) C Pmin}.

We note that these correspond to the elements of shortest length in the double cosets
WM\W/WL (WL = Weyl group of L, etc.).

We now discuss induced representations. Suppose P = MU is a standard parabolic
subgroup and (a, M, Va) is an (admissible) representation ofM. The induced representation
ZGM^ has space

V = [f : G —— V^\f(pg) - Sj,(m)a{m)f(g) for all p = mu G P, g G G}.

(more precisely, we want the smooth vectors in V). The action is right regular, i.e.,
^7r{g)f){x) = f(xg). One important property that is used later is induction in stages. Note
that if L < M are the Levis of standard parabolics, then L is the Levi of a standard
parabolic of M (in particular, {LUmin) Ft M is a parabolic subgroup of M). Then,

icL = icM °iML-
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530 C. JANTZEN

We also mention that for P = Pmin, ^GAS~^ has the trivial representation as a
subrepresentation (an easy computation) and the Steinberg representation as a quotient
(cf. [Cas2]).

Finally, we mention a few compact subgroups which will be needed later. Let K = G(0).
Also, let Ki = {k e K\k = ImodP}. Note that K^ < K. The Iwahori subgroup, which
we denote by B, plays an important role in this paper. Let

^ : K —— G(F,)

denote the reduction mod V homomorphism. Then, the Iwahori subgroup is

B^-i(P^(F,)).

We normalize Haar measure so that B has measure = 1.

2. On the Iwahori-Matsumoto involution

2.1. Hecke algebra representations

We begin this section by recalling the results of Borel and Casselman that allow one to
reduce the study of certain questions about an unramified principal series representation
(7r,C?,y) (or subquotients thereof) to the corresponding questions about the (finite-
dimensional) representation (TT,^, V3) of the Hecke algebra U = T-C^Gf/B) (B=Iwahori
subgroup). We then review the structure of T~C. After this, we discuss another way of
constructing induced representations for Ji\ tensoring up from subalgebras (the first method
being taking Iwahori-fixed vectors of induced representations of G). We close by relating
the two ways of inducing.

We start by recalling the definition of unramified principal series. A character x of A is
called unramified if X\A{O) is trivial. (For A ^ (FX)n, x is the product of n unramified
characters of F^.) An unramified principal series representation is a representation of the
form ZGAX wltrl X unramified.

We now recall some results of Borel and Casselman (cf. [Bor], [Casi]). Let G be as
in chapter 1, and B its Iwahori subgroup. Let H denote the Hecke algebra of smooth,
compactly supported, B-biinvariant functions on G, i.e.,

U = {/ G C^°(G)\f(b,gb^ = f(g) for all b^ C B and g G G}.

It is an algebra under convolution. If (TT, G, V) is an admissible representation of G, then
(Tr^y^is a finite-dimensional representation of T-i, where V3 = {v e V\7r(b)v =
v for all & G B} and H acts on V3 according to

7r(h)v = / h(g)7r(g)vdg.
JG

This is of interest in the case where TT is generated by its B-fixed vectors. We call such
a TT B-unramified. In particular, we are interested in the case where TT is an unramified
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ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS 531

principal series representation or a subquotient thereof. Borel and Casselman have shown
that such a TT is B-unramified. Moreover, they have shown that any irreducible 5-unramified
representation is necessarily a component of an unramified principal series representation.
Further, we have the following:

THEOREM 2.1.1. - The category of admissible B-unramified representations ofG and the
category of finite-dimensional representations ofH are equivalent. The equivalence is given
by (7T,G,y) i—> (Tr^Y5). Note that

Hom^(7r,7r) ^ Hom6'(7r,7r).

Thus, if we wish to study subquotients of unramified principal series, it is enough to work
with the corresponding representations of Ji on the B-fixed vectors, which is what we
do. When working with the unramified principal series IGAX^ we use tne basis {fw}wew
of V^, where

f ( \ ^ [ 8^(p) tf 9 = P^b G PwB
J w \y / 1 r\ ' r A.t 0 if not.

That these constitute a basis follows easily from the decomposition G = U^ewP^B
(cf. [Cas3]).

At this point, it is natural to review the structure of T~i. Here, we favor the description
of Bemstein-Zelevinsky (cf. [Lus]; the classic description may be found in [I-M]). For
x G G, let Tx denote the characteristic function of the double-coset BxB. Then, as a
vector space, we have H ^ 1-Lw ® ©• Here, Hw is the finite Hecke algebra H { K / / B ) .
It has basis {T^}^^w Further,

T^ = (q - l)Ts + q for s simple
T^T^ =T^ i f ^ ( w i ) + ^ ( w 2 ) = ^ ( w i W 2 ) .

© is an abelian subalgebra with basis {0a\a E A/A H K}. For a C A, choose
01,02 G A~ = {a G A| \a(a)\ <, 1 V a e II} such that a = oio^1. Then
0^ = 8^(a)Ta,T^1. Note that for s = Sa,

n _ n
fi T T fi -L ( r , l^.0.——80^.ffa-is =- J-s^sas + [q — 1;-———.———i-e-a

where 60, = 6^(^).
There is also a notion of induced representations for Hecke algebras. Let M C G

be a standard Levi and HM C T~i its Hecke algebra. More precisely, T-LM is generated
by {T^}weWM an^ ®- Then, if a is a representation of HM. we define the induced
representation TT = Ind^cr as follows:

space: V^ = U 0n^ V^ = U 0c V^/)C(a)
where /C(a) = subspace generated by
{hhM ̂  v - h 0 ̂ (^M)^! h ^ H , HM ^ 'HM, v ^ Va}

action: for /ii, h^ (E T~i^
7r(/ii)[fa2 0 v + /C(cr)] = ^1^2 0^4- ^C(a).
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532 C. JANTZEN

When working with TT = Ind^, we use the basis [T^ + IC(x)}w^w for 7< 0e C^.
We now relate this notion of induction to the induction for groups described in section 1.2.

PROPOSITION 2.1.2. - Suppose a is a B-unramified representation of a standard Levi
M. Let WQ G WMA denote the longest element and set M' = WQMWQ = w^MwQ'1 (a
standard Levi). Then, as representations of H,

(iGM^^lnd^w^a3^

First, in case T-CM = ©, the equivalence is in [Re2]. The map £ : 7^(g)eC[wo^] —> V3

has
£ : 1 + )C(wox) '—^ /wo

If we apply T^ to each side, equivariance gives

£:T^+/C(wox)——7ri(Tj/^

where TTi = (icAX)3

The proof of our proposition goes roughly as follows: if a ^ ZMAX^ we can fi11^
the subspace of V^ corresponding to (icMcr)3. Similarly, we can find the subspace
of ^2(^2 = Ind^wox) corresponding to Ind^/ WQ ' a^^ We then show that these
subspaces match up under £.

The following two lemmas will help us deal with the 71-1 side.

LEMMA 2.1.3. - Let TT = IGAX ana s a simple reflection. Then,

-(T^f _I^ ifw^WMA

^ls)^-^^^^_^^ if^^w^

where M is the Levi factor of (Pynm? s).

Proof. - See [Rel]. p. 325. D
We note that an immediate consequence of this is that for w G W, f^ = 7r(T^-i)/i.

LEMMA 2.1.4. - Suppose {fi}i=i_k is a basis for V^ C V^. Iff, = ̂  bj, G
X^WM

VB^ th^ ̂  f.= Y, b^ C V^. Then, a basis for V^ C V^ is
xeWM

{^i(T^)fi} i=i,...,k
w^WMA

where TTi = ZGAX'

Proof. - We begin by following the proof that [fw}wew constitutes a basis for V^ .
First, we note that we have a decomposition G = Uw^wAMPWB (P = MU). Therefore,
we can define ^ by

^( f\( \- f ° if^ ̂ PWB

(^ f)(9) - ^ s^m)a{m)f if g = muwb G PwB

^ SfiRIE - TOME 28 - 1995 - N° 5



ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS 533

for w G ^AM, / G V^ C V^. It is not difficult to see that ^(w, /) is well defined
and {^(w,/)} i=i,...,k constitute a basis for V3 -.

-ic^^yAM '-GMV

Next, using the equivalence IGM^MAX ̂  IGAX (implemented by / e V^M^MAX) maPS

to /(.)(!) e y,^), we see that ^(wj.,) = /,„ e V^. Since ^w) = t{x) + ^(w),
the preceding lemma shows that ^(w, ̂ ) = Tri(T^-i)/.,. The lemma follows. D

Next, let C^ denote conjugation by WQ. Then, C^/ : M —> M\ Further, since
C^ : B H M —> B n M\ we get a corresponding isomorphism C^i : HM —^ ' H M ' -
Note that for x G WM, a G A,

Cw^Tx) = Tw^Wo-1

Cw^a) = ^Wpawo-i

where Ta., 0a G ?YM and T^^-i, Ow^a-w^-1 ^ ^M' (the tildes are to emphasize that we
are viewing these as elements of 7-̂  ^M' rather than ^).

LEMMA 2.1.5. - WQ • Ind^^ ^ Ind^'WoX ^^ ̂  equivalence given by

TW + 1^M(X) '——^ ^wwo-i + ^M'^oX)-

Proof. - Straightforward. D

LEMMA 2.1.6. - Let a be a representation ofHM' Suppose {Ti + ^M(x)}z=i,...,fc is a
basis for V^ C T-LM ̂ e C^. Then a basis for T-i 0-^^ v^ C U 0e C^ consists of

{7r2(r,)r,+/c(x)}-i,...,.
IO^M/MA

w/i^r^ TTs = Ind^.

Pwo/: - Consider 7r(r^)r, +/C(^). Under the equivalence ?^0e C^ ^ 'H^-HM (^M 0e
C^) (which is implemented by h + /C(^) e 7^ 0e C^ maps to h 0 [1 + ^(x)] +
^(Indg^) G 7^ 0^M (^M 0e C^)), this corresponds to

T^T, 0 [1 + /CM(X)] + ^(Indg-x) = T, 0 [T, + /CM^)] + ̂ (Ind^x) e ̂  0^ V,.

Since 5p{7r2(r^)r, + /C(^)} has the same dimension as U 0^^ K,, the lemma holds. D
We now return to the proof of the theorem. Suppose a ^-> ZMAX- Then a3 (—^ Ind^w^

by the case of minimal P described above, where W'Q C WM is the element of maximal
length. Suppose that {^^^(wo'x)}^!,.,^ constitutes a basis for V^BHM c ^M0eC^//^.
If £ denotes the map giving the equivalence Ind^w^x ^ (^MAX)^ we see that
{£[ti + /CM«x)]}z=i,...^ = {7f-i(r,)/^}^i,...,, gives a basis for ^nM c V3^.
By Lemma 2.1.4, V,^, c V^ has basis

{7ri(r,)7ri(r,)/^} ..i,...,.
w€W^^

On the other hand, by Lemmas 2.1.5 and 2.1.6, T-L^n^, V^BHM cH^e C^ has basis

{7r2(^)[C^(T,)+/C(wox)]}-i,...,.
weWMA
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534 C. JANTZEN

(where C^ acts on T, G 7^ the same way it acts on T, G Uu)' Both these have dimension
\WMA\ ' fc. Therefore, if

£ : ̂ {7r2(r,)[C^(r,) + /C(wox)]} ̂  ̂ {7ri(r,)7ri(r,)/^}

we will have that the subspaces corresponding to (zGM^)3 C (icAX)3 and (Ind^ ^WQ •
^BUM^ ^ (Ind^wox) match up, verifying the proposition.

We compute, letting T[ = C^/(r,):

£7r^T^[c^(T,) + /c(wox)] = 7ri(r^Xo)A
If T, = ^ a.,̂ , we get T[ - ^ a^r^^-i and

-cev^M .EC^M

-f-w-f-i-f-wo — / ^ ^x-Lw-Lw'QX'w'Q~~l^-LWQ-Lw'Q )

X^WM

= ^ ^xTwT^T^
X(^WM

—— -t W -L WQ -l I -t WQ'

since ^(w^) = ^(w^Wo"1) + ^(wo) = ^(wo) + ^(a;).
Next, define a^x^y) by

T^T^= ^ ^ a^(x,y)Ty^
y^WMA X^WM

so that

T^Ti= ^ ^ a^(x^y)TyT,Ti
y^wMA xeWM

Now, 5j){T,} is invariant under left multiplication by T^a; G WM (from the invariance
of V^BHM under T^M). So, we write

k

T^=^c^(j)T,
j=i

Then, we have (from above)

-^w^-i-f-wo = -^w-f-WQ-^i-1- W'Q'

k

^ E E ̂ ^.y)^iU)TyTjT^
y^WMA X^WM J'=l

Therefore
k

f7r2(r,)[c^(r,)+/c(wox)]= S E ^w(^^)c^a)7ri(r^r^)A
y^WMA a-eV^M J=l

fc
= £ S ^w(^^)c^(j)7ri(T^)7ri(r,)^/

y^H/MA a^V^ ^=1

which is in sp[Tv^(T^)'K^(Ti)f^"} i=i,...,k , as needed. D
0 •w^WMA
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ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS 535

2.2. The Iwahori-Matsumoto involution

We now take a look at the Iwahori-Matsumoto involution. Recall that the map j defined
by

j : T^^-qT^
j : 6——0-1

extends uniquely to an involution (automorphism) on T-C. If h G H, we will also write
h for j(H).

Next, the Iwahori-Matsumoto involution induces an involution on representations of T-t,
hence on B-unramified representations of G, as follows: TT has the same space as TT with
action defined by

7r(h)v = 7r(h)v.

In the remainder of this section, we study this involution and establish some properties
that will be needed later. We note similar results in section 1.7 [M-W] (with a different
Iwahori-Matsumoto involution).

PROPOSITION 2.2.1. - Let M be a standard Levi ofG, a a representation of KM- Suppose
TT = Ind^^a. Let 71-0 = Ind^^a. Then,

7T ^ TI-o.

Further, the equivalence is given by the map J : V^ —> V^, where

J : T 0 v + /C(a) i—> f (g) v + /C(a)

Proof. - First, it is easy to check that the map h 0 v i—> h (g) v sends /C(cr) to /C((3-).
Thus, J is well-defined. It is easy to check that JTT = 71-0.7, verifying the proposition. D

We now look at the Iwahori-Matsumoto involution in the context of Iwahori-fixed
vectors of group representations.

COROLLARY 2.2.2. - Let M be a standard Levi of G, a a B-unramified representation
of M. Let TT = icM^- Then,

7T ^ icM^'

Proof. - By Propositions 2.1.2 and 2.2.1, as ^-modules (Tr)5 ^ Ind^ ,WQ .^BnM and
(iGMcr)13 ^ Ind^,wo • a5^. An easy check shows that for h C UM. C~^h) = C^(h)
(Iwahori-Matsumoto involution for HM' on the left; I-LM on the right). This gives
(Ti-)5 ^ (^GM^)5 as 7^-modules; the corollary follows from Proposition 2.1.1. D

Next, let M. = ̂ ^f^be the map giving the equivalence of (icAX)3 m(^ (^GAX"1)5-
Then, for w G W\ we can write

^fw = ̂  rn^(y)fy
yew

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALIi SUPERIEURE



536 C. JANTZEN

for suitable m^{y). This is to be interpreted in the obvious way: on the left-hand side,
fy G ^A^ on the right-hand side, /„ e V^-i. Lemma 2.2.4 gives an expression for
the coefficients mu,(yY

DEFINITION 2.2.3. - Let w G W. Define a^(y) by

-L'w~lWQ-Lwo — / ^ ^w^yj-f-y

yeW

LEMMA 2.2.4. - Suppose w C W. Then

Mf^ = (-9)-^-) ̂  a^y-^fy
yew

Proof. - Suppressing the /C's, we have

AVw = £JS~1^
= cjT^^

= ET^1
WQW

= ^ ̂ wow)

= £(-0)-^°^-^
= {-qr^^^-^f^

Since /^ = -7ri(r^)/i,

•^/w = (-^-^^Tri^-^jTri^JA

=(-qre(wow)'E^{y)^Ty)f,
yew

=(-?)-^(w()w)S«w(y)^-l
y€W

=(-qr£{wow)^a^y-l)fy
yew

as claimed. D

REMARK 2.2.5. - There is another Iwahori-Matsumoto involution which we now describe.
For x G G, let q^ = \BxB\ and sgn{q^) = 1 if q^ G 921;-! i(/'M^. T/;̂

T.——^^n(^)(T,-i)-1

g;v^ an involution on T~L (cf. [Rod]). Suppose a is a B-unramified representation of a
standard Levi M. Let WQ C WMA of maximal length, M' =- WgMwo"1 (a standard Levi)
and ^ = sgn o 6 p i , where 6pi denotes the modular function of the standard parabolic with
Levi M1. Set o-o = ^WQ ' a. Then,

^GM^ = ̂ GM'^O-

Note that if TT = ZGAX ana ^o = ^GAXo. the equivalence TT ^ 71-0 is given explicitly by
M' : V3 —. V^ withM1 : V3 —. V^ with

Ww = {-qY^f^
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ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS 537

3. Applications to R-groups

3.1. Intertwining operators and R-groups

In this section, we review some facts regarding standard intertwining operators and R-
groups. First, we recall the definition and some basic properties of unnormalized standard
intertwining operators. Then, we discuss normalizing factors and normalized standard
intertwining operators. We close by reviewing some properties of R-groups. Note that it
is not the goal of this section to give a detailed account of these subjects; just to briefly
review the facts that will be needed. As we go, we will indicate where more detailed
accounts may be found.

We start by discussing unnormalized standard intertwining operators. Suppose M is
the Levi of a standard parabolic P = MU of G corresponding to $ C II. Let
TV($) = {w e W\w . $ = $ } . Suppose a is a representation of M, TT = ZGM^'
Then, formally, set

A^(a)f{g) = / /(w^ug^du
Ju^

for / € K-, w G TV($) and Uy, := Umin Fl w^Uw. The intertwining operator A^(a)
converges under suitable conditions on the exponent associated to a and has meromorphic
analytic continuation (cf. [Art2]). It intertwines the representations TT = ZGMO' and icM^o,
i.e., Au;(o-)%GM^' = %GM^<7^w(^)- We note the following properties:

1. If wi ,W2 G IV($) with ^(wiW2) = ^(wi) +^2),

A^w^cr) = A^{w^a)A^{a).

2. If a ^ IMAX^ ^en ZGM^ ^ ^GAX 2in^

A^{a) =A^(x)\v^^^

for w € W{^) (since the defining integrals are the same).
We now turn to normalized intertwining operators. For the intertwining operator Au;(a),

let n{w, a) denote the normalizing factor and write

Aw(^) = n(w,a)Aw(a).

Suppose that a has Langlands data ^, a character of A, in the subrepresentation setting (i.e.,
a is the unique irreducible subrepresentation of ZMAX\ Then, we can use the normalizing
factor for Aw(x) f01 Aw(a), i.e.,

^MI^GM- =Aw(^)

for w e W{^>). This is in section 2 of [Art2] in the quotient setting of Langlands
classification; it is not difficult to pass from one version to the other. To make use of
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this, we also give the normalizing factor explicitly in the case where ^ is an unramified
character of A. In this case, for Sa a simple reflection,

»(..,x)= 1-^^' ^ V ^ a ^ A / — i i / 7 / \ \ •
l-^^M^))

We refer the reader to [Art3], [Sha] for more on normalizing factors.
We need the following properties of normalized intertwining operators:
1. If wi ,W2 G W($) with ^(wiW2) = ^(wi) +^2),

AwiwaM = A^(w2<r)A^(a).

2. Suppose x is an unramified character of A. Let TT = ^GAA^ 7r/ = ^GA^A for 5 = 5^.
Let VK = y^ /w. and suppose x(^a(^)) / 1 .̂ Then,

wew

As^X^K = VK

with VK ^ K- on the left and VK ^ K-7 on the right. (This is immediate from n(sa,x)
above and Proposition 3.2.1.)

Finally, we turn to R-groups. Suppose that a is unitary. Then, TT = IGMO' is unitary as
well, so that the reducibility of TT is governed by the intertwining algebra HomG'(7r,7r).
Furthermore, if a is discrete series, a basis for Hom^Tr, 7r) consists of {Ar(a)}r^R, where
R C W(a) = {w G VF($)|w • a ^ a} denotes the R-group. For the situations we are
interested in, the R-group has the following properties:

1. Hom(7r,7r) ^ C[J2] (with the isomorphism given by r i—^ A^(cr))
2. The inequivalent components of TT are parameterized by the irreducible representations

of R. In addition, if TV? is a component of TT corresponding to p G R, then the mutiplicity
of TTp in TT equals dimp. We write

TT = ̂ (dimp)7Tp
peR

3. The operators Ar(a) act on and permute the dimp irreducible subspaces of the
TTp-isotypic component as the representation p. That is, we can write

A^lv, = p(r),

where Vp denotes the TTp-isotypic subspace. For the right-hand side, we are viewing p(r)
as an element of HomoCVp^Vp) ̂  Hom(7r,7r).

We can ensure that the R-group has these properties by making the assumption that a is
generic. This forces the cocycle 77 to be trivial (cf. [Keys], e.g.). In this case, the properties
above are given in section 1 of [Gol] and section 2 of [Art3].

For the record, we mention that there is an alternate description of the R-group in terms
of Langlands parameters. We refer the reader to [Keys] or [Arti] for more details.
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3.2. Computation of standard intertwining operators

For TT = IGAX. the proposition below gives the action of the unnormalized standard
intertwining operator As{x). which intertwines TT with TT' = ZGASX. on the B-fixed vectors
for TT. Note that As(x) '' V3 —> V^ and we will work in both of these vector spaces
with respect to the corresponding bases {/w}ww (cf. section 2.1).

PROPOSITION 3.2.1. Let L be the Levi of (Pmin, s) for s = s^. Then,

"where

A(^f ^J^-./.w+M^-lVw ifw^W^
SWJW \ fs^ + Mx) - q-1)^ zf w i W^(^(x) - q ^fw if w

i-rt(U^))c.(x) =
1-X(^(^))

(Interpret this in the obvious way: f^ G V^^ on the left-hand side, f^ G V^^ on the
right-hand side).

Proof. - For regular ^, this is Theorem 3.4 in [Cas3].
First, we show that for / e V.3\

^ (^ f(^ ^ [ fW + (c.(x) - l)/(w) if w G W^
sWJ^ ) ^-V(^) + (c,(x) - ̂ -i)/(w) ifw^W^

The proposition is an easy corollary of this.
For a G A, there is a corresponding homomorphism

^ : SL^F) —— G.

For x G F, and for t e F x , we write

^)=^((1 ^)) <(^)-^(Q ^)
and

U^)-^^ ^-i

Let ^-6" = 8^{h^w)).
First, we give the following decomposition, which will play a key role later:

Taking (f)^ of everything,

^{t) -.= U^KW^^r1).
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Now,

^s(x)fW = \ f(suw)du
JueUc,

= / f(u^{x)sw)dx.
J x ^ F

Case 1 : w G W^ (so w~1 G W^)
. oo «

A(xV(^) = / /(^Cr).sw)&+^ / f(u^(x)sw)dx
Jxeo ^^Jxe'^~nox

00 .

= /(5W) + y^ / /(^(^"^^W)^
n=l ^€0x

where equality follows since u^{x)sw = 5^a(^)w == sww~lUa(x)w and w-l^Q;(^)w G B
since w~1 € VFLA. Continuing,

oo .
^.(x)/(^) = f(sw) + V^ / /(^(^.r-1)^^^^)^^^71^-1)^^)^

n=l Jx^
00 .

= f(sw) + ̂ n / ^x(^(^^-l))/(^(^^-l)5w)^
n=l J£^^x

oo .

=f{sw)^^qn(q-n)6a f(w)dx
n^i J-^

since ^^(w71^"1) G A^i (so that conjugating by (sw)~1 leaves it in K\ C B). Continuing,
00

Mx)f(w) = f(sw) + Y,qn(q-rl}sa{l - q-^f{w}
n=l

=/(.w)+(l-g-l)^"^/(w).

The sum converges for suitable 8a (i'e., suitable ^), and analytic continuation gives it
elsewhere.

Case 2 : w ^ ^AL

Write w = sy with ^/ G IV^. Then,
« oo .

^(X)/(^) = / /(^a^^^+y^ / f^aWy)^
Jxer n=oJxe^~nox

= ̂ V^) + y"^ /> /(h^x-^u^w^^su^x-^dx
^0 ^^Ox
00

= 'rVO/) + E?"(9~")'°(i - ̂ ^/(^y)
n=0

= 9-l/(2/) + (1 - g-1)^,^^/^)

= g-V(5w) + (1 - g-1)^^,^/^)
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by the same sort of arguments as in the first case. This finishes the proof. D

LEMMA 3.2.2. - With s = Sa, L as above, suppose w E W^. Then,

-^-W-^SWQ ' -f-WQ = -f-W-'^-WQ ' -TWO \Q. TS ~ (1 —— Q ))•

Proof. - Let s ' = WQSWQ, also a simple reflection. Then W^SWQ = W^WQS'. Note that
w G W^ implies w^w^s' G ^L/A, where L' is the Levi factor of {Pmin.s') (this is
easy if one uses the characterization IV^ == {w e Wlw^ > 0}). Thus

-L'W~1S'WQ ' ^-Wo = •lW~lWoS' ' -^-U>o

— ^,-lw-lwo ' J- s' ) ' -^U'Q

= 2w- lwo ' 1 s' ' ̂ 1 s' ' Ts'wo)

—— -1-W~1WQ ' ^-S'WQ

__ m m
-1W~1WQ ' -^UlQS

— T 1 • T T~1
—— -'-W-^'WQ -'-Wo-^s

Since T,-1 = q^T, - (1 - g-1), the lemma follows. D

LEMMA 3.2.3. - Suppose w G W^. Then,

Mf^ = (-9)-^) ^ [(9-l)a.(?/-1)-^^-1.)]/,
1/eTVAL

+(-^)-^ow) ^ [-a,(./-1.)]/,
y^V^AL

Pwo/ - Recall, from the proof of Lemma 2.2.4, that

Mf^ = (--gr^-M^-^o ^wo)/!

By Lemma 3.2.2,

Mf^ = {-q)-^08^^-^ • T^^q-1^ - (1 - ̂ -1))A
= (-gr^^M^-iwo • ̂ o)[^1/. - (l - g-1)/!]
^ (_^)-^o-) ̂  a^yWy)[q-1^ - (1 - ̂ -^A]

i/eiv
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with dw{y) as in Definition 2.2.3. Now, l(wosw) = ^(w^swo) and w^swo = w^wos' G
W1-^. Therefore, i{wosw} = t(wo-w) - 1. Thus,

Mf^ = (-g)-^o-) ̂ ^(y)7r(T,)[(g - 1)A - /,]
yew"

= (-g)-<(wow) ̂  a,(y)(g - I)/,-. - (-g)-W ̂  a,(y)7r(T,r,)A
yew y^w

= {-qr^^a^q- l)fy-.
yCW

_(_^(wow) ^ a,(2/)7r(T^)/i

2/elyLA

_(_^ow) ^ a«,(y)7r((g-l)r,+g^)A
y^V^LA

=(_^(wow)^^^^_^_^

yew
_(_g)-<(wow) ^ a,(y)^_.

y^^/LA

- (-g)-^0^ ^ a,(y)[(g - I)/,-, + qf^}
y^WLA

If we substitute x = y~1 in the first sum, x = sy~1 in the second, and use both in
the third, we get

A^/.w=(-g)-'(wow)^^^-l)(9-l)/,+(-g)-^ow) ^ -a^s)^
XCW y^y^-AL

+(_g)-<(wow) ^ _^(a;-i)(^-l)^+(-g)-^ow) ^ -ga,^-^)/,
a;^iyAL a;ev^rAL

Rearranging this sum gives the lemma. D

PROPOSITION 3.2.4.

MA^{x)M-1 = (-l)^A.(x-1)

Proof. - It is sufficient to show

MAs{x)M-1 = (-l)A(x-1)

for all simple reflections s. Fix such a simple reflection s = 5^. Then, for w e IV, by
Proposition 3.2.1,

MA(v}f -.M^-1^W+^^)-1V- if^elV^
Alw4SWJW ~ ̂ t /„ + MX) - g-1)/. if w ^ W-^

' ̂  [(T^O/) + (c,(^) - l)m^y)]fy if we W^
yew
^ [m^{y) + (c,(^) - q-^m^fy if w ^ TV^

, i/ev^
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where m^(y) is defined by Mfn, = ̂  rn^{y)fy.
yew

On the other hand,

-Mx-^Mf^ = -^.(x-1) ̂  m^y)fy
yew

Now, we note that c^Oc-1)-! = -(c^)-^-1) and c^(^-1)-^-1 = -(c^(^)-l). Thus,

-^Or1)^/^ ^ -^(x-l)mwQ/)^+ ^ -^Or^wO/)^
yeTVAL I/^IVAL

= S ^(^[-g'V^+^^-g"1)^]
^TV^

+ ^ ^w(l/)[-/^+(c.(x)-l)^]
y^WAL

= ^ [-'^w(^)4-(c^(^)-g- l)m^(2/)]^
y^WAL

+ ^ [-^ - l^w(^)+(c^(^)-l)m^(^)]^
y^^AL

We now verify that these are equal. This is just a matter of showing that the coefficients
of the f y ' s are equal.

Case 1 : w € IV^, y G W^
In this case, we need to show

q^m^y) + (c^(^) - l)m^(?/) = -m^{sy) + (c^) - q'^m^y)

or
q^m^y) + rn^{sy) = (1 - q^m^y)

From Lemma 2.2.4, m^(?/) = (-^"^'^a^-1) andm^(^) = (-^"^^^a^^-^).
From Lemma 3.2.3, m^(^) = (-9)-^wow)[(9 - l)a^{y~1) - qa^y^s)}. It is now
immediate that q^msw^y) + rn^{sy) = (1 - g-l)^w(?/).

Case 2 : w € W^, y ^ W^
This is similar to case 1.

Case 3 : w ^ TV^, y e W^AL

In this case, we need to show that

msw{y) + (ca(x) - 9-l)^w(2/) = -m^{sy) + (c^(^) - q^m^y)

or
msw{y) = -mw{sy)
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If we apply Lemma 3.2.3 to sw G W^, we get

AVw = (-^)-^°-) ^ [(g-l)^^-1)^^-1.)]/,
a;^^/AL

+(-^-^o.w) ^ [-a^-1^)]/,

.E^H^1'

From this and Lemma 2.2.4, we get m^(y) = (-^-^^a^-^and m^sy) =
-(-q^^^a^y-1). The desired equality follows.

Case 4 : w ^ ^AL, ^/ ^ IV^
This is similar to case 3.
This verifies that MAs{x)fw = -A^x'^^fw. finishing the proposition. D

3.3. Results on R-groups

The goal of this section is to obtain an R-group in cases where the definition of the
R-group is not applicable (c/. Theorem 3.3.2). If TT = icMO- with a square-integrable, then
TT has an R-group. We use the R-group for TT to construct an R-group for TT ^ ZGMO'
as follows: from the preceding section, we know the relationship between unnormalized
standard intertwining operators for TT and TT. By comparing normalizing factors, we obtain
a relationship between normalized standard intertwining operators. Then, if we look at the
normalized standard intertwining operators for TT which correspond (under the Iwahori-
Matsumoto involution) to the R-group for TT, it is not difficult to check that they have the
properties that we would want of an R-group for TT.

We start with the following definition:

DEFINITION 3.3.1. - Let VK = V fw and set vst = M^VK'
wew

The labeling is explained by the fact that if TT is an unramified principal series, VK ^ K-
is the .PC-fixed vector (unique up to scalars). Further, if TT == ZGA^, then vst gives a basis
for the subspace of B-fixed vectors corresponding to the Steinberg representation.

Suppose that M is a standard Levi of G and a is a B-unramified essentially square-
integrable representation of M, that is, a square-integrable representation of M up to
a character of M. In order to ensure that the R-group has the properties listed in
section 3.1, we also require that a be generic. In addition, we assume that a has
Langlands (subrepresentation) data x (a character of A). We work mainly by embedding
everything in the appropriate unramified principal series. So, let us be careful and
write (TO ^ a, viewing o-o as acting on a subspace of V^^ and a as acting on a
subspace of ^^-i. Now, if w^ e WM of maximal length, (TQ may be identified as
the image of A^(w'Q^) '' ^MA<X —^ ^MAX- since X satisfies the requirements for
Langlands (subrepresentation) data. Proposition 3.2.1 shows that none of the terms in the
decomposition of A^ (w^) into operators associated to simple reflections annihilates the
K H M-fixed vector, i.e., ao has a K D M-fixed vector. Also, by Corollary 2.2.2, M maps
the subspace V^ c V^-i to the subspace V3^, C V^. So, by the comments in
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section 3.1, we can restrict the identity in Proposition 3.2.4 to the subspace V^^^ to get

MAMM-1 = (-l/^A^o).

Also,
n(w, o-Q)A^(ao)vK ••= VK ri(w, a)Aw((r)vst = A(w, a)vst

(this defines A(w,cr)). The first of these is in section 3.1; the second results from the fact
that vst must be sent to a multiple of vst (apply the identity above to VK)- Observe that

n(w,a)n(w,aQ)MAu,(a)M~lVK = n(w,aQ)Mn(w,a)Aw(cr)vst
= n(w, (TQ)M\(W, a)vst

= n(w, (To}\(w, a)vK-

On the other hand,

r^(w,a)n(w,ao)(-l/(w)^(ao)^ = (-l/Mn(w,a)^.

Thus,
(-l/^w, a) = n(w, ao)A(w, a).

This gives, for normalized intertwining operators,

(*) MA^(a)M~1 = A(w, a)A^(ao).

Before proceeding to the main theorem in this section, we need one more item. Suppose
a is actually square-integrable and R is the R-group for IGM^' Since a component of
an unramified principal series representation which has a ^T-fixed vector appears with
multiplicity one, by the Iwahori-Matsumoto involution, the same is true for a component
containing vst' In particular, the corresponding representation of the R-group is 1-
dimensional. We denote it by p s t ' In this case, if r G R, then A(r,cr) = pst(^) (to
see this, just apply (*) to V K ) '

THEOREM 3.3.2. - Suppose a is a generic square-integrable B-unramified representation
of M. Also, suppose OQ has Langlands subrepresentation data ^. Let TT = ZGMO'
and TTo = tGM^Q (^ TT ^ TTo). If p G R, we can view p as an element of
Hom(Vp^Vp) C Hom(y^^V^). Therefore, we can also let p act on Hom(V^Q^ K-o).
the action being given by M.pM."1. If' TTp denotes the irreducible subrepresentation of-K
associated to p G jR, set

(^o)/? = TTp^

(Note that as p runs through R, pstP does as well.) Then, R is the R-group for 71-0 in
the sense that

1.
Hom(7ro,7To)^C[R}
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2. We have a correspondence between the irreducible representations of R and the
equivalence classes of components of 71-0. In particular,

TTO ^ Q)(dimp){7ro),
pen

3. The operators Ay.(o-o) act on and permute the dimp irreducible subspaces of the
(TTo) p-isotypic component as the representation p. That is, we can write

Ar^o)\v, =p(r\

Proof. - For the first claim, the map Ar{a) ̂  MAr(a)M~1 gives an isomorphism
Hom(7r,7r) ^ Hom(7To,7ro). The claim follows.

For the second claim, we start with

TT ̂  Q){dimp)7Tp.
pCR

Applying the Iwahori-Matsumoto involution to this, we get

„ ̂  ̂ dimp)(^)

p€R

^ Q)(dimpstp)^pstp)
pCR

^ Q)(dimp){7ro),
p^R

as needed.
For the last claim, let v G (Kr)^p and write v = Mv e (V^)p. Since A(r, a) = pst(r),

(*) implies

Ar(ao)v = ps^^MAr^M-1!}

=^l(r)•MAr(or)^

= Psh^-^PstWp^v
=Mp(r)M~1 -Mv
= p(r)v

which is the needed transformation. D
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