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1. Introduction

Roughly speaking, the paper [15] gives a decomposition of an irreducible representa-
tion of SOgy,11(F) or Spa,(F), F p-adic, into a product of irreducible representations of
lower-rank classical groups of the same type based on the different supercuspidal repre-
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sentations of general linear groups which appear in the supercuspidal support, and in a
manner which respects many key properties (see [15, Theorem 9.3]). This was extended
to cover Oa, (F') in [16]. The purpose of this paper is to give the corresponding result for
SO02n(F), Uzpy1 (F), Usn(F), GSpingyi1(F) and GSping, (F).

To be a little more precise, and thereby facilitate the discussion below, we briefly recall
the correspondence of [15] focusing on the case of symplectic groups. Let p1, -+, pg
be irreducible unitary supercuspidal representations of general linear groups, p; be the
contragredient of p; and ¢ be an irreducible supercuspidal representation of a symplectic
group. Suppose 7 is an irreducible representation of a symplectic group having super-
cuspidal support in

{1, v p1}eer U - U{v pr, v prtacr U {0}

To 7, the results of [15] associate a family of irreducible representations 71, ---, 7g
with 7r; having supercuspidal support in {v%p;, v"%p;}eer U{0}.

The decomposition thus obtained is similar to what one might get using Hecke algebra
isomorphisms, but requires less overhead (though does not preserve as many properties
as Hecke algebra isomorphisms). As the decomposition behaves well with respect to
parabolic induction, square-integrability, duality, etc., it can serve as a useful tool for
many problems-reducing the problem to that where the supercuspidal support lies in a
single family {v*p, v™"p}er U{0}.

The situation for unitary groups is very similar to that of Spo,(F) and SOgpy1(F)
addressed in [15]. However, there are several issues in extending this correspondence to
SOqn (F), GSpingp+1(F), and GSping, (F). The first, which applies only to SOs, (F') and
G Sping, (F), is the lack of what [22] refer to as partial cuspidal support. In particular, if ¢
denotes the outer automorphisms corresponding to the interchange of the last two simple
roots in the Dynkin diagram, one can have the supercuspidal support of 7 containing
both o and c-o. As a consequence, one may have more than one candidate for a particular
m;, and some of those 7;s may contain both ¢ and c- ¢ in their supercuspidal support.

The second issue, which applies only to the general spin groups, is the effect of the
similitude character under Weyl conjugation. In the symplectic case, the action of the
long coset representative wg has wy(p ® o) = p® o, so the set {v*p, v"75},er is closed
under Weyl conjugation. However, for GSping,+1(F'), it involves the central character
we of 0, e.g., wo(p R 0) = wep ® . To ensure closure under Weyl conjugation, we must
replace {v7p, v "plrer With {v7p, weV "5} ieRr-

The last issue applies only to SO, (F) and GSpinsg,(F). For symplectic (or odd
special orthogonal) groups, one property of the correspondence above is that if A\;, Ag
are representations supported on {v*p1, v F51 teer, (V7 P2, V "P2tzecr Tespectively,
then Ind(A; ® A2 ® o) is determined by Ind(A; ® o) and Ind(A2 ® o). When A; and A,
are square-integrable, this is a consequence of the R-group results of [10], [3], and these
results play a key role in the proof. In the case of SOs, (F) or GSping,(F), the R-group
results are not so simple (cf. [10], [3]). In particular, one can have p; x ¢ and ps x o both
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irreducible but p; x ps x o reducible. To deal with this issue, we bundle those p;s where
this can happen together.

We close the introduction by briefly outlining the structure of the paper. In the next
section, we introduce notation and recall some basic results needed later. Section 3
gives the definition of the correspondence, with the first set of main results—the bijective
nature of the correspondence (Propositions 4.4 and 4.5) and the fact that it respects
duality (Lemma 4.3), essential temperedness and square-integrability (Lemma 4.1), and
the Langlands classification (Lemma 4.2)—given in Section 4. In Section 5, we show that
the correspondence respects parabolic induction (Corollary 5.4). The paper closes with
some additional comments and observations in Section 6.

2. Notation and preliminaries

We assume char(F') = 0 to use the results of [10], [11], [3].

Let G = G(F) = SO (F), GSpinami1(F), GSpinom (F), Uspni1(F), or Uspm(F),
where the unitary groups are determined by a fixed quadratic extension E/F. A parabolic
subgroup of G,,(F) has the form P = MU with

M= GLm1 (F) XKoo GLmT(F) X Gmo (F) if Gm = SOQm, GSpin2m+1, GSp?:TLQm,
) GLy, (BE) X -+ -GLp, (E) X Gy (F)  if Gy = Uspni1, Uz

Following [27], [24] and [25], if m; is a representation of GL,,,(F), i =1, ---, r, and
mo is a representation of Gy, (F'), we set the associated normalized parabolic induction
representation of G as

7T1><~~~><7Tr>47T0:Z'G$]\/[(7T1®---®7T7«®7T0).

This also applies in the Grothendieck group setting, i.e., to its semi-simplification. If 7
is a representation of GL,,(F) (resp. G, (F)), we set d(T) = m.

For x a character of F*, we may identify x with a character of GL,,(F) (resp.
G Spingm+1(F) or GSpingm(F)) by x o det (resp. x © A, where A denotes the similitude
character—see [1] and [18]). As in [27], we let v = | - |. A representation 7 of one of these
groups is essentially tempered (resp. essentially square-integrable) if there is an e(7) € R
such that v~*("7 is tempered (resp. square-integrable).

For SOs,,(F) and GSping,,(F'), we have an outer automorphism, denoted by ¢, cor-
responding to the interchange of the last two simple roots in the Dynkin diagram. When
mo = 0 and m, > 1, both M and ¢(M) are standard Levi factors and are not conjugate in
G (F). Note that this corresponds to the situation where exactly one of a;,—1, a,,—the
last two simple roots—is among the simple roots for M. To distinguish between them, we
use the artifice in [17] (for SOg,,(F)) and [18] (for GSping, (F)): for SOz, (F), we let
1 ® e denote the trivial representation of Go(F') = 1 if it is ay,—1 which is a simple root
for M and 1® ¢ if it is a,y,. The convention for GSping,, (F) is similar, except that since
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Go(F) = F*, we use x®e (resp. x®c) to denote a character of Go(F) if a1 (resp. )
is the simple root for M. In addition to allowing the x notation above to be used unam-
biguously, it also means that some standard results, such as the Langlands classification
and the Casselman criterion, have the same form for SOs,,(F) (resp. GSping,(F)) as
for SOapm+1(F) (resp. GSpingm+1(F)). The interested reader is referred to [17], [18] for
more details.

‘We now recall some structures that we use for Jacquet module calculations. To this
end, let

R = P R(GL,(F)) and RG] = ) R(Gm(F)),

m=0 m=0

where R denotes the Grothendieck group for the category of admissible representations.
Now, for a general linear group GL,,(F'), let M, denote the Levi factor of a standard
parabolic subgroup having the form My = GLy(F) X GLy—(F), and 6L, be
the normalized Jacquet module with respect to M. Then set m* : R — R ® R by
(see [27]),

m
*_
m = E TM(k),GLm'
k=0

Similarly, for Gy (F), let M) denote the standard Levi subgroup having M) =
GLi(F) X G- (F), and 711, ,G,, be the normalized Jacquet module with respect to
My, noting that for G, = SOz, GSpingp,, there are two such standard Levi factors
which appear symmetrically in the formula below (so need to distinguish them at this
time). Following [25], let u* : R[G] — R ® R|G] be

m
E T Miy,Gom for Gy, = GSpinam+1, Uzm+1, Uzm,
* k=0
pr=1q
> My G+ Te(M )G 0T Gy = SO, GSpinag,.
k=0

In order to set up a structure formula similar to that of [25], let & be defined by

. {fror@ it G = Uz2m+1, Uz,

T=19q _ )
T otherwise,

where x denotes the non-trivial Galois conjugation associated to E/F. Let N* : R —
R®R® R be

N =("@m")osom”
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for G,, = GSpinom+1, Usm+1, Usm, and for G,, = SO, GSping,, N* : R —
R® R® R® Z(C) be

N*=("@m")posom’,

where C' = {e, c}, s(m ® ma) := w2 ® 71 for any two representations m; and me of GL,
and

. N _Jme@m*(m)®e if d(m) is even,
(C@m)p(m ®m) = { 71 @m*(me) ® ¢ if d(m) is odd.
The following theorem is done in or directly follows from [17] for G, = SOqp,, [22
for Gy, = Uspy1, Uam, [20] for Gy, = GSpingm+1, and [18] (based on [21]) for G, =
GSpian.

Theorem 2.1. With notation as above,
i (r ) = N* () s (),
where X is defined by

(Wep1 X p2 X p) R (p3g x ) for Gp, = GSpingm1,

R p2 @ p3)X(pRo) =
(pl P2 P3) (p ) { (pl X pa X p) ® (P3 v O') fO?” Gm _ U2m+1a UQm,

and, v = orec,

(p1 X p2 X p) @ t(ps X ) for Gy = SOgp,

(b1®2 @ P2 L)1(p®0) = { (Wop1 X p2 X p) @ u(ps ¥ a)  for G = GSpingy,.

We remark that in order to have a more uniform presentation that covers general spin
groups, we have adopted a slightly less elegant formulation than those that are available
for the other families.

The duality operator of [2] is used in a key way in this paper. Notationally, if D denotes
the duality operator of [2] and = is an irreducible representation, we define # = £D(7),
using whichever sign produces a genuine representation. Note that this convention was
needed in [15] and should have been made there.

Remark 2.2. As in [18], we use ej(ag), ap € F*, as the center of GSpingm,+1(F),
GSpingm (F) and define the central character accordingly. With this convention, we
have ¢ - o(ef(ag)) = o(ef(ap)) (by [14, Lemma 4.5]), 80 Wy = We.o-

To close this section, we note that if 7 ® w is an irreducible representation of the
standard Levi subgroup GL,, (F) X Gy, (F) and wy is the corresponding long double-
coset representative from the Weyl group, then
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TRc™ .1 for G,,, = SO,
_JwrT®T for G,, = GSpingm+1,
wo(r ® ) = waT®c™ - for G, = GSpinom,

TRm for G, = Ugpt1, Uap.
3. Definition of the correspondence
In this section, we define the basic correspondence studied in this paper.

Lemma 3.1. Let G,,, = SOs,, or GSping,. Suppose w is irreducible with m < ¢1 X -+ X
¢r % 0, where ¢; is an irreducible supercuspidal representation of GLg,)(F') and o is
an irreducible supercuspidal representation of Gy (F). Further, suppose that o % c-o.

(1) If d(¢;) is odd for some i, then both o and c¢- o occur in the supercuspidal support
of m.
(2) If all d(¢;) are even, then the supercuspidal support of ™ contains only o.

Proof. For (1), choose ¢ maximal such that d(¢¢) is odd. A commuting argument then
gives

T Q1 X X Qo1 X Ppp1 X - X Qp X pg X 0O
E Py X X Pp1 X Qpy1 X o X P X Wy X C- 0,

noting the irreducibility of ¢, x o. The claim follows.
For (2), observe that N*(¢1 X -+ X ¢) produces only even powers of ¢, from which
the result follows. O

To set up the discussion in what follows, we recall a bit of notation from [18], using
it to more conveniently formulate the Langlands classification and Casselman criterion.
For an irreducible, essentially tempered representation T' of Gy, (F'), let

e(T) if Gy = GSpinamg+1, GSpingm, and d(T) > 0,
B(T) =14 3e(T) if Gmy = GSpiname+1, GSpingm, and d(T) =0,
0 lf Gmo = SOQmO7 U2m0+17 U2mo-

With this notation, we let L(7y,--- ,75; T) (resp. L(11, -+ ,7s)) be the unique irreducible
subrepresentation of 71 x -+ X 75 X T (resp. 71 X --+ X T5), where 71, -+, T, are es-
sentially tempered representations of general linear groups, 7" is an essentially tempered
representation of some G, (F), and their exponents satisfy

e(r) <e(m) < - <e(rs) < B(T) (3.1)

(resp. e(m1) < -+ < &(75)). For the Casselman criterion, if 7 is an irreducible essentially
tempered representation of G, (F), and ¢1 @ --- ¢ ® 0 < rpr,¢(7m) is a supercuspidal
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constituent of the Jacquet module rp; ¢ (m) with respect to a Levi subgroup M of G,
here o means a supercuspidal representation of some G,,,(F') with my < m, we have

d(¢1)[e(¢r) — B(o)]

0,
d(¢1)[e(1) — B(o)] + d(¢2)[e(d2) — B(o)] 0,

AV

(3.2)

dé0)[e(ér) — BN + -+ d(dw)le(6x) — B)] 0.

Conversely, if the inequalities hold for all such Jacquet modules, then 7 is essentially
tempered. The criterion for essential square-integrability is similar except that the in-
equalities are strict.

Notation 3.2. By [18], if @ = L(71,--- ,7s; T) defined as above, one has 5(T) = f(o).
Consequently, at times we may simply write § for 3(T") or (o).

Lemma 3.3. Let 7 be an irreducible representation of Gy, (F) for some m > 1. If both 7
and T are essentially tempered, we have

7T‘—)¢1X'~~X¢k>40'
for some irreducible supercuspidal ¢1, -, ¢, o having e(¢1) = -+ = (o) = B(0).
Proof. Suppose ¢1 @ -+ @ ¢ ® 0 < rar,¢(m) is supercuspidal. By properties of duality,

we then have wgél Q- ® w(,q/V)k ® -0 < ryqg(®) for some ¢ € {1,c}. The inequalities
required by the Casselman criterion in (3.2) then give

d(p1)[e(91) — B] + d(¢2)[e(¢2) —

dG0)[e(@r) — A+ -+ d(gn)le(én) — B >0

for  and (since wy = W, e(0) 4, = v wy,—see [18]),

d(¢1)[(28 —e(¢1)) — B]
d(¢1)[(28 —e(¢1)) — B8] + d(92)[(28 — e(¢2)) — Bl

o o

IV IV

d60)[(28 — £(61)) — B(o)] + -+ d(w)[(2 — =(éx)) — B] >0

for #. It then follows that e(¢1) = e(¢p2) = -+ = &(ér) = B, from which the result is
immediate. O

Corollary 3.4. Let G, = SO2y, or GSping,,. Suppose that c- o = o and 7 is irreducible
with m < ¢1 X -+ X ¢ X 0, where ¢1, ---, ¢, o are supercuspidal. Then c-w = 7.
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Proof. The proof is by induction on k. The case k = 0 is trivial. For the proof below, let
Gm(F) = Ogn(F) or Gping,(F) (so G = G, with component group C = {e, c}).
Let o* (resp. 7*) be an irreducible representation of G, (F) (resp. Gy, (F)) having

o* < Indgzz (o) (resp. m* < Indgz (7)). As a consequence of Lemma 2.1 [4] (which is a

~

straightforward consequence of [8] and [9]), ¢- o & ¢ implies xo* 2 ¢* and Indg:zg (o) =
o* ® xo*, where x is the nontrivial character of G,,,(F) which is trivial on Gy (F).
Further, it also tells us that ¢-m = 7 < y7* 2 7*. Thus it suffices to show that y7* 2 7*.

First, suppose 7 is not essentially tempered. Then, we may write 7 = L(7,--- ,7¢; T)
in terms of the Langlands classification. By [4, Proposition 4.5], ¢-m = L(7y, -+ ,7¢; ¢ T).
Since T comes from a group of lower rank (and with supercuspidal support a subset of
that of ), the inductive hypothesis tells us ¢- T = T'. It then follows that ¢- 7 = 7, as
needed.

Next,/sg)pose that 7 is essentially tempered but 7 is not. By Lemma 3.5 below
¢ -7t = (c- 7). Therefore, to show c¢- 7 = m, it suffices to show c¢-# = #. This follows from
the previous case.

By Lemma 3.3, we are reduced to the case 7 < v5p; x --- x vPpy x . Then,

W*%Indg:(yﬁpl><-~-><Vﬁpk><la)$ﬂ'*<—>uﬁp1><-~-><yﬁpk><10*

for some irreducible o* < Indgzg (o). Since ¢ - o = o, we have yo* 2 ¢*. Then, by [6,
Proposition 1.9],

X = VP x- x P p X xo.

It now follows immediately from partial cuspidal support considerations that 7™ 2
™ = c-m=m as needed. O

The following seems like it ought to be well-known, but we have not found a reference.

-

Lemma 3.5. Let G,,, = SOq,y, or GSpingy,. Then c-# = (c- )

Proof. If ® C II is a subset of simple roots and Pg is the corresponding standard
parabolic subgroup, then ¢ - ® is also a subset of simple roots and ¢(Pp) = P..¢ is the
corresponding standard parabolic subgroup. Further, it is a straightforward matter to
check that coig pm, = ig M, ©Cand coTy, ¢ = Ty, 4.¢ © c. Then, by definition ([2]),

coDg =Y (-D)I®lcoiguy oru,.a
SCII

@ .
= > (-1)¥ig y ,0corn, o
SCII

P -
= > (D)%ig s 0 0ra g G0 c
OCII
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As ¢ - ® also runs through the subsets of II, we then get c o Dg = Dg o ¢, from which
the result is immediate. O

We now set up some notation for what follows. First, we allow % to be a single
irreducible supercuspidal representation of G, (F') or, for SOgp, (F') or GSpingm, (F),
aset {0, c-o}if ¢- o 2 0. To unify the presentation, set

e — 1 lf Gmo = SOQm(” U2m0+17 U2m0?
T Y we  if Gy = GSpinamg+1, GSpinam,,

which is well-defined by Remark 2.2. With notation as above, for irreducible unitary
supercuspidal representations p; of G'Lg(,,)(F), we let S(p1,---, pn; X) be a set of the
form

S(p1,-++ 5 pn; X) = {V¥p1, wsv “Prlaer U U{v pn, wsv ™ prloer UE

and Irr(S(p1,-- -, pn; X)) be the set of all (equivalence classes of) irreducible represen-
tations of even G, groups which have supercuspidal support in S(p1,--+,pn;2). In a
similar vein, when the focus is on general linear groups, we let

Ss(p1, -+, pn) = {VIplv WZV_wﬁl}meR u---u {prm WEV_Iﬁn}IER'

Definition 3.6. With notation as above, fix 2 and let X be a set of the form

X ={v"p1, v "wsp1leer U U{V pr, v "wspp}ocr-

For 7 as above, we define p% (7) to be the sum of all irreducible representations 7 ® 6 in
w*(m) satisfying the following:

(1) The supercuspidal support of 7 is contained in X.
(2) The supercuspidal support of 8 contains no terms in X.

By a commuting argument, p% (7) is nontrivial. Further, by central character consid-
erations (on the minimal nonzero Jacquet module of a term in p*(7)) and [15, Lemma
5.5], we have m — 7 x 6 for some irreducible representation 7 ® 6 < p’ (7).

Lemma 3.7. Let 7 € Irr(S(p1,- -+ ,pn; X)) and X = Ss(piy,--+ ,pi) C Ss(p1,--+, pn)-
Choose T @ 0 < p% (m) with m — 7 x 0. Let 7/ @ §' < p’ (m).

(1) Ifc-0 2o, then ¢ =2 0.

(2) Ifd(piy), -+, d(ps,) are all even, then ' = 0.

(3) Assume that there exists p; such that d(p;) is odd. If X contains all p; having d(p;)
odd and ¥ = {0, c-o} (with ¢c-o % o and both in the supercuspidal support of ),
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then 0/ =0 or c- 0, with 0 and c- 0 distinct and both occurring. Further, 6 and c -6
may be distinguished by their supercuspidal support—one has only o, the other only
¢-o. (Note that this case requires G, = SOgqp, or GSpingy,.)

Proof. We start with a formal calculation: write p*(0) = Y, Ay ®#6; (a sum of irreducible
representations, repetition possible) and

N*(r) =("

(3.3)

d(r!

where the ¢(7) term may be disregarded for G,, = = GSpingm+1, Uzm+1, Uszm. Then,

noting wyg, = ws,

(tx0) ngT X T, E X Ag ® Ti(j) x U7 . g, (3.4)
i,

Observe that for the first factor to have supercuspidal support in X, we must have A\, = 1

(as Ay ®60p < p*(0) and the supercuspidal support of 0 has no terms in X). In particular,

(2 ) d(r
X c

w») is contained in that of 7). Thus

we must have 6§, = 6. Similarly, for 7;’ ) -6, to have no terms in X, we must have

7@ =1

ing (as the supercuspidal support of

0 <72 D gy = 4D g,

For (1), we note that it follows from the hypotheses and Corollary 3.4 that ). =9,
For (2), we observe that the hypotheses imply d(7/) is even for all ¢, from which the
conclusion is immediate. For (3), that the only possibilities are ' = 6 or ¢-6 is clear. Since
odd d(7{) occurs (Lemma 3.1), we do pick up copies of c-6. To see that ¢-0 2 6, note that
the supercuspidal support of 6 contains no terms in X, hence has only representations
of even general linear groups. By Lemma 3.1 (2), 6 contains only ¢ (and not ¢- o) in
its supercuspidal support. Then c¢ - 6 contains only ¢ - ¢ in its supercuspidal support, so
c-0 %40, as claimed. O

We are now ready to set up one direction of the correspondence.

Definition 3.8. Let m € Irr(S(p1,- -+, pn; 2)); if || = 2, we assume that both o and ¢-o
appear in the supercuspidal support of 7. Set

Xi - SZ(Ph' oy Pi—1, Pi41, 00 apn) (35)

and let 7 ® 0 < p%, (m) be an irreducible representation with 7 < 7 x 6. We consider
two cases, depending on whether c¢- o = ¢ or not.



C. Jantzen, C. Luo / Journal of Algebra 595 (2022) 551-580 561

(1) ¢-0 20 (30 Gy = SOqy, or GSpingy,).

(a) d(p;) is even. If we have some p; with d(p;) odd, all such p; appear in X;.
By Lemma 3.7 (3), p%,(7) contains both ¢ and c - 6. Further, they may be
distinguished by their supercuspidal supports—one has only o; the other, only
¢+ o. We then define

V(7)) =0 orc-0,

Pi

whichever contains o in its supercuspidal support. If there are no p; with d(p;)
odd, only 6 occurs (by Lemma 3.7 (2)); the superscript (o) is not needed but is
still included to simplify notation in what follows.

(b) d(p;) odd. In this case, as one cannot always separate the effects of individual
p; having d(p;) odd (as may be seen in the more complicated R-group structure
in [10], [3]), we bundle them together. Set

Xodd = Ss(pirs- 1 pig),

with p;,,- -, p;, consisting of all p; having d(p;) even. We then set

Yodd(m) =0,

where 7 ® 6 is an irreducible representation in p*(7) with 7 < 7 X o, noting
that this is well-defined by Lemma 3.7 (3).

(2) c-o0=o.

In this case, we set
w7 (m) =6

as above, noting that this is well-defined by Lemma 3.7 (1). We remark that the
superscript (o) is also not needed in this case, but again simplifies the notation in
what follows.

In cases where 1,44(7) is not defined, we set 1,44(7) = 1 to allow for a more uniform
presentation.

Note that for SOg,,(F) (resp. GSpingm, (F)), we have 0 = 1 ® e (resp. 0 = x ® e)
satisfying ¢- o0 =1® ¢ (resp. ¢- (x ® €) = x ® ¢). In particular, we have ¢- o % o, so use
(1) in the definition.

To set up one direction of the correspondence, we assume without loss of generality

p1, -+, pk have d(p;) odd and pr11, -+, pn have d(p;) even. (3.6)
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Then

Irr(S(p1, -+, pns B)) — Irr(S(p1, - 5 pi; B)) X Irr(S(pr413 X)) X -+ X Irr(S(pn; X))

> (Yoaa(m), Yhis, (m), -+, wi7 (1)),
(3.7)
treating k as 0 for G, = Uapy11, Uam, and GSping,,4+1 or when ¢- o = o.

Note 3.9. For G, = SOs,,,, GSpino,, we note that, 7®86 is an irreducible representation
in p*(m),

T —>TX0=c-m—=>TXcC-0.
Therefore
¢ Yoaa(T) = Vodalc+m) and c -7 (r) = w7 (c - 7).
4. Main result

In this section, we serve you the main result of the paper. We start with a couple of
basic properties.

Lemma 4.1. With notation as in Definition 3.8 and (3.6), (3.7) above, suppose that w €
Irr(S(p1,- -+, pn; X)). Then is essentially tempered (resp. essentially square-integrable)
if and only if Yoqa(T), wgﬁl(w), SR éz)( ) are all essentially tempered (resp. all
essentially square-integrable).

Proof. We do the essentially tempered case; essential square-integrability is similar.
(=): Suppose T is essentially tempered but 1),q4(7) or some wg‘:)(ﬂ) is not. For concrete-

ness, suppose it is wpn () that is not essentially tempered. Write

P () = L(71(pn),++  Ts(pn); Tlpn;o))

with 7;(pn) € Irr(Ss(pn)) for 1 < i < s, T(pp;0) essentially tempered and satisfying
(3.1). Then, for some \(X,,) € Irr(X,),

A(Xn) X T1(pn) X -+ X T5(pn) @ T(pn;0)
T1(pn) X =+ X Ts(pn) X A(Xn) 3 T(pn; o).

s M(Xa) % 57 (7)

R 7

By Frobenius reciprocity, pu*(7) contains a term of the form 71 (p,) ® - - -. We claim that
this contradicts the Casselman criterion for the essential temperedness of 7.

To this end, suppose that ¢1 ® -+ @ ¢, < rar,er(71(pn)) supercuspidal (noting that
@; is a twist of p,, or wsp, for all ¢). Then, by (3.1),
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5((7251) +ot 5(¢r>

r

=e(1i(pn)) < B=ce(¢r) +---+ (o) <7p.

On the other hand, since 7 is assumed essentially tempered, by (3.2),

d(d1)(e(d1) = B) + -+ - + d(dr)(e(dr) = B) 2 0 = &(d1) + -+ + () 2 75,

a contradiction. The result follows.

(«<): Suppose Yoqqa(m) and all the 1/),(;:) () are essentially tempered but = is not. We
@then write @ = L(m, -+ ,7s; T). Further, we may write each 7, = 7;(odd) X
Ti(pr+1) X -+ X Ti(pn), with at least one factor nontrivial, here 7;(p;) € Irr(Ss(p;))
for k +1 < j < n. Suppose for the sake of concreteness that at least one of the
Ti(pn) is nontrivial. By a result of Harish-Chandra (see [26, Proposition III1.4.1]),
we may write, for some essentially square-integrable 6(odd) € Irr(Ss(p1,- - ,pk)),
5(pr+1) € Irr(Ss(pr+1)), -+ 0(pn-1) € Ir7(Ss(pn-1)),

T < 6(0dd) X §(prs1) X -+ X 8(pu—1) ¥ $UT) = 6(X,) x ) (T)

and 7; = 73(X,) X 7:(pn), we have

7 o (X)) X Ti(pn) X - X To(Xn) X Ts(pn) X 8(Xp) X 5T )
27 (Xp) X X Ts( X)) X 0(Xp) X 71(pn) X -+ X Ts(pn) X wpn (T).

Taking Jacquet modules in stages, there is some A ® § < p*(7) having
rL (A ®0) 2 i(Xn) ® - @ To(Xn) ® 6(Xn) @ 71 (pn) @ @ Tulpn) ® U (T);

by supercuspidal support considerations, necessarily A ® 6 < pu (m). In particular,

0 =57 () or c-0$7 () (Lemma 3.7), so 957 () contains 7 (pn) @ - - @75 (pn) @Y (T)

or T (pn) Q- ®7s(pn) c- w},‘;)(T) in its Jacquet module. In either case, as we have

some 7;(pr,) nontrivial, this contradicts the Casselman criterion for the temperedness of
g(;)(w) as in (=) above, finishing the proof. O

Lemma 4.2. With notation as in Definition 5.8 and (3.7), (3.6) above, suppose that
m e Irr(S(p1,- ,pn; X)) hasm = L(11,--- ,7s; T). For 1 < j < s, write 7; = 7j(odd) x
Ti(Prt1) X -+ X Tj(pn), with Tj(odd) € Irr(Ss(p1,--- ,pr)) and 7;(p;) € Irr(Ss(p;)) for

k+1<i<n. Then
Yoda(m) = L(1(0dd), -, 75(0dd); 1oqa(T))

and

1#,(;:)(”) = L(m1(pi), -, 7s(pi); lﬂ,(;f)(T))-
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Proof. For concreteness, we look at the case i = n; the other cases are similar. Write
T < §(odd) x 0(pr+1) X -+ X 6(pp—1) X wgi) (T') for some essentially square-integrable

6(odd) € Irr(Ss(p1,-- -, pk))s 0(pr+1) € Irr(Ss(pr+1)), =+, 0(pn-1) € Irr(Ss(pn-1)).
Then
7= 71(odd) X T1(pg+1) X <+ X T1(pn) X -+ X T5(0dd) X Ts(ﬂk+1) oo X Ts(pn)

x8(0dd) X 8(pri1) X -+ X 8(pn_1) x (D).

Write 7;(X,,) = 7j(0dd) X 7 (pr41) X - - - X Tj(pn—1) and similarly for §(X,,), a commuting
argument then gives

T (X)X X T (X)) X 6(Xn) X Ti(pn) X o0 X To(pn) 3 5(T).

By [15, Lemma 5.5], 7 < )\>49 for some irreducible A < 71 (X,,) X - - x75(X,,) x§(X,,) and
0 < 71(pn) X+ XTs(pr) X ¢pn (T ) by Lemma 3.7 and the definition of 1/)22), 0= @/}SZ) (7).
In particular, w,()n)( ) < 71(pn) X+ X Ts(pr) X %(,Z) (T). On the other hand, by Frobenius
reciprocity and Jacquet modules in stages, we have

ranc () (1)) 2 T1(pn) @ -+ @ 75(pn) © Y (T).

It follows from properties of the Langlands classification (e.g., [5, Proposition 5.3]) that
the only irreducible subquotient of 71(p,) X -+ X T5(pn) % 1/1(0)( T) containing 7 (p,) ®
- ® To(pn) ® ¥7(T) in its Jacquet module is L(t1(pn), -+ 7s(pn); (o) (T)). Thus

gi)(ﬂ) = L(71(pn), -+ »7s(pn); ,(;i)( T)), as claimed. O

Lemma 4.3. With notation as in Definition 3.8 and (9 6), (5.7) above, suppose that m €
Irr(S(pr -+ pus E)). Then voga(n) = toaa(#) and 67 (x) = 6 (%) for k+1<i <n.

i

Proof. This follows directly from [2, Theorem 1.7 (2)] and the definitions of ¥,q4, ,(,'.7).

We remark that in cases where it matters, d(p;) is even so wéf)(ﬂ) contains o rather
than c- o in its supercuspidal support. O

Proposition 4.4. With notation as above, suppose Toqq € Irr(S(p1,--- ,pk; X)) and m; €
Irr(S(pi;0)) for k+1 <i<mn. Then there is some w € Irr(S(p1, - ,pn; X)) satisfying
wodd(ﬂ—) = Todd and 1/1,()7)(71') = T fO?" k +1 S ) S n.

Proof. For concreteness, suppose moqq 7# 1; the case moqq = 1 is similar. Write myqq <
7(odd) x o and m; — 7(p;) x o for k+ 1 < i < n. We prove by induction on ¢ =
Hpkt1, .ot = n— k that 7(odd) X T(pg+1) X +-+ X 7(pn) X o has an irreducible
subquotient with the required properties. The case ¢ = 0 is trivial. (If g4 = 1, the case
¢ =1 is trivial and starts the induction.)
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Now, suppose the result holds for £ — 1. Let «#’ € Irr(S(p1, - ,pn-1;2)) having
Yodd(T') = moqq and w,(;:) (7') = m; for k+1 <4 < n— 1. We first claim that any
irreducible 7* < 7(p,,) X 7" has Yoqq(7*) = Toqq and wgf)(ﬂ'*) =mfork+1<i<n-1.

We check that 1,q4(7*) = Todq; the other cases are similar. Looking at (3.3) and (3.4)
with 7 = 7(p,) and 6 = 7', we see that to contribute to u%_  (7(pn) x '), we must have

d(ri) = e, from which

Ae =1 = 0, = 7. Similarly, Ti(? = 1. As d(p,) is even, we have ¢
it follows that ¥oqq(7*) = Yeaa(7') = Todd, as needed.

Thus it remains to show that there is an irreducible subquotient 7* < 7(p,) x 7’
having w,(,z)(w*) = m,. For this, it is enough to show that there is a term of the form
A@m, < p (T(pn)x7'). Take a term A®@o < p*(7'). Since 1@ 17 (pn)®e < N*(7(pn))

(disregarding the part ®e if G,,, # SOqyy, or GSping,y,), we have

P (r(pn) x ') > (1@ 1@ 7(pn) ® e)x(A® ) = A® (1(pn) % 0).

By supercuspidal support considerations, this lies in pi% (7(pn) x7"). Since 7, < 7(pp) x
o, the result follows. O

Proposition 4.5. Suppose 7, 7" € Irr(p1,--+ , pn; X). If Yoaa(m) = Yoqa(n’) and ¢§)¢:) (1) =
g(;)(ﬂ'/) fori=k+1, ---, n, thenw = x'.

Proof. The proof is by induction on ¢, where £ is the number of factors in a standard Levi
subgroup M = GL,,, X -+ X GL,,, X Gy, which supports a minimal nonzero Jacquet
module. The case £ = 1 is trivial. We break the inductive step into three cases.

Case 1: 7 not essentially tempered.
In this case, it follows from Lemma 4.1 that 7’ is also nontempered. Set m =

L(ry, -+ ,75; T) and @’ = L(7{,---,7{; T"). Observe that it follows from Lemma 4.2
that s is the number of different exponents which appear in the Langlands data for
Yodd(T), ’Lb‘(f;il(ﬂ'), RN ;(,Z)(F), and similarly for 7/. Thus s = t. Further, since

Yodd(T) = Voaa(n’), it follows from Lemma 4.2 that

L(Tl(Odd), o, Ts(odd); wodd(T)) = L(T{ (odd),- -+ ,Ti(0dd); wodd(T’))

i3
Yodd(T) = Voaa(T"), and 71 (odd) = 7{(0dd), ---, 7s(odd) = 7}(0dd).
Similarly,
PNT) = i(T"), and 11(ps) = 71 (ps), -+, Ts(pi) = Th(pi)

for k£ + 1 < i < n. We then have

7 = 7j(0dd) X Tj(pry1) X -+ X Ti(pn) = T}



566 C. Jantzen, C. Luo / Journal of Algebra 595 (2022) 551-580

for 1 < j < s = t. Further, by the inductive hypothesis, ¥,44(T) = Yoaa(T’) and
YT = ST for k+1 < i < n implies T = T". It now follows that = = 7/, as
needed.

Case 2: 7 essentially tempered but 7 not essentially tempered.
This follows directly from Lemma 4.3 and the preceding case.

Case 3: both m and 7 essentially tempered.
By Lemma 3.3, we have

TP X - X XO

4 (18)) (4.1)

v P s v Be x o x vTBg, x ve@g

a tempered situation, to which the results of [10], [11], [3] may be applied. Further, by
commuting and inverting (i.e., replacing p; by w,p; and o by i) . o) as needed, we
may without loss of generality write

VT S pr X X pr X X X e X pp X g (4.2)
—_— —_——

121 £n

(see Note 3.9). From the definition and [18], one has v%1,44(m) = oaa(v?7), etc., so
it suffices to deal with the tempered case. Thus we assume that § = 0 and 7, 7 are
tempered below.

First, we claim that to have ¥,q4(T) = Voqq(7’) and ¢§;’)(w) = w,(f) (7" for all 4, we

i

must have the same embedding for v~#7’ as well. If this is not the case, supercuspidal
support considerations and the same argument as above would tell us

ﬂ-/;)plX...xplx...xpnx...xpnxy_s(a)c.o-_
—_——— —_——
121 2%

Note that this possibility requires at least one p; to have d(p;) odd. Further, in order to
have

PLX  XPL X X P X o X Py Nyfg(g)o-%plx...xplx...xpnx...xpnxyfs(g)c.(L
— ——— ———— ————
2 n A ln

all p; having d(p;) odd must have wsp; % p;. However, in this case, one has

P1 ><"'Xp1><"'kaX"'kaNVie(U)O'

—_—— —_——

0 £

and

p1><-~-><p1><-~-><pn><"-Xpn><ll/_5(g)c~0
—— —

151 ln
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both irreducible and inequivalent. Thus, ©,qq4(7") # ¥eqa(7), & contradiction. The claim
follows.

We now obtain the result from [10], [11], [3]. We do the case where toqq(7) # 1, i.e.,
k > 0 and G,, = SOs,,, or GSpingy,; the case where ¢,44(m) = 1 is similar, but easier (as
the R-group R,qq below is trivial). Recall that the components of (4.2) are parameterized
by representations of its R-group. We note that in what follows, we use the representa-
tions of R as a convenient parameterization of the components; other properties of the
R~group—e.g., those involving actions of normalized standard intertwining operators—are
not needed nor any results about them claimed. Now, [10], [11], [3] tell us that if R is
the R-group for (4.2), then R = Rog4q X R, X -+ X R, ,
for p; x --- X pp x 0 and R, is the R-group for p; x 0. Further, R,qq = Z’glfl, where
kK = |{ilwsp; = p; with 1 < i <k}, and

where R,qq is the R-group

pi —

~ | Zo if p; x o is reducible,
R, = .
1 if not.

Note that this implies (4.2) decomposes with multiplicity one. It also follows from [3]
that if T (ps;0) is a component of p; x o, then

pi X - X pi XT(pis0)
————

l;i—1
is irreducible; likewise, if T (p1,--- , pr; X) is a component of p; -+ X pp X o, then
P1LX e X P X X pp X X pp XT (p1y oo, pr; X)
| ——— |
-1 Lp—1

is irreducible. Now, for an irreducible 7 appearing in (4.2) and k+ 1 < ¢ < n, there is a
unique 77, (pi; 0), #; € R, the character group of R,,, such that

T = pr X XprXo X pimg X X Ping X i1 X o0 X P
—_———

Zl €i71 ei+1
X Py X e xpnm(pi X oo X py xﬁi(pi;a)).
n £;—1
Similarly, there is a unique Tz_,,(p1, -+ , pk; 2)s Todd € R4 the character group of Ryqq,

such that

T = pra1 X oo X g1 X X P Xo oo X pp
—_——

€k+1 Ln
X(p1 X X pr X X pp X X X T (P15 ks B)).
— —_—

l1—1 l—1
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From the 1somorphlsm R= Roga x Ry, - X R, (and the structure of R,qq and the

R,,), let R be the character group of R, we have a bijection

R +— Rodd X Rkarl "X R,
f

— (rodda Tpk+17 ) fﬁn)'

Further, from the definitions, we have z/J,(;f) (T) = pi X -+ X p; XTz,(pi; 0) for all i, and
—_——

£;—1
Yodd(T) = p1 X ==X pr X+ X pp X === X pp X T4 (p1,- -+, pr; X). Thus, if T,7T" are
——— ———

6-1 -1
two components with 1,qq(7T) = Yoqqa(T’) and w(g)( T)= ,(f:) (T") for all 4, then

Fodd = Ppgq and 7, =7, fork+1<i<n=7=7#=T=T,
as needed. 0O

Remarks 4.6.

(1) The discussion in Case 3 is the underlying reason that the p; having d(p;) odd are
considered together for G,,, = SOay, or GSping,,: if k > 1, the p; X ¢ are irreducible
for all 4, but p; X - -+ X px % ¢ is reducible. This interdependence prevents the effects
of the different p; from being separated.

(2) From [7], in the case of odd residual characteristic, the only self-contragredient p
having d(p) odd are the order two characters. Thus, in the case of G, = SOqy,, we
have k& < 3.

5. Parabolic induction

In this section, we show that the correspondence behaves well with respect to parabolic
induction.

Definition 5.1. For 7 a representation of G,,(F'), we define rgr(7) to be the sum of all
terms in p* () which have the form 7 ® o0 or T®c¢- 0.

Lemma 5.2. We follow the conventions of (3.6). Suppose © € Irr(S(p1, -+, pn; X)) with
both m and 7t essentially tempered. Write

TG L (Vodd(T Zc] 1w (0dd)k;, . (0dd) ® cYodd - o

Jodd

and, fork+1<i<mn,

TGL ¢ ZCJL pz “JL Pz ® o,
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where Kj,(pi) (resp. Kj,,.(0dd)) is an irreducible GL(F) (resp. G) representation
supported on Ss(p;) (resp. Ss(p1,---,px)) appearing with multiplicity c;,(p;) (resp.
Cj,aal0dd)). Then

TGL (ﬂ-) = Z Cloda (Odd)cjk-u (pk+1) TGy, (p"'L)K;jadd (Odd) X Kjpq (Pk+1) X
Jodd>Jk+15"" Jn

cee X Kj, (pn) ® c%odd - o,

Proof. As in Case 3 in the proof of Proposition 4.5, we may write

T VPp x o x Ppr - x VP p, x o x Py, wo.

0 ln

As in (4.2), we may twist by a character to normalize things so that § = 0 and o is
unitary.

To calculate rgr, we need to distinguish certain properties of the various p;. To this
end, when ¢ o 2 o (noting that this includes the case my = d(o) = 0 for G,, = SOa,
or GSping,y,), we let

{7, - Wt = {pil pi 2 wsps and d(p;) odd},
{m, -, e} = {pil pi = wsp; and d(p;) odd},
and
{C1, -+, G} = {pil pi x o irreducible and d(p;) even},
{517 ) £k4} = {Pz| pi X0 reducible and d(p’t) even},

(noting that p; xo reducible requires d(p;) even and p; = wx p;). Note that for c:o0 = o and
mg > 0, in the argument below, one eliminates ~;, 7; and drops the parity requirement

on d(p;) for G, &.
Using the notation above, we write

ky ko ks ki
T‘—>H(%'><"'X“Yi)XH(niX"'XUi)XH(CiX"'XCi)XH(iiX"'Xfi)NU-
i=1 i=1 i=1 i=1

ty, b, le,

t,

i

Now, recall from [10], [11], [3] that such an irreducible T' may then be written as

k1 ko ks ka
TgH(%‘ X ><%-)><H(m X Xﬂi)XH(Q X XQ)XH(& X o x &) )Ty
s YA i=1 p =1
i ni G g~ 1

(5.1)
for some (irreducible)



570 C. Jantzen, C. Luo / Journal of Algebra 595 (2022) 551-580

Terw =M X M2 X oo XMy X & X & X -+ X &g, X o

We claim that

&1 X & X X, ®0 ifc-o=0orky=0.
(5.2)
That rgr(Tey) contains at least these terms follows from their irreducibility and, when
ks > 0, Lemma 3.1 (if ¢- 0 2 ). To see there is nothing more, note that for ks > 0 with
c-og#o,

M X XNy XE XX, Qlo+c-0] ifec-oZoand ke >0,
rar(Ten) =

rarL(m X - X Mgy X & X o+ X &, X 0)

:2k2+k4_1(771><-“><771€2><§1X"'ka4®0+771><"'><77k2><§1><"'><§k4®0'0)

Since there are 2¥27%4=1 components in this case ([10], [3]), the claim follows. The result
when ks = 0 or ¢+ 0 = ¢ is similar. It then follows from (5.1), (5.2) and Theorem 2.1
that for the case ky > 0 with ¢- 0 Z o,

k:l k2

rar(T) = | [T (i +ws¥) x - x (3 +wsye) <25 ] (s x -+~ > i)
—_—

i=1 o i=1

i 2771‘

k3

k4
. v4 P . v~ L . P . .
XH(C@‘FWZ}Q) X X (G + ws(i) X2 <g(£Z X x&) | ®@[o+c-o]

i=1

l,

i

te,

i

where
Ly=(ly, = 1) 4+ (by,, — 1), Le=(ley = 1)+ + (lg, — 1)

(and noting that one has the possibility ; = wg@). If ko =0or c- o = o, we have

k)l e‘Yq;
129 . .
rao(T) = Z(7_")(wmi><"~><wz%)><(%><"'><%')

Ji Ly —Ji

k3 ka
x [T (G +ws) x - x (G +wsnl) x25¢ 11;[1 (& x - x &)@ g,

i=1

e,

i

t,

Specializing the above, we see that

rep (V) (1)) =271 (6 x -+ x &) @0,
Ce,

i
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rGrL (¢éj)(T)) = (G +wnl) X - x (G +wsl) @0,

ZC«L
and for the odd case,
k}l k2
rar(Voda(T)) = H (i + wsFi) X -+ X (i +wsFi) x2F H (i X - x 1) [ ®lo+eo]
; o
=1 =1
¢, £,

if ko >0 and ¢- o 2 o, and

k}l K’Yi
L., . . et
rar(Coaa(T)) = ] | Y ( J) (i X - X ) X (WsFi X - X wsFi) | @ TR g

=1 |7;=0 ) .
Ji Ji Ly —Ji

if ko = 0 or c-0 = 0. Comparing coefficients (and noting that a;_,, = j1+- - -+jx, mod 2)
finishes the lemma. 0O

By Propositions 4.4 and 4.5, the map in (3.7) is a bijection. We let

T Irr(S(pr, - i ) X Irr(S(pra1;0)) X - X Irr(S(pn; o))
— ITT(S(pl» ctt sy Png E))

denote its inverse.

Proposition 5.3. Suppose that 0(odd; %), 0(px+1;0), -+, 0(pn;0) are irreducible G
representations supported on S(p1,--- ,pr; %), S(pk+1;0), -+, S(pn;o) respectively.
Suppose that

raL(0(pi;0)) = Z ¢i, (pi)kj, (pi) ® 0,

where kj,(p;) s an irreducible GL(F')-representation supported on Sx.(p;) appearing with
multiplicity c;, (p;). Similarly, write

rar(0(odd; X)) = Z Cjoua(0dA)K;, ,, (0dd) & cHodd - g

Jodd

Write m = U (0(0odd; ), 0(prs1;0), -, 0(pn; 7). Then, for X = Ss:(prs1, Prtas- -5 pe),
we have

:u;((ﬂ—) = Z (Cjk+1 (pk+1) c Gy, (pf))njk+1 (pk’-‘rl) X X Rj, (,06)
k415" 5Je

®\I/(‘7) (9(0dd7 E>7 0(p£+1; 0')7 . 79(pn;0>).
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Similarly, if X = Ss(p1,p2,- -, pe) with £ >k,

/1;( (ﬂ—) = Z (Cjodd (Odd)cjk-u (pk+1) TGy (pz))ﬁjodd (Odd> X Kjia (Pk+1) X
Jodd>Jk+15""" Je

X Ky, (pe) @ U (O(pera;0), o, 0(pns ).

Proof. The proof is by induction on the number of GL factors in a standard Levi sub-
group supporting a minimal nonzero Jacquet module and follows the same basic lines as
does in Proposition 4.5.

We first look at the case rgy (which corresponds to X = Ss(p1,p2, -+ ,pn)), then
move on to the general claim.

Case 1: 7 not essentially tempered.

By Lemma 4.2, write m = L(1y,- -+ ,7s; T) with
0(pi; o) = 0\ (1) = L(r1(pi), -, 7s(pi); Tlpi; o))
and
0(odd; X) = hoga(m) = L(11(0dd), -+ , 75(0dd); T(odd;X)).

We note that at least one of 0(odd;X), 6(pr+1;0), -+, 0(pn;0) is not essentially
tempered; for concreteness, we assume that 6(px11;0) is not essentially tempered. We
proceed by first calculating Iy (), with X411 as in (3.5), then use this to verify the
rar(m) case.

First, observe that

L(T1(pes1)s > Ts(prr1)) x L(mi(odd) X 11 (pri2) X -+ X T1(pn),
: aTs(Odd) X TS(pk+2) Koo X TS(pn); T)

= (T1(prt1) X -+ X To(prt1)) ¥ (Te(0dd) X T1(pry2) X -+ X T1(pn)) ¥
o X (15(0dd) X Tg(prra) X -+ X Ts(pn)) ¥ T)

= (ri(odd) X T1(pr+1) X -+ X T1(pn)) X
- X (1s(0dd) X Ts(pp+1) X -+ X Ts(pn)) ¥ T).

As this last induced representation has 7 as the unique irreducible subrepresentation
(Langlands subrepresentation), we get

7T =L(T1(prs1), 5 Te(prr1))

X L(Tl(Odd) X Tl(pk+2) X - X Tl(pn),-“ ,TS(Odd) X Ts(ﬂk+2) X - X Ts(pn),(T))
5.3

Further, 7 appears with multiplicity one (see [5, Proposition 5.3]).
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Next, by the inductive hypothesis and an argument like the formal calculation in the
proof of Lemma 3.7,

,u}Hl (L(Tl(odd) X T1(prt2) X - X T1(pn), -+, Ts(0dd) X Ts(prt2) X -+ X Ts(pn); T))

= Z (Cjodd (Odd)cjk+2 (pk+2) c Gy, (pn))ﬁjndd (Odd) X Kjpio (karQ) X X Ry, (pn)

Jodd>Jk+25"" »Jn
QT (pr+1;0)
J

W, (LT (o), s 7olprin) % L(ralodd) X Ti(piy2) x - X 7i(pn),
- Ts(odd) X Ts(prt2) X =+ X Ts(pn); T))

= Y (Cowalodd)es, p, (prra) -+ €5, (pn)) Kjosa(0dd) X ij, p, (Prra) X -+ X j, (pn)

JoddsJk+2:" sJn
QL(TL(pr+1)s 5 Ts(prt1)) X T(pr1;0).
Consequently, from properties of the Langlands classification, we have the multiplicity
m““(“jodd((’dd) X Ky ia (Pkt2) X o X K, (pn) @ L(a(prgn), - s Ts(prer1)s T(pra; o)),
Wy (L(T1(or41)s =+ Ts(prs1)) X L(Ti(0dd) X T1(prs2) X - X T1(pn),

-, 7s(odd) X Ts(pra2) X -+ X Ts(pn); T)))
= Cjoaa(0dd)Cjy i, (Prt2) - - €5, (pn)-

Any irreducible

7 < L(T1(prs1)s - Ts(prg1)) x L(7i(odd) x 11 (prs2) X -+ X T1(pn),
-, Ts(0dd) X Ts(pri2) X -+ X Ts(pn); T)

has

Vi7" = 7 (L(ra(odd) x Ti(piya) x -+ x Ta(pa), -+, Tulodd) x 7u(prya)
s X TS(pn)§ T)) = 9(101'50)

fori=k+2, ---, n, and similarly for 1,4q. Thus

mu“(“a‘odd((’dd) X Kjiya (Pkt2) X o X K, (pn) @ L(Ta(prs1)s -+ Ts(prtn);
T(prs150)), 1k, ., () =0

for any irreducible

7 < L(ri(prs1)s -5 Te(pre1)) X L(ma(odd) X 71 (prya) X -+ X T1(pn),
-, Ts(odd) X T5(pgy2) X -+ X Ts(pn); T)
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with 7’ # 7 (if not, Yeqq(7’") = Yeqa(w) and g[),()f) (r') = %(;Z) (m) for all i, contradicting
Proposition 4.5). Consequently, as m appears with multiplicity one in

L(m1(prs1)s -5 Ts(prt1)) ¥ L(mi(odd) X T1(pri2) X -+ X T1(pn),
-, Ts(odd) X T5(pry2) X -+ X Ts(pn); T),
we have
mu“(“jodd (0dd) X Fijy (Pry2) X - X Kj, (pn) @ L(T1(pry1), -+, Ta(pry1);

T(pr+1:0)): 1y, (1)) = oaa (0dd)cy o (prs2) -5, ().

Further, by 1/),(;,21 (m) considerations,

mult (K/jodd (odd) x Kjhtn (Prsz) X - X Kjn, (pn) ® gl(karl; o), /’L;(k+1 (W)) =0

if 6'(pgs1;0) is irreducible and 0'(pgy1;0) # L(Tl(pk.;,_l), oy Ts(pra1); T(pk+1;o)).
Thus

M§(k+1 (7T) = Z (C.jocld (Odd>cjk+2 (pk+2) c Gy, (pn))ﬁ’jodd (Odd) X Kjpo (pk+2) X

JoddsJk+2,"" sJn

X g, (pn) @ L(1(prs1)s -5 Ts(prs1); Tprs1;0)),

as needed.
From here, it is easy to finish Case 1. The preceding paragraph tells us

/u’;(k+1 (W) = Z (Cjodd (Odd)cjk+2 (Pk+2) TGy, (pn)) Kjoaa (Odd) X Rjrso (Pk+2) X

Joddrdkt2r in
o X K, (pn) @ O(pr+1;0)
U
Kjoaa(0dd) X Kj o (prg2) X -+ X K5, (n) @ Kjyyy (Prt1)
® cYodd - g appears with multiplicity
Cjoaa (04d)Cjy 5 (Pr+2) -+ €1, (Pr) €y (PR41) I Tar, ().
U
rap(m) = Y (Coua(0dd)cjy, (prs1) -+ €5, (Pn)) Kjpus (0dd) X K5y, (pryr) X

JoddsJk+1:""" sJn

co X Ky, (pn) ® c%odd - o,

where M, is the standard Levi subgroup for 7 ,,(odd) x 7j, ., (pr12) X -+ X 7j, (pn) ®
Tjesr (Pr41) ® ¢ - 0. This finishes Case 1.

Case 2: 7 essentially tempered, 7 not essentially tempered.
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First, by [2, Théoréme 1.7],

—

rar(0(odd; X)) = Ad(we,,,) o~ orgr(0(odd; X))

= Ad(wg,,,) 0 ~ chndd (Odd)lijodd (odd) ® ¢*odd - &

jodd.

= Ad(ws,,,) chndd(Odd)F&jmd) ® cYodd - g

jodd.

= chodd (odd)ws; (I‘%md)) V@ ¢t %oad - o,

Jodd
where d = d(0(odd; X)) — d(o) (number of inversions under wg,,,). Similarly, for k+1 <
1 < n,
ran(0(pi ) = > e (piJeos (5,(p1)) ¥ @ 0.

Ji
Note that by Lemma 4.3 and Proposition 4.5, # = ¥(?) (9(@2), 0(pr+1;0),- -+, 0@)).
So, by Case 1,

ra(®) = Y (Coua0dd)cj, ., (pri1) -+ €5, (pn) ) wshi,uy (0dd) X Wk, (pri1)’ X

Jodd:Jk+15""" sJn
—_—

X wykj, (pn)Y @ T %oaa - g

Since © and ~ commute and both respect induction, we see that

rGL(F) = D s (0dd)ciy (prin) 5, () (Fiaa (00) X gy, (pri) %

Jodd:Jk+1,""" »Jn
~. . ~ d_l’_a
cee X H]n (pn)) ® C Jodd - O.

Next, again by [2, Théoréeme 1.7],

rer(m) = Ad(ws) o~ orgr(f)

= Ad(we) o " (Y2 coralodd)esy, (pri1) -, (o) (s, s (0dd)

Jodd>Jk+15""" »Jn
XFjp o (Prg1) X o X K, (pn)) ™ ® ¢ %oaa - U),

Noting that the Aubert duality commutes with twisting by a character of the group—an
immediate consequence of the definition and [6, Proposition 19.9 (f)]-we have
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ror(m) = Adwo)( Y Cioui(0dd)eii., (prar) - s, (pu)ws (Fodalodd)

JoddsJk+15""" sJn

ijk+1 (pk+1) X X F;’jn (pn)) ® CdJraded ' J)

= Z (Cjndd (Odd)cjk-H (pk+1) © Gy, (pn))njodd (Odd) X Kjpiq (karl) X

JoddsJk+15""" sJn

’
d +d+ajodd

X, (pa) @ o,

where d' = d(m) — d(o) (and noting that for general spin groups, wxws = 1). As d' =
mod 2, this finishes Case 2.

Case 3: w, @ both essentially tempered.
In this case, the result follows from Lemma 5.2.

We now turn to X = Sx(odd, pr+1, pe+2,- - , pe); the case X = Ss(pr+1, prt2, 5 Pe)
is similar. An immediate consequence of the rgy,(7) result is that

mult(njodd (0dd) ® Kjy .\ (Prt1) ® -+ @ Kj, (pn) ® Moda - 0, TMa,G(W)>
= Cjoaa (Odd)cjk+1 (Pe+1) -+~ ¢4, (Pn),

where M, is the standard Levi subgroup for &, ,,(0dd) ® kj, ., (pr+1) @ -+ @ Kj, (pn) @
c%odd - o (see [15, Corollary 5.6]). Observe that

mult<ﬁjodd(odd) X Kjr (Prg1) X oo X Kj, (pn) ® ¢Yoda - g, TGL(W))

= ZmU‘lt (K’jodd (Odd) ® Kjpt1 (pk+1> @ ® K, (Pé) ® \III> rMﬁ,G<7T>)
\I//

X mult (Kjodd (Odd) ® Kjrt1 (pk+1) ®-® Kj, (pn) ® Wodd - g,
"My Mp (Fjpqq (0dd) @ Kjy ) (Pry1) @ - @ K, (pr) @ ‘1")>7

where Mg is the standard Levi subgroup for
Koz © Fjiir (Pra1) ® - @ i, (p) @ W (0(prya50), -+, O(pn;0))
and the sum is over all irreducible ¥’ with
Kjoga(0dd) @ gy (prt1) @ -+ @ kg, (pe) @ U < gy (7).
Now, by 1/1&21 (7)), -+, g‘z) (7) considerations, we see that

mault (Kjodd (Odd) ® Rjri1 (pk+1) @ ® Ky (PZ) ® \III7 TM/J,G(ﬂ-)) =0

for any irreducible ¥’ # W(7) (0(pg+1; o), H(pn;a)). Therefore,
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Ml (15,0 (0dd) @ K, (Prs1) @ -+ @ g, (pn) © Wt - 0, Tag, ()
= mult (Hjodd (0dd) @ gy, (pr41) @ -+ @ K, (pe) @ U (B(pps1:0),
 6(pni ), ara(m))
il (11,44 (00d) © i, (prsn) @ -+ @ 1 (p) © €oas - 0, g, g, (K, (0dd)
D (1) @ -+ @ K5, (p) @ WO (0(pes1:0), -+, 0(pni))) )

The rqgg-result applied to W) (0(pgi1;0),- - ,0(pn; o)) tells us that

mult (K/jodd (Odd) @ Ky (pk-i-l) & @ Ky, (pn) ® c¥oad - g, T"'Ma,Mg (K:jodd (Odd)
By (Pr+1) @ -+ ® K5, (pe) @ U (0(peys0), -+, 9(%;@)))

= Cjpp (pZJrl) Gl (p’ﬂ>

Thus

mult (K:jodd(Odd) ® K (Pr41) @ -+ @ K, (pe) @ U (0(ppyr;0),
) o(pn70))7 TM{;,G(TF))
= Cjoaa (Odd)cjk+1 (Pk+1) © Gy (pf)

As a consequence, the multiplicity of

Kjoaa (odd) x Kjrya (Prt1) X oo X Kj, (pe) ® v (e(pé-i-l; a), -, O(pn; 0))
in i () is ¢j,,,(0dd) - ¢, (pr+1) - - - ¢j,(pe). This finishes the proof. O

Corollary 5.4. Let 7(odd), T(pg+1), - -, T(pn) be irreducible representations of general
linear groups with supports contained in Ss(p1, -, pr), Ss(pr+1), -+, Su(pn) respec-
tively, and 0(odd; %), 0(prs1;0), -+, O(pn;o) be irreducible G(F) representations with
supports contained in S(p1, -+, pr; %), S(Pk+1;0), -+, S(pn; o) respectively. (We allow
the possibility that T(odd), T(p;) =1 or 8(odd; X)), 0(ps;0) = 0.) Suppose that

(pz ><19p“ me Pz 92 Pz, )

and

7(odd) x 0(odd; $) = my,,,(0dd)0y,,, (0dd; 3),

Lodd

with 0¢,(pi;0), 04
plicities. Then

odd; X)) irreducible and my,(p;), my,,,(odd) their respective multi-

odd ( odd (
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(7(0dd) X T(pr+1) X -+ X T(pn)) ¥ vl (0(0dd; X),0(pry150), -+, 0(pn; o))
= (méodd (Odd)m€k+1 (pk-i-l) crrMy, (pn)) \IJ(J) (efodd (Odd; Z)v 9€k+1 (pk-i-l; 0)7

LoddsLr+1s" ln
20, (PM U))'

Proof. Write ¥ for ¥(?)(0(odd; X), 0(pr+1;0), -+ ,0(py; 0)). First, we consider 7(p,,) x .
By Theorem 2.1, Proposition 5.3 and with notation as in Definition 3.8, we have

/G(n (T(pn) A \Il)

= Z (cjodd (Odd)cjk+1 (karl) Gy (pnfl))ﬁjndd (Odd) X Kj i1 (karl) X

Jodd:Jk+1:""" sJn—1

- X I{jnfl(pn—l) ® T(pn) X o(p’n;a-)

= Z (mfn (p’ﬂ)cjodd (Odd)cjk+1 (pk+1) Gy (pn—l))"fjodd (Odd) X Kjpia (ﬂk+1) X
LnsJodd,Jk+1, sJn—1

X K,y (pn—1) @0, (pn; 2).

As in the proof of Proposition 4.4, for any irreducible 7 < 7(p,) x ¥, we have ¢,qq4(7) =
0(odd; ¥) and w(g)( )=0(ps;0) fori=k+1, ---, n—1. Thus

7(pn) ¥ ¥ = Zmz 0(0dd; %), 0(pr11;0), -+, 0(pn—1;0), 08¢, (pn; 7))

for multiplicities my, . We claim that my, = my, (py,). This is straightforward. Write

Wy = U (0(odd), 0(prs1:0), -+ ,0(pn_1;0),00(pn; 0)).

By Proposition 5.3,

:U;(n (\IIZ) = Z (cjod,d (Odd)cjl (pkfl) o 'cjnfl(pnfl))’%jodd,(Odd) X Kjk+1(pk+1)x

JoddsJk+1,"" sJn—1

X Kj,_y (pn—1) ® Oe(pn; 0).

Now, if M, is the standard Levi subgroup for x;_,,(odd) xrj, ., (pr41) X XK, (Pn—1)®
O¢(pn;0),

mUZt(K’jodd(Odd) X Kjpia (Pr41) X - X K’jn—l(pn_l) ® Oo(pn; o), TMQ,G(\I]/)> =0

for any irreducible ¥/ < 7(p,,) X ¥ with ¥’ # U, (or else ¥odd(¥’') = 1oaa(Vr) and
éc;)(\Il’) = EJ‘;)(\IIg) for j=k+1, ---, n, contradicting Proposition 4.5). Thus we get
me, = my, (pn), as needed.

n
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To get the general result, we iterate. The same argument tells us

T(pn—1) X Uy, Zm/ (Pn-1) \I!(U)(H(odd; %), 0(pg+1;0),

) e(pn—Qv 2)7 eén—l (Pn—1§ 0)7 eén (pn; 0)) .

Summing over ¢,, gives

(T(pn-1) X T(pn)) ¥ U = > me,_, (pn-1)me, (pn) ¥ (0(0dd; ), 0(pr41; ),
enfhen
,0(pr—2;0),00,_, (pn—1;0), 00, (pn; 0)).

Repeating the argument for n —2, n—3, ---, k+ 1 and the odd contribution gives the
corollary. O

6. Additional remarks

Although a number of properties and results are needed to prove the correspondence
of this paper (and in [15], [16]) there are two which seem to be most important. The first
is that standard Levi factors have the form M = GLy,, (F) X -+ X GLyy, (F) X Gy (F),
needed to produce something like the right-hand side of (3.7). Other groups which are
known to have these Levi factors include nonsplit special orthogonal groups, corre-
sponding similitude groups (GSpa,(F'), GSO2,(F), GUN(F), etc.), and the metaplectic
groups, at least for odd residual characteristic ([23]). For simplicity, we refer to those
groups as “good” reductive groups.

For the other property needed, note the main result of this paper can be interpreted as
saying that the different S(p;; o) do not “interact” with each other in parabolic induction.
For simplicity, we refer to such a nice structure as Jantzen “product formula” In order
to be true in general, this needs to be true in the tempered case. This requires R-
group results like those in [10], [11], [3], where one can decompose the R-group based
on the different p;’s which occur (possibly bundling, as was done here for SOs,,(F) and
GSping, (F)). Those “good” reductive groups where the R-group is known and has a
suitable form include the similitude groups GSpa,(F), GSOq,(F), GUN(F) ([12]) and
metaplectic groups (cf. [13], [19]). For them, one also expects a “non-interaction” between
different families, allowing the possibility of a decomposition along the lines of (3.7), but
complicated by different actions of similitude factors under Weyl conjugation, etc.
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