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THE GENERIC DUAL OF P-ADIC GROUPS AND
APPLICATIONS

CHRIS JANTZEN AND BAIYING LIU

Abstract. In this paper, we give a uniform classification of the
generic dual of quasi-split classical groups, their similitude counter-
parts, and general spin groups. As applications, for quasi-split clas-
sical groups, we show that the functorial lifting maps constructed
by Cogdell, Kim, Piatetski-Shapiro and Shahidi are surjective. We
also analyze structures of general local Langlands parameters and
explicitly construct a distinguished element for each local L-packet.

Contents

List of Tables 2
1. Introduction 2
Acknowledgements 8
2. Notation and preliminaries 9
3. Groups 14
3.1. Structure of GSpin∗

2n+2(F ) 32
4. Generic representations 38
4.1. Whittaker models 38
4.2. Generalized Steinberg representations 44
4.3. Square-integrable generic representations 53
4.4. Tempered generic representations 73
4.5. Generic representations 74
5. Functoriality for quasi-split classical groups 85
6. Surjectivity of local Langlands functorial lifting maps 87
6.1. Supercuspidal generic representations 89
6.2. Square-integrable generic representations 92
6.3. Tempered generic representations 101

2000 Mathematics Subject Classification. Primary: 22E50, 11S37.
Key words and phrases. generic representations, local Langlands parameters.
The research of the first-named author is partially supported by a summer re-

search award from Thomas Harriot College of Arts and Sciences. The research of
the second-named author is partially supported by the NSF Grants DMS-1702218,
DMS-1848058, and by start-up funds from the Department of Mathematics at Pur-
due University.

1

http://arxiv.org/abs/2404.07111v2


2 CHRIS JANTZEN AND BAIYING LIU

6.4. Generic representations 107
7. Representations attached to parameters 113
Appendix A. F -roots 117
References 118

List of Tables

1 Langlands functoriality 6

2 Centers 19

3 Central characters 19

4 I(sα̃, τ ⊗ σ(0)) 27

5 (CN) conditions 29

6 Quasi-split tori 41

7 Unipotent radicals, quasi-split cases 41

1. Introduction

Let F be a p-adic field of characteristic 0. In [JL14], the authors had
two main results. The first was to classify the irreducible generic repre-
sentations of SO2n(F ). We then used this to show the surjectivity of the
functorial lifting map constructed by Cogdell, Kim, Piatetski-Shapiro
and Shahidi ([CKPSS04]). In this paper, we extend these results. In
particular, the surjectivity of functorial lifting map is extended to all
quasi-split classical groups. Because the strategy used for the classifi-
cation of generic representations does not depend on the structure of
the groups in as delicate a manner, the same basic argument can be
applied to the corresponding similitude groups, as well as general spin
groups. Thus we classify generic representations for these groups as
well. These classifications of generic representations are expected to be
very useful, for examples,

(1) for the problem of classifying the generic unitary dual, as con-
sidered in [LMT04];

(2) towards a conjecture of Gross-Prasad and Rallis (see [GP92,
Conjecture 2.6], [Kud94], [JS04, Liu11, JL14], [GI16, Appendix
B]) which states that a Langlands parameter is generic (i.e.,
its L-packet contains a generic representation) if and only if its
adjoint L-function is holomorphic at s = 1;

(3) for the generic Arthur packet conjecture (see [Sha11], [Liu11,
JL14], [HK17]) which states that an L-packet of Arthur type
has a generic member if and only if it is a tempered L-packet.
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We discuss each of our main results in turn.
The classification of generic representations of GLn(F ) was done in

[Jac77] (from which those for SLn(F ) may be obtained–see [Tad92]),
those for SO2n+1(F ) and Sp2n(F ) were done in [Mui98a], and those
for SO2n(F ) in [JL14]. To these groups, we add SO∗

2n+2(F ), U2n+1(F ),
U2n(F ), GSp2n(F ), GSO2n(F ), GU2n+1(F ), GU2n(F ), GSpin2n+1(F ),
GSpin2n(F ), GSO

∗
2n+2(F ), and GSpin∗

2n+2(F ), with the quasi-split
groups defined by a quadratic extension E = F (

√
ε).

There are a few key ingredients in the classification of irreducible
generic representations for these groups:

• results on induced representations and genericity for general
linear groups,

• Levi factors of (standard) parabolic subgroups having the form

M = Hn1 × · · · ×Hnk ×Gn0 ,

where

Hm =

{
GLm for Gn 6= U2n+1, U2n, GU2n+1, GU2n,
ResE/FGLm for Gn = U2n+1, U2n, GU2n+1, GU2n,

• an explicit form for the Langlands classification and Casselman
criterion,

• a µ∗ structure for calculating Jacquet module like that of Tadić
for classical groups,

• cuspidal reducibility conditions,

and for similitude groups, formulas for

• twisting induced representations by characters,
• central characters of induced representations.

Most of these are already known, though we do fill in a few gaps and
make a correction or two. We also try to formulate things in a uniform
way to facilitate treating the different groups together.
Let ν denote the absolute value. Consistent with [BZ77], we inter-

pret this as a character of a general linear (resp., similitude) group via
composition with the determinant (resp., the similitude character). A
representation π of a general linear (resp., similitude) group is essen-
tially tempered if there is an ε(π) ∈ R such that ν−ε(π)(π) is tempered,
and similarly for square-integrable representations. To have a uniform
presentation of the result below, for an irreducible representation σ of
Gn(F ), we let

β =





1
2
ε(σ) if Gn = GSpin2n+1, GSpin2n with n = 0,
ε(σ) if Gn = GSpin∗

2n+2, or Gn = GSpin2n+1, GSpin2n with n > 0,
0 if Gn is not a general spin group,
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noting that by Lemma 3.7, β depends only on the representation of
(lower rank) Gk(F ) appearing in the supercuspidal support of σ.
The following theorem summarizes Propositions 4.13 and 4.20 for

square-integrable representations (adapted to essentially square inte-
grable representations at the end of §4.3) and the discussion of essen-
tially tempered representations in §4.4.

Proposition 1.1.

Generic Essentially Discrete Series: Let ∆i = [ν−aiτi, ν
biτi] =

{ν−aiτi, ν−ai+1τi, . . . , ν
biτi}, a Zelevinsky segment, 1 ≤ i ≤ k,

where τi is an irreducible unitary supercuspidal representation
of a general linear group. Assume that if i < j has τi ∼= τj,
then ai < bi < aj < bj. Let σ(e0) be an irreducible supercuspidal
generic representation of Gn′(F ) and assume that for each i,
one of the following holds (necessarily exclusive):
(1) ν1+βτi⋊σ(e0) is reducible, in which case ai ∈ β+ (Z \ {0})

and ai ≥ β − 1;
(2) ν

1
2
+βτi⋊ σ(e0) is reducible, in which case ai ∈ β− 1

2
+Z≥0;

(3) νβτi ⋊ σ(e0) is reducible, in which case ai ∈ β + Z≥0;
(4) νxτi ⋊ σ(e0) is irreducible for all x ∈ R and (using c to

denote the outer automorphism described in §3)
(a) τ̌i ∼= τi but c

d(τ) · σ(e0) 6∼= σ(e0) for SO2n, SO
∗
2n+2,

(b) τ̌i ∼= τi but ωτσ
(e0) 6∼= σ(e0) for GSp2n, GU2n+1, GU2n,

(c) τ̌i ∼= τi but ωτ (c
d(τ)·σ(e0)) 6∼= σ(e0) for GSO2n, GSO

∗
2n+2,

(d) ν−2βωσ(e0) τ̌i
∼= τi but c

d(τ) · σ(e0) 6∼= σ(e0) for GSpin2n,
GSpin∗

2n+2,
in which case ai ∈ β +Z≥0. Here, ˇ denotes contragredient
composed with Galois conjugation for unitary and general
unitary groups and is just contragredient otherwise. This
case does not occur for SO2n+1, Sp2n, U2n+1, U2n, GSpin2n+1.

Then, if π is the generic subquotient of δ(∆1) × · · · × δ(∆k) ⋊
σ(e0), π is essentially square-integrable. Conversely, any generic
irreducible essentially square-integrable π of a group Gn(F ) is
of this form (with ∆1, . . . ,∆k unique up to permutation), and
further

π →֒ δ(∆1)× · · · × δ(∆k)⋊ σ(e0).

Generic Essentially Tempered: Let τ1, τ2, . . . , τc be irreducible
generic unitary supercuspidal representations of general linear
groups and σ(e2) be an irreducible generic essentially square-
integrable representation of Gn(F ). Let Ψ1, . . . ,Ψc be segments
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of the form Ψi = [νβ+
−ki+1

2 τi, ν
β+

ki−1

2 τi]. Then the generic com-
ponent

σ(et) ≤ δ(Ψ1)× · · · × δ(Ψc)⋊ σ(e2)

is a generic essentially tempered representation. Furthermore,
any generic essentially tempered representation may be realized
this way (with inducing representation unique up to Weyl con-
jugation).

Note that the essentially tempered claims above follow directly from
a result of Harish-Chandra (cf. [Wal03, Proposition III.4.1]). The clas-
sification of square-integrable and tempered representations are done in
§4.3 and §4.4, respectively; the results for essentially square-integrable
and essentially tempered representations are obtained as consequences.
We need a bit of notation in order to present the next result in

a uniform manner. First, for a segment Σ = [ν−aξ, νbξ], we define
Σ̌ = [ν−bξ̌, νaξ̌], so that δ(Σ)∨ = δ(Σ̌). Also, we set

ω′
σ(et) =

{
ωσ(et) (central character) for general spin groups,
1 otherwise,

and similarly for ω′
σ(e2)

and ω′
σ(e0)

.
The following theorem summarizes Theorems 4.23, 4.24, 4.25, 4.27,

and Note 4.29.

Theorem 1.2. Put δ(Σi) = νxiδi, i = 1, 2, · · · , f as above (i.e., x1 ≥
x2 ≥ · · · ≥ xf > β). Then, the representation

δ(Σ1)× · · · × δ(Σf )⋊ σ(et)

is irreducible if and only if {Σj}fj=1 and σ
(et) satisfy the following prop-

erties:

(G1) δ(Σi)× δ(Σj) and δ(Σi)×ω′
σ(et)

δ(Σ̌j) are irreducible for all 1 ≤
i 6= j ≤ f ; and

(G2) δ(Σi)⋊ σ(et) is irreducible for all 1 ≤ i ≤ f .

The reducibility for (1) is known from [Zel80]; for (2) we write σ(et) as
in Proposition 1.1 as above. Then δ(Σ)⋊σ(et) is irreducible if and only
if the following hold:

(G3) δ(Σ)× δ(Ψj) and ω
′
σ(e2)

δ(Σ̌)× δ(Ψj) are irreducible for all 1 ≤
j ≤ c; and

(G4) δ(Σ)⋊ σ(e2) is irreducible.

To understand when the second condition above holds, write σ(e2) as
in Proposition 1.1. Then, δ(Σ) ⋊ σ(e2) is irreducible if and only if the
following hold:
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(G5) δ(Σ)× δ(∆i) and ω
′
σ(e0)

δ(Σ̌)× δ(∆i) are irreducible for all 1 ≤
i ≤ k; and

(G6) either (a) δ(Σ)⋊σ(e0) is irreducible, or (b) δ(Σ) = δ([ν1+βξ, νb+βξ]),
with ν1+βξ ⋊ σ(e0) reducible and there is some i having δ(∆i) =
δ([ν1+βξ, νbi+βξ]) and bi ≥ b.

Finally, for the second condition above, we have δ(Σ) ⋊ σ(e0) is irre-
ducible if and only if one of the following hold: for Σ = [ν−aξ, νbξ], we
have

(G7) ξ 6∼= ω′
σ(0)

ξ̌; or

(G8) ξ ∼= ω′
σ(0)

ξ̌ and the following: (i) if νxξ ⋊ σ(e0) is reducible for
some (necessarily unique) x = β + α with α ≥ 0, then ±α 6∈
{−a−β,−a+1−β, · · · , b−β}; (ii) if νxξ⋊σ(e0) is irreducible
for all x ∈ R, then 0 6∈ {−a− β,−a+ 1− β, · · · , b− β}.

We take a moment to note a couple of misstatements in the intro-
duction of [JL14]. First, condition (2) for square-integrable generic
representations was misstated in [JL14, Proposition 1.1] (with 1

2
in-

stead of −1
2
). Similarly, in [JL14, Theorem 1.2], condition (2) in the

reducibility of δ(Σ) ⋊ σ(2) should be νξ ⋊ σ(0) reducible (rather than
ξ ⋊ σ(0) as stated). Both are correct in the body of the paper.
The second part of this paper is to apply the above classification of

generic representations to show the surjectivity of the functorial lift-
ing maps for Gn = SO2n+1, Sp2n, SO2n, SO

∗
2n+2, U2n+1, U2n, quasi-split

classical groups of F -rank n, constructed by Cogdell, Kim, Piatetski-
Shapiro and Shahidi ([CKPSS04], [CPSS11]).
Let N = 2n for Gn = SO2n+1, U2n, SO2n, N = 2n + 2 for Gn =

SO∗
2n+2, N = 2n + 1 for Gn = Sp2n, U2n+1. By Langlands’ principle of

functoriality, the following table summarizes the cases of funtoriality
we consider from Gn to HN :

Gn ι : LGn →֒ LHN HN

SO2n+1 Sp2n(C)×WF →֒ GL2n(C)×WF GL2n

Sp2n SO2n+1(C)×WF →֒ GL2n+1(C)×WF GL2n+1

SO2n SO2n(C)×WF →֒ GL2n(C)×WF GL2n

SO∗
2n+2 SO2n+2(C)⋊WF →֒ GL2n+2(C)×WF GL2n+2

U2n+1 GL2n+1(C)⋊WF →֒ GL×2
2n+1(C)⋊WF ResE/FGL2n+1

U2n GL2n(C)⋊WF →֒ GL×2
2n (C)⋊WF ResE/FGL2n

Table 1. Langlands functoriality

where GL×2
k (C) = GLk(C)×GLk(C), and GLk(C) →֒ GL×2

k (C) is the
diagonal embedding.
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In [CKPSS04], Cogdell, Kim, Piatetski-Shapiro and Shahidi, and
[CPSS11], Cogdell, Piatetski-Shapiro and Shahidi, constructed a local
functorial lifting l from Π(g)(Gn) (generic representations of Gn) to

a subset Π
(g)
ε (HN) of representations of HN , satisfying the following

conditions:

L(σ × π, s) = L(l(σ)× π, s),

ǫ(σ × π, s, ψ) = ǫ(l(σ)× π, s, ψ),

for any irreducible generic representation π of Hk(F ), with k ∈ Z>0,
where ψ is a fixed nontrivial character of F . The left hand sides are
the local factors defined by Shahidi ([Sha90a]), and the right hand
sides are the local factors defined by Jacquet, Piatetski-Shapiro, Shalika
([JPSS83]).
One of the main ingredients of this paper is that the local Langlands

functorial lifting from irreducible unitary supercuspidal generic repre-
sentations of Gn(F ) is surjective. Arthur ([Art13]) and Mok ([Mok15])
proved this result using the trace formula method and the global de-
scent result of Ginzburg, Rallis and Soudry ([GRS11]). Jiang and
Soudry ([JS12]) (for Gn = SO2n+1, Sp2n, SO2n, SO

∗
2n+2), Soudry and

Tanay ([ST15]) (for Gn = U2n), constructed the local descent map from
irreducible unitary supercuspidal representations of HN to irreducible
supercuspidal representations of Gn. The generalization of descent map
from irreducible unitary supercuspidal representations of HN to their
product is straightforward for Gn = SO2n+1, Sp2n, SO2n, SO

∗
2n+2, but

for Gn = U2n, U2n+1, further work is needed.
As an application of the classifcation of the generic dual Π(g)(Gn) of

Gn, we show that the local functorial lifting l : Π(g)(Gn) → Π
(g)
ε (HN)

constructed above by Cogdell, Kim, Piatetski-Shapiro and Shahidi is
surjective. Note that for SO2n+1, in [JS03, JS04], Jiang and Soudry
have already constructed the corresponding local Langlands functorial
lifting, and proved that it is actually bijective. In [Liu11], Liu proved
the surjectivity for Sp2n, and in [JL14], Jantzen and Liu proved the
case of split SO2n. Note that the details of the proofs in [Liu11] and
[JL14] have been omitted. Here we gave uniform detailed proofs for all
the quasis-plit classical groups. We remark that, for Sp2n, SO2n, and
SO∗

2n+2, l is expected not to be injective by [Jia06, Conjecture 3.7],
which is a refinement of the local converse theorem conjecture.
Let Φ(Gn) be the set of local Langlands parameters for Gn, which are

LGn-conjugacy classes of admissible homomorphisms WF × SL2(C) →
LGn, where WF × SL2(C) is the Weil-Deligne group. When Gn =
SO2n, SO

∗
2n+2, given a local Langlands parameter φ ∈ Φ(GLN ), φ :

WF × SL2(C) → GLN(C), assume that it factors through Gn(C) and
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φ ≇ cφ within Gn(C), where cφ is the c-conjugate of φ. Then φ pro-
duces two elements in Φ(Gn) (see [Art13, Chapter 1]), which are de-

noted by φ and cφ. To identify φ and cφ, let Φ̃(Gn) be the set of
c-conjugacy classes of φ ∈ Φ(Gn). For any φ ∈ Φ(Gn), denote its c-

conjugacy class by φ̃. Note that for any φ ∈ Φ(Gn), if φ ≇ cφ, then they
automatically have the same twisted local factors since they come from
the same local Langlands parameter φ ∈ Φ(GLN ). Define the twisted

local factors of φ̃ to be those of φ. When Gn is not SO2n, SO
∗
2n+2, we

simply put Φ̃(Gn) to be Φ(Gn).
The local functorial lifting l enables us to assign a parameter φ ∈

Φ̃(Gn) to each σ ∈ Π(g)(Gn), which is exactly the parameter corre-

sponding to l(σ). That is, there is a map ι : Π(g)(Gn) → Φ̃(g)(Gn),

where Φ̃(g)(Gn) is the set of parameters corresponding to representa-
tions in l(Π(g)(Gn)). We show that the surjectivity of l implies that of
ι.
As another application of the classification of the generic dual of Gn,

for any local Langlands parameter φ̃ ∈ Φ(Gn), by an explicit anal-
ysis of its structure, we construct a distinguished irreducible repre-

sentation σ of Gn(F ) such that φ̃ and σ have the same twisted local
factors, as in [JS04, Liu11, JL14]. We remark that Arthur ([Art13])
and Mok ([Mok15]) have already proved the local Langlands corre-
spondence and constructed the local L-packets for Gn. However, this
explicitly constructed member σ in each local L-packet is very useful
for certain problems, for example, it plays a crucial role in the work
towards Jiang’s conjecture on the wavefront sets of representations in
local Arthur packets (see [Jia14] and [LS23]).
We now discuss the contents by sections. The next two sections

introduce notation and background material, and the groups to be
considered in this paper, respectively. §4 contains the classifications
of generic representations for our groups. This is broken into four
parts, which classify generalized Steinberg, square-integrable generic,
tempered generic, and generic representations, respectively. Then, we
introduce Langlands philosophy of functoriality for quasi-split classical
groups in §5, and prove the surjectivity of the local functorial lifting
maps in §6. In §7, we analyze the structure of local Langlands param-
eters and associate a particular representation to each local Langlands
parameter.

Acknowledgements. The authors would like to thank Mahdi Asgari,
Sviatoslav Archava, Kwangho Choiy, Joseph Hundley, Muthu Krishna-
murthy, and Marko Tadić for helpful discussions on various aspects of
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this work. The authors also would like to thank Dihua Jiang and Frey-
doon Shahidi for their interest and constant support.

2. Notation and preliminaries

Let F be a p-adic field of characteristic 0. We begin by defining the
groups under consideration. To this end, let Jm denote the m × m

matrix having jk,ℓ =

{
1, if k + ℓ = m+ 1,
0, otherwise

(1’s on the antidiagonal,

0’s elsewhere).
We start with the split groups defined by forms. In the symplectic

case. We take

GSp2n(F )

=

{
X ∈ GL2n(F ) | TX

(
0 −Jn
Jn 0

)
X = λ

(
0 −Jn
Jn 0

)
, λ ∈ F×

}
.

For the classical group Sp2n(F ), one simply restricts to λ = 1 above.
We remark that for X ∈ Sp2n(F ), it is automatic that det(X) = 1.
For the odd orthogonal case, we take

SO2n+1(F ) =
{
X ∈ SL2n+1 | TXJ2n+1X = J2n+1

}
.

Note that we do not consider the corresponding similitude group as it
is just a direct product of SO2n+1(F ) and F

×.
We now turn to the even orthogonal case. Here, we first define

GO2n(F ) =
{
X ∈ GL2n(F ) | TXJ2nX = λJ2n for some λ ∈ F×

}
.

Taking determinants, λ2n = (detX)2; we set

GSO2n(F ) = {X ∈ GO2n(F ) | λn = detX}.
The classical group SO2n(F ) then consists of those X ∈ GSO2n(F )
having λ = 1.
We now turn to the (non-split) quasi-split groups defined by forms.

Here, we start with a quadratic extension E = F (
√
ε). As we do not

have such groups in the symplectic or odd-orthogonal cases, we begin
with the even orthogonal case. Set

J
(ε)
2n+2 =




Jn
1

−ε
Jn


 .

We then define

GO
(ε)
2n+2(F ) =

{
X ∈ GL2n+2(F ) | TXJ (ε)

2n+2X = λJ
(ε)
2n+2 for some λ ∈ F×

}
.
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and take

GSO
(ε)
2n+2(F ) = {X ∈ GO

(ε)
2n+2(F ) | λn+1 = detX}.

The group SO
(ε)
2n+2(F ) then consists of those X ∈ GSO

(ε)
2n+2(F ) having

λ = 1.
For the unitary groups, we retain the quadratic extension above and

set

J ′
N =









1
−1

1

. .
.

−1
1




, if N = 2n+ 1,

(
Jn

−Jn

)
, if N = 2n.

Then,

GUN(F ) = {X ∈ ResE/FGLN(F ) | T X̄J ′
NX = λJ ′

N for some λ ∈ F×},
where ¯ denotes the Galois conjugation. Consistent with this, by defini-
tion, GU0(F ) ∼= F×. Again, the unitary group UN (F ) consists of those
X ∈ GUN (F ) having λ = 1. We also remark that in the archimedean
case (F = R and E = C), one has GU2n+1(R) ∼= U2n+1(R)×H , where
H = {zI | z > 0}.
We now turn to the general spin groups. As we do not have con-

venient matrix realizations, we follow [Asg02] and work from the root
data in the split cases. Write

X = Ze0⊕Ze1 ⊕ · · · ⊕ Zen

and
X̌ = Zě0⊕Zě1 ⊕ · · · ⊕ Zěn

as the rational characters (resp., rational cocharacters) with the usual
pairing. Then GSpin2n+1 has roots and coroots

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en}
and

Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, 2ěn − ě0}.
Note that these are dual to the data for GSp2n.
For GSpin2n, we retain X and X̌ from above. We then have roots

and coroots

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en}
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and
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, ěn−1 + ěn − ě0}.

Note that these are dual to the data for GSO2n.
More generally, we have included the simple F -roots and co-roots for

the groups under consideration in Appendix A.
Finally, we turn to the (non-split) quasi-split general spin groups.

Here, we follow [HS16]. In particular, the quasi-split forms correspond
to homomorphisms of Gal(F̄ /F ) into the automorphisms of the Dynkin
diagram. In the odd case, such homomorphisms are trivial and one
has only the split odd general spin groups. In the even case, one has
a nontrivial homomorphism which may be parameterized by a qua-
dratic extension E = F (

√
ε) as above, with the nontrivial element of

Gal(E/F ) being mapped to the automorphism of the Dynkin diagram
which interchanges the last two simple roots. This defines the group

we denote as GSpin
(ε)
2n+2. A more detailed description can be found in

§3.1.

We let Gn(F ) denote one of the following groups under consideration

Sp2n(F ), SO2n+1(F ), SO2n(F ), SO
(ε)
2n+2(F ), U2n+1(F ), U2n(F ),

GSp2n(F ), GSO2n(F ), GSO
(ε)
2n+2(F ), GU2n+1(F ), GU2n(F ),

GSpin2n+1(F ), GSpin2n(F ), GSpin
(ε)
2n+2(F ),

and fix a Borel subgroup B. The standard parabolic subgroups con-
taining B may then be parameterized by subsets Φ ⊂ Π. For Gn(F ) 6=
SO2n(F ), GSO2n(F ), GSpin2n(F ), the standard parabolic subgroup
associated to Φ = Π \ {αn1, αn1+n2, . . . , αn1+···+nk} has the form P =
MU with

M = Hn1(F )× · · · ×Hnk(F )×Gn0(F ),

where n1 + · · ·+ nk + n0 = n and

Hm =

{
GLm for Gn 6= U2n+1, U2n, GU2n+1, GU2n,
ResE/FGLm for Gn = U2n+1, U2n, GU2n+1, GU2n.

Note that we freely identify ResE/FGLm(F ) with GLm(E) in places.
We also note that in this context, we have

G0(F ) ∼=





1 for Sp2n, SO2n+1, SO2n, U2n,

N1(E/F ) for SO
(ε)
2n+2, U2n+1,

F× for GSp2n, GSO2n, GSpin2n+1, GSpin2n, GU2n,

E× for GSO
(ε)
2n+2, GSpin

(ε)
2n+2, GU2n+1.

For Gn(F ) = SO2n(F ), GSO2n(F ), GSpin2n(F ), there is an outer
autmorphism c of the root data which interchanges the last two simple
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roots. Now, if αn−1, αn ∈ Φ or αn 6∈ Φ, the situation is like that above
for the other groups under consideration. If αn ∈ Φ but αn−1 6∈ Φ, then
c·Φ contains αn−1 but not αn (and is otherwise the same). In both cases
M ∼= GLn1(F )× · · · ×GLnk(F )×G0(F ), but these are not conjugate
in Gn(F ). However, through the use of an artifice–introduced in [JL14]
for Gn = SO2n and discussed in the next section for Gn = GSO2n

and GSpin2n–one may set things up so that for representations of M ,
the two situations are distinguished in the representation for G0(F ).
The ambuguity in writing M ∼= GLn1(F )× · · · ×GLnk(F )×G0(F ) is
then eliminated, and we may consider standard Levi factors for these
groups to also have the form M ∼= GLn1(F )×· · ·×GLnk(F )×Gn0(F )
with n1 + · · · + nk + n0 = n, but with n0 6= 1 (noting, e.g., that
SO2(F ) ∼= GL1(F )× SO0(F ) is better viewed as the latter).
We now take a moment to recall some notation from [BZ77], [Tad94].

First, for P = MN a standard parabolic subgroup of a p-adic group
G, we let iG,M (resp., rM,G) denote normalized induction (resp., the
normalized Jacquet module) with respect to P . Let G = Hk(F ) and
P = MU the standard parabolic subgroup with M = Hk1(F )× · · · ×
Hkr(F ). If τ1 ⊗ · · · ⊗ τr is a representation of M , we let

τ1 × · · · × τr = iG,M(τ1 ⊗ · · · ⊗ τr).

Similarly, suppose P =MU is a standard parabolic subgroup of Gn(F )
with M = Hk1(F ) × · · · × Hkr(F ) × Gk0(F ). For τ1 ⊗ · · · ⊗ τr ⊗ σ a
representation of M , we let

τ1 × · · · × τr ⋊ σ = iG,M(τ1 ⊗ · · · ⊗ τr ⊗ σ).

Note that in the classical case, this allows σ = 1, the trivial represen-
tation of G0(F )–the trivial group.
We next discuss some structure theory from [Zel80]. Let

R =
⊕

n≥0

R(Hn(F ))

where R(G) denotes the Grothendieck group of the category of smooth
finite-length representations of G. We define multiplication on R by
extending the semisimplification of × to give the multiplication × :
R × R −→ R. To describe the comultiplication on R, let M(i) denote
the standard Levi factor for Hn(F ) having M(i) = Hi(F ) × Hn−i(F ).
For a representation τ of Hn(F ), we define

(2.1) m∗(τ) =

n∑

i=0

rM(i),G(τ),
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the sum of semisimplified Jacquet modules (lying in R ⊗ R). This
extends to a map m∗ : R −→ R⊗ R. We note that with this multipli-
cation and comultiplication–and antipode map given by the Zelevinsky
involution (a special case of the general duality operator of [Aub95],
[SS97])–R is a Hopf algebra.
Following [Tad94] and [Tad95], we move to the classical and simili-

tude groups under consideration. Set

R[G] =
⊕

n≥0

R(Gn(F )).

We then extend the semisimplification of ⋊ to a map ⋊ : R⊗R[G] −→
R[G]. For the groups under consideration other than SO2n, GSO2n and
GSpin2n, we define µ∗ as in [Tad95]: For 0 ≤ i ≤ n, let M(i) be the
standard Levi factor for Gn(F ) having M(i) = Hi(F ) × Gn−i(F ). We
then set

(2.2) µ∗ =

n∑

i=0

rM(i),G,

a sum of semisimplified Jacquet modules. In the cases of Sp2n, SO2n+1

addressed in [Tad95] (and a number of other families from [MT02]),
this produces a twisted Hopf module structure. However, the general
situation here is not quite as elegant–but just as useful calculationally.
This is addressed in the next section; as are the cases of SO2n, GSO2n

and GSpin2n (based on the approach in [JL14] for SO2n).
Before discussing some specific representations of general linear groups,

we need a bit of notation. As in [BZ77], we let ν = | · |F and inter-
pret this as ν ◦ det on GLn(F ) (with the n determined by context);
for Hn(F ) ∼= GLn(E), it is the corresponding character under the iso-
morphism. Similarly, on a similitude group, we let ν = ν ◦ ξ, where
ξ denotes the similitude character of the group (again, determined by
context; see Lemma 3.3). This is always used with a representation
(e.g., νπ), with the underlying group that of the representation. Later,
we apply this convention to other characters of F× as well.
As in [Zel80], we consider segments of the form

[νaτ, νbτ ] = {νaτ, νa+1τ, . . . , νb−1τ, νbτ}

for τ a unitary supercuspidal representation of a general linear group
and a ≡ bmod 1. The induced representation νaτ × · · · × νbτ has a
unique irreducible quotient (resp., subrepresentation) which we denote
by δ([νaτ, νbτ ]) (resp., ζ([νaτ, νbτ ])). The representations δ([νaτ, νbτ ])
are essentially square-integrable (i.e., square-integrable after twisting
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by a character), and every irreducible essentially square-integrable rep-
resentation has this form. Given a segment Σ = [νaτ, νbτ ], let Σ̌ =
[ν−bτ̌ , ν−aτ̌ ], where τ̌ is the contragredient of τ if

Gn 6= U2n+1, U2n, GU2n+1, GU2n,

and is the Galois conjugate contragredient otherwise. We call τ self-
dual (respectively, self-conjugate-dual in the case of unitary and general
unitary groups) if τ ∼= τ̌ . We remark that square-integrable representa-
tions for general linear groups are generic (cf. [Jac77]). The analogous
representations for classical and similitude groups are discussed in §4.2.

3. Groups

In this section, we give some background on the particular groups
under consideration. This include material on the groups themselves as
well as representation theoretic notation and results specialized to these
groups (the Langlands classification/Casselman criterion, µ∗ structure
for Jacquet modules, etc.). While much of this material is known, we
fill in a number of gaps.
We retain the assumption char(F ) = 0 in this section but note that

for most applications here, char(F ) 6= 2 suffices. See Remark 3.13
below.
For the split classical groups, the papers [Mui98b], [JS04], [Liu11],

[JL14] cover the problems considered in this paper. Thus our interest
here is in the non-split quasi-split cases, as well as similitude groups
(split or quasi-split). However, as the discussion of irreducible generic
representations may be applied to the split classical groups as well, we
include them here for the sake of completeness. In particular, we let
Gn be one of the following: SO2n+1, Sp2n, SO2n, SO

∗
2n+2, U2n+1, U2n,

GSpin2n+1, GSpin2n, GSpin
∗
2n+2, GSp2n, GSO2n, GSO

∗
2n+2, GU2n+1,

and GU2n. Note that the groups which are not split over F require a
quadratic extension (or equivalent) in their definition; denote this ex-
tension by E = F (

√
ε). For those non-split groups defined via bilinear

forms, one may consult [MVW87] or [Bru63] for an explicit description
of the anistropic part. For the general spin groups, consult [Asg02] or
[HS16]; for the (non-split) quasi-split case, also see §3.1 on GSpin∗

2n+2.
We also note that [Arc] has identified an issue in GSO∗

2n+2 which also
occurs in SO∗

2n+2 and seems to have gone unnoticed in the literature
(including some work by the first-named author), namely, the need to
account for the parity in the number of sign changes for the Weyl group
action. This affects the characterization of when a unitary supercusp-
idal representation of a standard Levi factor is ramified, as well as the
µ∗ structure of Tadić; we discuss these in more detail below.
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One result needed in this paper is the standard module conjecture.
This has been done in the generality needed for the groups at hand in
[HO13].
We start by looking at the maximal split tori. If Gn is one of

the classical groups SO2n+1, Sp2n, SO2n, SO
∗
2n+2, U2n+1, or U2n, let

d(a1, . . . , an) = ě1(a1) · · · ěn(an), with ai ∈ F×. Note that with respect
to the matrix realizations of these groups, we have

d(a1, . . . , an) =






diag(a1, . . . , an, 1, a
−1
n , . . . , a−1

1 )
for Gn = SO2n+1(F ), U2n+1(F ),
diag(a1, . . . , an, a

−1
n , . . . , a−1

1 )
for Gn = Sp2n(F ), SO2n(F ), U2n(F ),
diag(a1, . . . , an, 1, 1, a

−1
n , . . . , a−1

1 )
for Gn = SO∗

2n+2(F ).

The maximal split torus is then

A = {d(a1, . . . , an) | ai ∈ F×}.
For the similitude groups

GSp2n, GSO2n, GSpin2n+1, GSpin2n, GSO
∗
2n+2, GU2n+1, GU2n, GSpin

∗
2n+2,

we set d(a1, . . . , an, a0) = ě1(a1)ě2(a2) . . . ěn(an)ě0(a0) for ai ∈ F×.
Again, for those given as matrix groups (i.e., those other than the
general spin groups), these have matrix realizations

d(a1, . . . , an, a0) =






diag(a1, . . . , an, a0a
−1
n , . . . , a0a

−1
1 )

for Gn = GSp2n(F ), GSO2n(F ), GU2n(F ),
diag(a1, . . . , an, a0, a0, a

2
0a

−1
n , . . . , a20a

−1
1 )

for Gn = GSO∗
2n+2(F ),

diag(a1, . . . , an, a0, a
2
0a

−1
n , . . . , a20a

−1
1 )

for Gn = GU2n+1(F ).

The maximal split torus is then

A = {d(a1, . . . , an, a0) | ai ∈ F×}.
For the (non-split) quasi-split groups, the maximal quasi-split torus

is also important in what follows. We start by looking at Gn =

U2n+1, U2n, GU2n+1, GU2n, GSpin
(ε)
2n+2. For GU2n+1(F ), we have

T = {d(a1, . . . , an, a0) = diag(a1, . . . , an, a0, a0ā0ā
−1
n , . . . , a0ā0ā

−1
1 ) | ai ∈ E×}

after identifying H1(F ) with E×. Since the similitude factor is a0ā0,
the quasi-split torus for U2n+1(F ) is

T = {d(a1, . . . , an, a0) =diag(a1, . . . , an, a0, ā−1
n , . . . , ā−1

1 )

| a1, . . . , an ∈ E× and a0 ∈ N1(E/F )},
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whereN1(E/F ) denotes the norm one elements. Similarly, forGU2n(F ),
we have

T = {d(a1, . . . , an, a0) =diag(a1, . . . , an, a0ā−1
n , . . . , a0ā

−1
1 )

| a1, . . . , an ∈ E× and a0 ∈ F×}.
As the similitude factor is a0, the quasi-split torus for U2n is

T = {d(a1, . . . , an) = diag(a1, . . . , an, ā
−1
n , . . . , ā−1

1 ) | a1, . . . , an ∈ E×}.
Note that these match the descriptions of [Gol97] (though our form
is slightly different in the odd case). Viewing the quasi-split torus for

GSpin
(ε)
2n+2(F ) as a subgroup of that for GSpin2n+2(E) (see §3.1 on

GSpin∗
2n+2), we have elements of the quasi-split torus having the form

(using dE for GSpin2n+2(E)) dE(a1, . . . , an, ā0/a0, a0) with a0 ∈ E×

and ai ∈ F× for i > 0. To simplify the presentation below, we set

d(a1, . . . , an, a0) = dE(a1, . . . , an, ā0/a0, a0).

The quasi-split torus is then

T = {d(a1, . . . , an, a0) | a1, . . . , an ∈ F× and a0 ∈ E×}.
We now turn to the quasi-split orthogonal case. We first note that

for the form used in defining SO
(ε)
2n+2(F ) and GSO

(ε)
2n+2(F ), the maximal

quasi-split torus for GSO
(ε)
2n+2(F ) has matrix realization

T = {diag(a1, . . . , an, X, (detX)a−1
n , . . . , (detX)a−1

1 )

| ai ∈ F×, X ∈ GSO
(ε)
2 (F )},

where

GSO
(ε)
2 (F ) =

{
X =

(
x εy
y x

)
, x, y ∈ F with x2 − εy2 6= 0

}
.

Note that GSO
(ε)
2 (F ) ∼= E× via X =

(
x εy
y x

)
7−→ a0 = x + y

√
ε.

Under this isomorphism, det(X) corresponds to NE/F (a0) (norm) and
gives the similitude factor. We may abuse notation slightly and write
this as

T = {d(a1, . . . , an, a0) | a1, . . . , an ∈ F× and a0 ∈ E×}.
Alternatively, realizing GSO

(ε)
2n+2(F ) by working inside GSO2n+2(E),

in a manner similar to what is done for GSpin
(ε)
2n+2(F ) in §3.1, one can

arrange that the quasi-split torus genuinely has diagonal matrices. The

maximal quasi-split torus for SO
(ε)
2n+2(F ) has the same form but with

det(X) = 1 ⇔ NE/F (a0) = 1.
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We now look at the Weyl group action on the split tori. In the
classical case, we have

si·d(a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an) = d(a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

for i < n and

sn·d(a1, . . . , an−1, an) =






d(a1, . . . , an−1, a
−1
n )

for Gn = SO2n+1, Sp2n, SO
∗
2n+2, U2n+1, U2n,

d(a1, . . . , an−2, a
−1
n , a−1

n−1)
for Gn = SO2n.

If Gn is one of the similitude groups, the Weyl group acts as follows:
for i < n, we have

si·d(a1, . . . , ai−1, ai, ai+1, ai+2, an, a0) = d(a1, . . . , ai−1, ai+1, ai, ai+2, an, a0)

and for i = n,

sn · d(a1, . . . , an−1, an, a0) =





d(a1, . . . , an−1, a
−1
n , ana0)

for Gn = GSpin2n+1, GSpin
∗
2n+2,

d(a1, . . . , an−1, a0a
−1
n , a0)

for Gn = GSp2n, GU2n,
d(a1, . . . , an−2, a

−1
n , a−1

n−1, a0an−1an)
for Gn = GSpin2n,
d(a1, . . . , an−2, a0a

−1
n , a0a

−1
n−1, a0)

for Gn = GSO2n,
d(a1, . . . , an−1, a

2
0a

−1
n , a0)

for Gn = GSO∗
2n+2, GU2n+1.

For the (non-split) quasi-split groups, the action on the quasi-split
torus is also important in what follows. The action of si, i < n matches
that above; for i = n, we have the following:

sn · d(a1, . . . , an−1, an, a0) =





d(a1, . . . , an−1, a
−1
n , ā0)

if Gn = SO
(ε)
2n+2,

d(a1, . . . , an−1, a0ā0a
−1
n , ā0)

if Gn = GSO
(ε)
2n+2,

d(a1, . . . , an−1, ā
−1
n , a0)

if Gn = U2n+1,
d(a1, . . . , an−1, a0ā0ā

−1
n , a0)

if Gn = GU2n+1,
d(a1, . . . , an−1, a0ā

−1
n , a0)

if Gn = GU2n,
d(a1, . . . , an−1, a

−1
n , ā0an)

if Gn = GSpin
(ε)
2n+2,
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and

sn · d(a1, . . . , an−1, an) = d(a1, . . . , an−1, ā
−1
n ) if Gn = U2n,

recalling that

a1, . . . , an ∈
{
F× if Gn = SO

(ε)
2n+2, GSO

(ε)
2n+2, GSpin

(ε)
2n+2,

E× if Gn = U2n+1, U2n, GU2n+1, GU2n,

and

a0 ∈
{
N1(E/F ) if Gn = SO

(ε)
2n+2, U2n+1

E× if Gn = GSO
(ε)
2n+2, GU2n+1, GU2n, GSpin

(ε)
2n+2.

We remark that the restriction of the action of sn to the split tori
matches the description above.
We now discuss centers and central characters for the similitude

groups. In the split case, the center is just ∩α∈Πkerα. For an element
d(a1, . . . , an, a0) from the quasi-split torus to be in the center, it must

be fixed under the action of the Weyl group. For GSO
(ε)
2n+2(F ), this im-

plies the center lies in the split torus; the center then follows as in the

split case. For GSpin
(ε)
2n+2(F ), the center contains Z(GSpin2n+2(E)) ∩

GSpin
(ε)
2n+2(F ) and is contained in the set of elements of the quasi-split

torus fixed by the Weyl group; these match and give the center as de-
scribed below. For GU2n(F ), the center contains the scalar multiples
of the identity which lie in GU2n(F ) and is contained in the set of el-
ements of the quasi-split torus fixed by the Weyl group; again, these
match and give the center below. For GU2n+1(F ), the center again con-
tains the scalar multiples of the identity which lie in GU2n+1(F ). To
see that there is nothing else, consider the root group corresponding
to the F -root αn = en − e0; direct calculation shows that conjugation
by d(a1, . . . , an, a0) from GU2n+1 commutes with this only if ana

−1
0 = 1

(for a0, an ∈ E×). Thus, to be in the center, we must have a0 = an;
Weyl invariance then gives a1 = · · · = an = a0 (so scalar). Thus
we obtain the following conditions (see [Tad94, Proposition 4.3(v)] for
Gn = GSp2n, [AS06, Proposition 2.3] for Gn = GSpin2n, and [AS06,
Proposition 2.10] for Gn = GSO2n):



THE GENERIC DUAL OF P-ADIC GROUPS 19

Gn constraints for center
GSpin2n+1 a1 = · · · = an = 1
GSp2n a1 = · · · = an = z and a0 = z2

GSpin2n a1 = · · · = an = ζ with ζ2 = 1
GSO2n a1 = · · · = an = z and a0 = z2

GSO∗
2n+2 a1 = · · · = an = a0 = z

GSpin∗
2n+2 a1 = · · · = an = ζ , a0 = ζā0 with ζ2 = 1

GU2n+1 a1 = · · · = an = a0 = z
GU2n a1 = · · · = an = z, a0 = zz̄

Table 2. Centers

Gn ωπ1×···×πk⋊π0

GSpin2n+1 ωπ0
GSp2n ωπ1ωπ2 . . . ωπkωπ0 if n0 > 0

ωπ1ωπ2 . . . ωπkω
2
π0 if n0 = 0

GSpin2n ωπ0
GSO2n ωπ1ωπ2 . . . ωπkωπ0 if n0 > 0

ωπ1ωπ2 . . . ωπkω
2
π0

if n0 = 0
GSO∗

2n+2 ωπ1ωπ2 . . . ωπkωπ0
GSpin∗

2n+2 ωπ0
GU2n+1 ωπ1ωπ2 . . . ωπkωπ0
GU2n ωπ1ωπ2 . . . ωπkωπ0 if n0 > 0

ωπ1ωπ2 . . . ωπk(ωπ0 ◦NE/F ) if n0 = 0

Table 3. Central characters

Note that for GSpin2n(F ) with n > 1, the center actally has Z ∼=
{±1}×F×; we abuse notation slightly and use ωπ to denote the central
character of π on the F× part of Z (which is what actually arises in
(3.5)); similarly for GSpin∗

2n+2(F ). We also note that GSO∗
2(F )

∼=
GSpin∗

2(F )
∼= E×, so ωπ0 is technically a character of E× in these

cases. However, in practice it is the restriction to F× that actually
comes into play in Table 3 or (3.5).

For Gn = SO2n, GSO2n, or GSpin2n–groups of type Dn–we would
like to set things up so that the µ∗ structure and Casselman crite-
rion/Langlands classification have forms like that for the other simili-
tude groups considered. This has been done in [JL14] for SO2n(F ) and
[Kim16] for GSpin2n; we follow the same basic strategy for GSO2n. For
this, we must first take up the existence of an outer automorphism cor-
responding to the action of c on SO2n(F ) (c defined on [JL14, p.208],
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e.g.). Of course, for GSO2n(F ), the same c provides the outer automor-
phism. For GSpin2n(F ), a corresponding c of order two is constructed
on [Kim09, p.622]. The following lemma combines the discussion of
c for GSpin2n from [Kim09] and [HS16], and Haar measure proper-
ties in [BJ01, Section 2]. The (based) root datum for (Π, X, Π̌, X̌) for
GSpin2n is given in [Asg02] and summarized in §2 above; the action of
c on the data is described in [HS16, Lemma 4.5]. We include the proof
for the sake of completeness.

Lemma 3.1. There exists an outer automorphism c : GSpin2n(F ) −→
GSpin2n(F ) of order two with the following properties:

(1) c · (Π, X, Π̌, X̌) = (Π, X, Π̌, X̌).
(2) c is a homeomorphism in the p-adic topology.
(3) c preserves Haar measures on GSpin2n(F ) and GSpin2n(F )/Z(F )

(where Z(F ) is the center).

In particular, it then follows that if a representation π of GSpin2n(F )
is square-integrable (resp., tempered), then so is c · π. Similar consid-
erations apply to standard Levi factors and their representations–if θ is
a square-integrable (resp., tempered) representation of a standard Levi
factor M , then c · θ is a square-integrable (resp., tempered) representa-
tion of the standard Levi factor c(M).

Proof. First, note that for GSO2n, the matrix c (see [JL14, p.208]) has
these properties. For GSpin2n, there is an outer automorphism con-
structed in [Kim09, Section 2] which interchanges the last two simple
roots and can be seen to be of order 2. This corresponds to the au-
tomorphism on the data in [HS16, Section 4.3] and has the properties
there, which imply (1). We remark the the root data for GSpin2n is
dual to that for GSO2n (cf. [Asg02]); the actions of their respective c’s
are dual.
For (2), let Ik denote the kth group in the Iwahori filtration, i.e.,

the subgroup generated by {uα(x) | x ∈ Pk, α ∈ ∆+}, {uα(y) | y ∈
Pk+1, α ∈ ∆−}, and {x̌(z) | z ∈ 1 + Pk, x̌ ∈ X̌}. This is a basis for
the topology at the identity. From this description, one clearly has
c(Ik) = Ik, from which the claim follows.
For (3), first let µ denote Haar measure on G. As c is homeomorphic,

it takes measurable sets to measurable sets, so c · µ is defined. As in
[BJ01, Lemma 2.2], one then has c·µ left-invariant hence a multiple of µ;
as c ·µ(Ik) = µ(Ik), they are equal. Next, observe that since c(Z) = Z,
we have a quotient action c on G/Z. Further, since the action of c on
G gives an automorphism of toplogical groups, the action of c on G/Z
is also an automorphism of topological groups. As a consequence, if µ̄
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denotes a Haar measure on G/Z, c · µ̄ is also a Haar measure on G/Z,
hence a multiple of µ̄. In fact, looking at the measure of a c-invariant
subset of G/Z, it follows that c · µ̄ = µ̄. Therefore, if π is a square-
integrable (resp., tempered) representation of G, then c · π is also a
square-integrable (resp., tempered) representation of G/Z.
The remaining claims now follow directly. �

Remark 3.2. Similar considerations apply to SO∗
2n+2, GSO

∗
2n+2 and

GSpin∗
2n+2. For the form used for SO∗

2n+2, GSO
∗
2n+2 (see §2), the

matrix

c =




In
1

−1
In




may be used. For GSpin∗
2n+2, we have GSpin∗

2n+2(F ) ⊂ GSpin2n+2(E)
and inherits the action of c. Note that for SO∗

2n, GSO
∗
2n+2, and GSpin

∗
2n+2,

c acts trivially on the F -data.

We return to the task of setting things up in a more uniform way
for the type Dn similitude groups. Following [JL14], we let both
χ ⊗ e and χ ⊗ c denote the character χ on G0(F ) ∼= F×, but with
different interpretations when used with parabolic induction. These
play the role of 1 ⊗ e and 1 ⊗ c for SO2n; the discussion below ap-
plies to SO2n if these are used instead. In particular, suppose P =
MU is a standard parabolic subgroup with αn 6∈ ΠM . Then M =
GLm1(F )× · · · ×GLmk(F )×G0(F ). For representations π1, . . . , πk of
GLm1(F ), . . . , GLmk(F ), we let π1 ⊗ · · · ⊗ πk ⊗ (χ⊗ e) denote a repre-
sentation ofM , while π1⊗· · ·⊗πk⊗ (χ⊗c) denotes a representation of
c(M) (the Levi factor of the standard parabolic subgroup c(P )). Thus,
we write

π1 × · · · × πk ⋊ (χ⊗ e) = iG,M(π1 ⊗ · · · ⊗ πk ⊗ χ),

and

π1 × · · · × πk ⋊ (χ⊗ c) = c(iG,M(π1 ⊗ · · · ⊗ πk ⊗ χ)).

In terms of the action of c, we take c(χ ⊗ e) = χ ⊗ c and c(χ ⊗ c) =
χ ⊗ e. Note that if χ′ is a character of F×, then the representations
χ′ ⋊ (χ⊗ e) and χ′−1 ⋊ (χ′χ⊗ c) constitute the same representation of
GSO2(F ) ∼= F× × F×; similarly for GSpin2(F ) with χ

′ ⋊ (χ⊗ e) and
χχ′−1⋊ (χ⊗ c). (For either family of groups, if M = GLm(F )×G0(F )
with m > 1, we haveM and c(M) nonconjugate and the corresponding
induced representations are not in general equivalent.) Note that it is
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a straightforward consequence of induction in stages and c ◦ iG,M ∼=
iG,c(M) ◦ c that
(3.1) c · (π ⋊ σ) ∼= π ⋊ c · σ
and

(3.2) π1 ⋊ (π2 ⋊ σ) ∼= (π1 × π2)⋊ σ

in this context.
We now take up how induced representations behave under twisting

by characters. For concreteness, we consider the case of GSpin2n+1 (see
[Kap17] for a slightly different approach to the same question). If ξn
denotes a rational character of GSpin2n+1(F ), n > 0, then the restric-
tion of ξn is invariant under the action of the Weyl group. Checking
the action of the simple reflections, ξn|A = c1e1 + · · ·+ cnen + c0e0 has
c1 = · · · = cn = 1

2
c0; we normalize so that ξn|A = e1 + · · ·+ en + 2e0.

If n = 0, we take ξ0 = e0. In either case, ξn is a Z-basis for X(G)
(rational characters on Gn = GSpin2n+1(F )). Note that if M =
GLk(F )× GSpin2(n−k)+1(F ) is a standard Levi factor, it follows from
this description that

ξn|M =






detk⊗ξn−k if k < n,

detk⊗ξ20 if k = n.

Let χ be a character of F×. We may identify χ with a character of
GSpin2n+1(F ) (resp., GLk(F )) via χ ◦ ξn (resp., χ ◦ detk). With this
identification, we have

χ(π ⋊ θ) ∼=





χπ ⋊ χθ if k < n

χπ ⋊ χ2θ if k = n

The bifurcation in the formula is essentially dual to that in the cen-
tral character formula for GSp2n(F ) above (see [Tad94, Proposition
4.3(v)]). It is a straightforward matter to verify that these are indeed
equivalent (with equivalence given by f ∈ Vπ⋊θ 7−→ χf ∈ Vχπ⋊χεθ,
ε = 1 or 2, as appropriate); see [BZ77, Proposition 1.9].
We note that for Gn = GSpin2n, we also have ξn|A = e1+· · ·+en+2e0

for n > 1 and ξ0 = e0; for Gn = GSpin∗
2n+2, see §3.1. Similar arguments

then give the following (also, see, e.g., [ST93, (1.2)] or [Tad94, Proposi-
tion 4.3] for Gn = GSp2n and [CFK20] for Gn = GSpin2n+1, GSpin2n).

Lemma 3.3. Let χ be a character of F×. We may identify χ with
a character of Gn(F ) via χ ◦ ξ, where ξ = ξn as above for Gn =
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GSpin2n+1, GSpin2n and is the similitude character for

Gn = GSp2n, GSO2n, GSO
∗
2n+2, GU2n+1, GU2n

(Recall that for GU2n+1(F ) and GU2n(F ), the image of ξ lies in F×,
so χ a character of F× is sufficient). For π and θ representations of
Hk(F ) and Gn(F ), we then have the following:

(1) For Gn = GSpin2n+1, χ(π ⋊ θ) ∼=
{
χπ ⋊ χθ if n > 0
χπ ⋊ χ2θ if n = 0.

(2) For Gn = GSp2n, GSO
∗
2n+2, GU2n+1, GU2n, χ(π⋊ θ) ∼= π⋊χθ.

(3) For Gn = GSO2n, χ(π ⋊ θ) ∼= π ⋊ χθ for n 6= 1.

(4) For Gn = GSpin2n, χ(π ⋊ θ) ∼=
{
χπ ⋊ χθ if n > 1,
χπ ⋊ χ2θ if n = 0.

(5) For Gn = GSpin∗
2n+2, χ(π ⋊ θ) ∼= χπ ⋊ χθ.

Remarks 3.4. (1) We have not discussed twisting by characters
for Gn = GSO2n, GSpin2n when n = 1. The issue is that
G1(F ) ∼= F× × F× for these groups, so X(G1) is actually 2-
dimensional. One could reasonably define

χ(χ1 ⋊ χ0) = χ1 ⋊ χχ0 for Gn = GSO2n,
= χχ1 ⋊ χ2χ0 for Gn = GSpin2n

to make the formulas above work when n = 1.
(2) Note that the image of the similitude character need not be all of

F×–e.g., for GSO∗
2n+2, [Xu18, Lemma 2.1] shows that it consists

of only the norms of E/F , where E is the associated quadratic
extension.

(3) In terms of the action of c, observe that c · χ = χ. For this,
it suffices that c · ξ = ξ. For Gn = GSO2n, GSO

∗
2n+2, this may

be verified directly from TXJX = λJ . For Gn = GSpin2n,
one has (c · ξ)|A = ξ|A by the definition of ξ above and [HS16,
Lemma 4.5]. Further, as ξ|U is trivial and c · U = U , we have
(c · ξ)|U = ξ|U . Similarly, (c · ξ)|Ū = ξ|Ū . As A,U, Ū suffice
to generate G, we have c · ξ = ξ. The similitude character
for GSpin∗

2n+2(F ) may be obtained by restriction of that for
GSpin2n+2(E) (see §3.1) so also satisfies c · ξ = ξ.

Note 3.5. We note that for Gn = GU2n+1, GU2n (or, U2n+1, U2n) one
can also compose a character χ of E× with det to produce a charac-
ter of Gn. It is not difficult to see that this construction can produce
characters which are not among those in Lemma 3.3, and vice-versa.
Though we do not use these characters in what follows, we include the
corresponding twisting formula for the sake of completeness:

(χ ◦ det)(π ⋊ θ) = (χ ◦ τ ◦ det)π ⋊ [χ ◦ (ξk · det)]θ,
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where τ(x) = xx̄−1 on E× andM = Hk(F )×Gn−k(F ). We also remark
that these characters of GUN (F ) are related by det · det = ξN (take det
of TX̄J ′X = λJ ′).

The following definition and lemma allow for more concise versions
of the Casselman criterion and Langlands classification.

Definition 3.6. Let π be an irreducible representation of Gn. Write
π = νε(π)π0 with π0 having a unitary central character. We set

β(π) =





ε(π) if Gn = GSpin2n+1, GSpin2n and n > 0,
1
2
ε(π) if Gn = GSpin2n+1, GSpin2n and n = 0,
ε(π) if Gn = GSpin∗

2n+2,
0 otherwise.

Lemma 3.7. If π →֒ φ1 × . . . φk ⋊ σ(e0) is an embedding into a repre-
sentation induced from supercuspidals, then β(π) = β(σ(e0)).

Proof. We focus on the case Gn = GSpin2n+1, GSpin2n. The case
Gn = GSpin∗

2n+2 is similar; the other cases are trivial.

If π = σ(e0) the result is immediate. So, suppose π 6= σ(e0). Note
that we must then have β(π) = ε(π). Recall that π = νε(π)π0 with π0
having a unitary central character. Then

π0 →֒ φ′
1 × . . . φ′

k ⋊ σ0 ⇒ π →֒ νε(π)(φ′
1 × . . . φ′

k ⋊ σ0).

We then have

π →֒ νε(π)φ′
1 × . . . νε(π)φ′

k ⋊

{
νε(π)σ0 if nσ > 0,
ν2ε(π)σ0 if nσ = 0.

Therefore,

σ(e0) =

{
νε(π)σ0 if nσ > 0,
ν2ε(π)σ0 if nσ = 0

⇓
ε(σ(e0)) =

{
ε(π) if nσ > 0,
2ε(π) if nσ = 0
⇓

β(π) = ε(π) =

{
ε(σ(e0)) if nσ > 0,
1
2
ε(σ(e0)) if nσ = 0

= β(σ(e0)),

as needed. �

Note 3.8. In light of Lemma 3.7, we simply write β below for β(π),
β(σ(e0)), etc.



THE GENERIC DUAL OF P-ADIC GROUPS 25

We now return to our general discussion of the results needed for the
families of groups under consideration. We start with the Casselman
criterion. See [Wal03, Propositions III.1.1 and III.2.2] for the general
result; [Tad94, Section 6], [Asg02, Proposition 4.2]–noting that it is
missing a unitary central character hypothesis–and [Kim09, Proposi-
tion 3.2] for some of the specific groups under consideration. Suppose π
is irreducible. Let φ1⊗· · ·⊗φk⊗σ(e0) ≤ rM,G(π), with φi an irreducible
supercuspidal representation of Hni(F ) and σ

(e0) an irreducible super-
cuspidal representation of Gn0(F ). If π is essentially square-integrable,
then

(3.3)

n1[ε(φ1)− β] > 0
n1[ε(φ1)− β] + n2[ε(φ2)− β] > 0

...
n1[ε(φ1)− β] + n2[ε(φ2)− β] + · · ·+ nk[ε(φk)− β] > 0.

Conversely, if the above inequalities hold for all such φ1⊗· · ·⊗φk⊗σ(e0),
then π is essentially square-integrable. The criterion for temperedness
is similar, but with weak inequalities. Note that for Gn = SO2n, if
αn−1, αn 6∈ ΠM , both φ1 ⊗ · · · ⊗ φk−1 ⊗ φk ⊗ (1⊗ e) and the equivalent
φ1⊗· · ·⊗φk−1⊗φ−1

k ⊗ (1⊗ c) must be used in the Casselman criterion;
for GSO2n (resp., GSpin2n), both φ1 ⊗ · · · ⊗ φk ⊗ σ(e0) and φ1 ⊗ · · · ⊗
φk−1 ⊗ φ−1

k ⊗ (φkχ⊗ c) (resp., φ1 ⊗ · · · ⊗ φk−1 ⊗ χφ−1
k ⊗ (χ⊗ c)) must

be used.
We note that for SO2(F ) (resp., GSO2(F ), GSpin2(F )), the repre-

sentation χ⋊(1⊗e) = χ−1⋊(1⊗c) (resp., χ⋊(χ0⊗e) = χ−1⋊(χχ0⊗c),
χ ⋊ (χ0 ⊗ e) = χ0χ

−1 ⋊ (χ0 ⊗ c)) with χ0 unitary is considered tem-
pered but not square-integrable if χ is unitary. This interpretation is
consistent with other cases of irreducible ρ ⋊ σ(0) and the inequalities
above.
We now turn to the Langlands classification. For the general re-

sult, see [Kon03]; more concretely, see [Tad94, Section 6] for Sp2n and
GSp2n; [Jan93, Section 1.3] for SO2n+1 and SO2n, with the latter in-
terpreted in terms of the artifice above in [Jan11]; [Kim09, Theorem
5.4 and Remark 5.5] for GSpin2n+1, GSpin2n, GSpin

∗
2n, noting the

assumption T tempered there. Let δ1, . . . , δk be essentially square inte-
grable representations of general linear groups and and T an essentially
tempered representation of Gn(F ) satisfying

(3.4) ε(δ1) ≥ · · · ≥ ε(δk) > β.

Then the Langlands classification tells us that

δ1 × · · · × δk ⋊ T
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contains a unique irreducible quotient; denote it by L(δ1⊗· · ·⊗δk⊗T ).
Further, any irreducible admissible representation may be written in
this form, with the data unique up to permutations among representa-
tions of general linear groups having the same central exponents.
We also have occasion to use the Langlands classification in the sub-

representation setting. In this case, the inequalities in (3.4) are reversed
and we use Lsub(δ1⊗· · ·⊗δk;T ) for the corresponding (Langlands) sub-
representation.
For general linear groups, the Langlands classification is similar–if

ε(δ1) ≥ · · · ≥ ε(δk),

then δ1 × · · · × δk has a unique irreducible quotient L(δ1 ⊗ · · · ⊗ δk)
and every irreducible representation may be written in this form, with
δ1⊗· · ·⊗δk unqiue up to the order in which representations having the
same central characters appear. The corresponding subrepresentation
version has the inequalities reversed and Lsub(δ1 ⊗ · · ·⊗ δk) the unique
irreducible subrepresentation of δ1 × · · · × δk.
Note that for Gn = GSO2n or GSpin2n and αn−1, αn ∈ ΠM , one

can have T = χ ⋊ (χ0 ⊗ d), d = e or c, if it is essentially tempered,
i.e., if χ unitary (for GSO2n) or e(χ) = 1

2
e(χ0) (for GSpin2n). The

translation from the standard form of the Langlands classification to
the description above using the artifice is then a straightforward matter.

Remark 3.9. We also make a brief remark on the action of c for
Gn = SO2n, SO

∗
2n+2, GSO2n, GSO

∗
2n+2, GSpin2n, or GSpin

∗
2n+2. It

is a straightforward matter to verify that with notation as above–and
already noted in (3.1) for the Dn cases–that

c · (τ ⋊ σ) ∼= τ ⋊ c · σ.
Further, if π = L(δ1⊗· · ·⊗ δk ⊗T ), then c ·π = L(δ1⊗· · ·⊗ δk ⊗ c ·T )
([BJ01, Proposition 4.5]).

We now discuss cuspidal reducibility. In particular, suppose τ is an
irreducible, unitary, supercuspidal representation of Hm(F ) and σ(0)

an irreducible unitary supercuspidal representation of Gn(F ). As in
[Sha90a], for a maximal parabolic subgroup P = MU associated to
Π \ {α}, we set α̃ = 〈ρU , α̌〉−1ρU with ρU the half-sum of the F -roots
from U . For s ∈ R, we let I(sα̃, τ ⊗ σ(0)) denote the corresponding
parabolically induced representation. It follows from work of Silberger
and Harish-Chandra ([Sil79], [Sil80]) that if τ ⊗ σ(0) is ramified (i.e.,
w0(τ ⊗ σ(0)) ∼= τ ⊗ σ(0), where w0 is the long element in the set of
minimal-length double-coset representatives) that there is a unique
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s0 ≥ 0 such that I(s0α̃) reduces; if τ ⊗ σ(0) is not ramified, then
I(sα̃, τ ⊗ σ(0)) is irreducible for all s ≥ 0. Further, Theorem 8.1 of
[Sha90a] tells us that when τ ⊗ σ(0) is generic, s0 ∈ {0, 1

2
, 1}. We now

make this more explicit for the groups in question.
First, we describe the action of w0 needed for the ramified condi-

tion. This is in [MT02] (implicitly) for the cases of classical groups
SO2n+1, Sp2n, U2n+1, U2n, [Tad98a] for GSp2n, [Kim15] for GSpin2n+1,
and [Kim16] for GSpin2n; [ACS16, Lemma 4.17] covers a number of
families considered below
(3.5)

w0(τ ⊗ σ(0)) =





τ̌ ⊗ σ(0) for Gn = SO2n+1, Sp2n, U2n+1, U2n,
τ̌ ⊗ cm · σ(0) for Gn = SO2n, SO

∗
2n+2,

ωσ(0) τ̌ ⊗ σ(0) for Gn = GSpin2n+1,
τ̌ ⊗ ωτσ

(0) for Gn = GSp2n, GU2n+1, GU2n,
τ̌ ⊗ ωτ (c

m · σ(0)) for Gn = GSO2n, GSO
∗
2n+2,

ωσ(0) τ̌ ⊗ cm · σ(0) for Gn = GSpin2n, GSpin
∗
2n+2.

Note that we must have n > 1 for SO2n, GSO2n, GSpin2n. We also
remark that the fact that σ(0) remains unchanged for most classical
groups is what allows the notion of partial cuspidal support in [MT02].
Next, for ΠM = Π \ {αk}, the induced representation translates as

follows:

Gn I(sα̃, τ ⊗ σ(0))

SO2n+1, SO
∗
2n+2 νsτ ⋊ σ(0) for k < n

U2n+1, GSpin2n+1 ν
s
2 τ ⋊ σ(0) for k = n

GSpin∗
2n+2

Sp2n, U2n νsρ⋊ σ(0)

SO2n νsτ ⋊ σ(0) for k < n− 1
ν
s
2 τ ⋊ σ(0) for k = n− 1, n (so σ(0) = 1⊗ e or 1⊗ c)

GSp2n, GU2n νsτ ⋊ ν−
ks
2 σ(0) ∼= ν−

ks
2 (νsτ ⋊ σ(0))

GSpin2n νsτ ⋊ σ(0) for k < n− 1
ν
s
2 τ ⋊ σ(0) for k = n− 1, n (so σ(0) = χ⊗ e or χ⊗ c)

GSO2n νsτ ⋊ ν−
ks
2 σ(0) ∼= ν−

ks
2 (νsτ ⋊ σ(0)) for k < n− 1

ν
s
2 τ ⋊ ν−

ns
4 σ(0) ∼= ν−

ns
4 (ν

s
2 τ × σ(0)) for k = n− 1, n
(so σ(0) = χ⊗ e or χ⊗ c)

GSO∗
2n+2, GU2n+1 νsτ ⋊ ν−

ks
2 σ(0) ∼= ν−

ks
2 (νsτ ⋊ σ(0)) for k < n

ν
s
2 τ ⋊ ν−

ns
4 σ(0) ∼= ν−

ns
4 (ν

s
2 ⋊ σ(0)) for k = n

Table 4. I(sα̃, τ ⊗ σ(0))



28 CHRIS JANTZEN AND BAIYING LIU

This is a straightforward calculation; the example of GSpin∗
2n+2 is done

as part of §3.1; the example of Sp4(F ) may be found in [Sha91]. Many
of these are also covered by [ACS16, (4.20)].
If τ ⊗ σ(0) is ramified and α ≥ 0 is the unique nonnegative value for

which νατ ⋊ σ(0) is reducible, we say that (τ ; σ(0)) satisfies (Cα). We
claim α ∈ {0, 1

2
, 1}. Table 4 coupled with [Sha90a, Theorem 8.1] tells us

we have (C0), (C1
2
), or (C1) except possibly for the Siegel parabolic(s)

for Gn = SO2n+1, SO2n, SO
∗
2n+2, U2n+1, GSpin2n+1, GSpin2n, GSO2n,

GSO∗
2n+2, GSpin

∗
2n+2, and GU2n+1. For these, we must rule out the

possibility of (C1
4
) (corresponding to s = 1

2
above). For Gn = SO2n+1

and SO2n, this possibility is eliminated by [Sha92]; [Mœ14, Théorème
3.1] further rules out this possibility for Gn = SO∗

2n+2, GSpin2n+1,
GSpin2n, GSpin

∗
2n+2, and U2n+1. Thus it remains to deal with Gn =

GSO2n, GSO
∗
2n+2, and GU2n+1.

To address these cases, we have the following lemma:

Lemma 3.10. Let G̃n = GSO2n(F ) (resp., GSO
∗
2n+2(F ), GU2n+1(F ))

and Gn = SO2n(F ) (resp., SO∗
2n+2(F ), U2n+1(F )). Let τ is an irre-

ducible supercuspidal representation of Hn(F ) and χ a character of

G̃0(F ) ∼=
{
F× for G̃0(F ) = GSO0(F ),

E× for G̃0(F ) = GSO∗
2(F ) or GU1(F )

(so χ means χ ⊗ e or χ ⊗ c for GSO0(F )). Let χ0 be the irreducible
representation of

G0(F ) ∼=
{

1 for G0(F ) = SO0(F ),
N1(E/F ) for G0(F ) = SO∗

2(F ) or U1(F ).

given by restriction of χ (so χ0 = 1 ⊗ e or 1 ⊗ c for SO0(F ); trivial
otherwise as similitude is 1). Then νsτ ⋊ χ reducible implies νsτ ⋊ χ0

is reducible.

Proof. Let Ã0 = 1 × G̃0(F ) ⊂ Hn(F ) × G̃0(F ) in the Siegel parabolic
for G̃n(F ). We have G̃n = Ã0Gn. We remark that the resulting de-
composition is unique for GSO2n(F ).
Consider the map

E : Vνsρ⋊χ0 −→ Vνsρ⋊χ
f 7−→ f̃ ,

where f̃ is defined by extending f as follows:

f(g̃) = f(ã0g) = δ̃
1
2 (ã0)χ(ã0)f(g).
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It is a straightforward matter to show that E is well-defined. Further,
it is also not difficult to show that E is bijective, with inverse

E−1 : f̃ 7−→ f̃
∣∣∣
Gn
.

Noting that Gn ⊂ G̃n, one can show that E is Gn-equivariant (or
equivalently, that E−1 is Gn-equivariant). One then has νsρ ⋊ χ0

∼=
(νsρ⋊ χ)|Gn. Therefore, if νsρ⋊ χ is reducible, so is νsρ⋊ χ0. �

In particular, in light of Lemma 3.3, this shows that if (τ, χ) is (Cα)
for GSO∗

2n+2 or GU2n+1 (resp., (τ, χ ⊗ e) or (τ, χ ⊗ e) for GSO2n),
then we also have (τ, χ0) is (Cα) for SO

∗
2n+2 or U2n+1 (resp., (τ, 1⊗ e)

or (τ, 1 ⊗ c) for SO2n). Since it is known that we do not have (C1
4
)

for the classical cases, the corresponding result is immediate for their
similitude counterparts.
There are also certain circumstances in which τ ⊗ σ(0) is not rami-

fied but which can still contribute to square-integrable representations.
These occur when τ is equivalent to the first factor of w0(τ ⊗ σ(0)) in
(3.5) but σ(0) is not equivalent to the second factor. In particular, we
say that (τ ; σ(0)) satisfies (CN) under the following conditions:

Gn (CN)
SO2n+1, Sp2n, U2n+1, U2n, GSpin2n+1 none

SO2n, SO
∗
2n+2 τ̌ ∼= τ but cm · σ(0) 6∼= σ(0)

GSp2n, GU2n+1, GU2n τ̌ ∼= τ but ωτσ
(0) 6∼= σ(0)

GSO2n, GSO
∗
2n+2 τ̌ ∼= τ but ωτ (c

m · σ(0)) 6∼= σ(0)

GSpin2n, GSpin
∗
2n+2 ωσ(0) τ̌

∼= τ but cm · σ(0) 6∼= σ(0)

Table 5. (CN) conditions

Note 3.11. Note that νxτ⋊σ(0) is reducible if and only if ν−xτ⋊σ(0) is
reducible–for GSp2n(F ), this is [Tad98b, Remark 2.2]. The same argu-

ment applies to GSO2n(F ), GSO
(ε)
2n+2(F ), GU2n+1(F ), GU2n(F ) (using

(3.5) and Lemma 3.3); for the remaining groups, it follows from (3.5).
In particular, −α is the unique nonpositive value where reducibility oc-
curs.

Our last task is to set up a µ∗ structure like that for classical groups
in [Tad95] (also [MT02]). In order to have a uniform presentation, we
define a variation on Tadić’s M∗ below. This variation counts sign
changes, as those are important for many of the groups under con-
sideration. Thus we formally define N∗ : R −→ R ⊗ R ⊗ R ⊗ Z(C)
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by

N∗ = (̌ ⊗m∗)D ◦ s ◦m∗,

where C = {e, c}, s : π1 ⊗ π2 7→ π2 ⊗ π1, and

(ˇ⊗m∗)D(π1⊗π2) =






π̌1 ⊗m∗(π2)⊗ e
if π1 is a representation of Hn1(F ) with n1 even,
π̌1 ⊗m∗(π2)⊗ c
if π1 is a representation of Hn1(F ) with n1 odd.

We first consider the groupsGn = SO2n+1, Sp2n, U2n+1, U2n, GSpin2n+1,
GSp2n, GU2n+1, and GU2n. Here we define ⋊̃ by

(ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ d)⋊̃(ρ⊗ σ) =






(ρ1 × ρ2 × ρ)⊗ (ρ3 ⋊ σ)
for Gn = SO2n+1, Sp2n, U2n+1, U2n,
(ωσρ1 × ρ2 × ρ)⊗ (ρ3 ⋊ σ)
for Gn = GSpin2n+1,
(ρ1 × ρ2 × ρ)⊗ (ρ3 ⋊ ωρ̌1σ)
for Gn = GSp2n, GU2n+1, GU2n.

Note that the action of C is trivial in this case. With µ∗ as defined in
(2.2), we then have

µ∗(λ⋊ π) = N∗(λ)⋊̃µ∗(π),

an immediate consequence of [Tad95] (for Gn = SO2n+1, Sp2n, and
GSp2n), [MT02] (forGn = U2n+1 and U2n), [Kim15] (forGn = GSpin2n+1),
and [KM19] (for Gn = GU2n); the case Gn = GU2n+1 is similar.
For Gn = SO∗

2n+2, GSO
∗
2n+2, or GSpin

∗
2n+2, we define ⋊̃ by

(ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ d)⋊̃(ρ⊗ σ) =





(ρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ σ)
for Gn = SO∗

2n+2,
(ρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ ωρ̃1σ)
for Gn = GSO∗

2n+2,
(ωσρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ σ)
for Gn = GSpin∗

2n+2.

Then, with µ∗ as defined in (2.2),

µ∗(λ⋊ π) = N∗(λ)⋊̃µ∗(π).

We outline the changes needed to the proof of [Tad95, Theorem 5.2]
to deal with GSpin∗

2n+2 in §3.1; the other cases are similar. Also note
that for SO∗

2n+2, the inclusion of the action of C represents a correction
to [MT02].
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Remark 3.12. We can also use this to produce µ∗ structure for SO∗
2n+2

more like that of [Tad95]. In particular, we define M∗
D : R −→ R ⊗

R⊗ Z[C] by M∗
D = (m⊗ 1)D ◦N∗, where

(m⊗ 1)D(λ1 ⊗ λ2 ⊗ λ3 ⊗ d) = (λ1 × λ2)⊗ λ3 ⊗ d.

Then,
µ∗(τ ⊗ θ) =M∗

D(τ)⋊ µ∗(θ),

where
(τ1 ⊗ τ2 ⊗ d)⋊ (τ ⊗ θ) = (τ1 × τ)⊗ (τ2 ⋊ d · θ)

(noting that τ2 ⋊ d · θ ∼= d · (τ2 ⋊ θ)).

The structures for SO2n, GSpin2n are done in [JL14] and [Kim16],
respectively, and included in the summary below (though the presenta-
tion below is a minor variation on that in [Kim16]). The structure for
GSO2n (resp., GSpin2n) is essentially a combination of that for GSp2n
(resp., GSpin2n+1) above and that for SO2n. Note that the Weyl groups
here allow only even sign changes; again N∗ accounts for this. Let Gn

be GSO2n or GSpin2n. We can now construct a µ∗ structure which
closely resembles that for the other classical groups. To this end, we
set

Ωk =






Π \ {αk} if k ≤ n− 2,
Π \ {αn−1, αn} if k = n− 1,
Π \ {αn} if k = n.

Note cΩn = Π \ {αn−1}. For π an irreducible representation of Gn(F )
with n ≥ 2, and 0 ≤ k ≤ n, write rMΩk

,G(π) =
∑

i∈Ik
πi,k ⊗ θi,k and

rMcΩn ,G
(π) =

∑
j∈J πj ⊗ (χj ⊗ c). We then define

(3.6) µ∗(π) =
n∑

k=0

∑

i∈Ik

πi,k ⊗ θi,k +
∑

j∈J

πj ⊗ (χj ⊗ c)

for Gn = GSO2n or GSpin2n. This also applies to Gn = SO2n if one
replaces χj by 1 in the second summand and in rMcΩn ,G

(π) above. For
n = 0, we have only χ ⊗ e and χ ⊗ c for GSO2n or GSpin2n; for
d = e or c, we define

µ∗(χ⊗ d) = 1⊗ (χ⊗ d).

The corresponding definition for SO2n with n = 0 is µ∗(1 ⊗ d) =
1 ⊗ (1 ⊗ d). For n = 1, an irreducible representation of GSO2(F ) has
the form χ ⋊ (χ′ ⊗ e) = χ−1 ⋊ (χ′χ ⊗ c) for χ a (quasi)character of
F× (noting that under GSO2(F ) ∼= F× × F×, this corresponds to the
character χ⊗ χ′), and we set

µ∗(χ⋊ (χ′ ⊗ e)) = 1⊗ (χ⋊ (χ′ ⊗ e)) + χ⊗ (χ′ ⊗ e) + χ−1 ⊗ (χχ′ ⊗ c).
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The situation for GSpin2 is similar except that χ⋊ (χ′ ⊗ e) = χ′χ−1 ⋊

(χ′ ⊗ c). Thus, we take

µ∗(χ⋊ (χ′ ⊗ e)) = 1⊗ (χ⋊ (χ′ ⊗ e)) + χ⊗ (χ′ ⊗ e) + χ′χ−1 ⊗ (χ′ ⊗ c).

For SO2, we have χ⊗ (1⊗ e) = χ−1 ⊗ (1⊗ c) and take

µ∗(χ⋊ (1⊗ e)) = 1⊗ (χ⋊ (1⊗ e)) + χ⊗ (1⊗ e) + χ−1 ⊗ (1⊗ c).

In any of these cases, we linearly extend µ∗ to a map µ∗ : R[D] −→
R⊗R[D].
We take ⋊̃ defined by

(ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ d)⋊̃(ρ⊗ σ) =





(ρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ σ)
for Gn = SO2n,
(ρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ ωρ̃1σ)
for Gn = GSO2n,
(ωσρ1 × ρ2 × ρ)⊗ d(ρ3 ⋊ σ)
for Gn = GSpin2n.

Then,

µ∗(λ⋊ π) = N∗(λ)⋊̃µ∗(π).

We note that this follows from [Kim16] for Gn = GSpin2n; for Gn =
GSO2n, the argument is similar to that for SO2n in [JL14].

3.1. Structure of GSpin∗
2n+2(F ). The purpose of this subsection is

to establish certain key properties of GSpin∗
2n+2. To this end, let E be

a quadratic extension of F ; write E = F (
√
ε). In particular, the goal

here is to understand the F -data, maximal non-split torus, and Weyl
group action and apply them to obtain the µ∗ structure, description of
characters, and calculation of I(sα̃, τ ⊗ σ(0)).
Given an algebraic group G over F , the set of isomorphism classes of

F -forms is in bijection with H1(Gal(F̄ /F ), Aut(G)) (see [Ser97, Chap-
ter III.1]), where Aut(G) is the group of F̄ -automorphisms of G. Then,
the F -rational points of an F -form H of G can be obtained as follows:

H(F ) = {x ∈ G(F̄ ) : as(s(x)) = x for all s ∈ Gal(F̄ /F )},
where as is a 1-cocycle corresponding to H .
Let σ be the nontrivial element of Gal(E/F ) and c be the outer con-

jugation corresponding to reflection of the Dynkin diagram ofGSpin2n+2.
Let aσ = c. Then, we have the following concrete realization of the

quasi-split GSpin
(ε)
2n+2(F ):

GSpin
(ε)
2n+2(F ) = {X ∈ GSpin2n+2(E) | σ(X) = c ·X}.

We thank Kwangho Choiy for helpful discussions on this realization.
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We start by looking at tori. In GSpin2n+2(E), set

d(a1, . . . , an, an+1, a0) = ě1(a1) . . . ěn(an)ěn+1(an+1)ě0(a0),

as above. Then, the maximal split torus in GSpin2n+2(E) is

{d(a1, . . . , an, an+1, a0) | ai ∈ E× for all i = 0, 1, . . . , n+ 1}
To lie in the maximal (non-split) torus in GSpin

(ε)
2n+2(F ), we then re-

quire

d(σ(a1), . . . , σ(an), σ(an+1), σ(a0)) = c · d(a1, . . . , an, an+1, a0)

= d(a1, . . . , an, a
−1
n+1, an+1a0),

noting the action of c is given by [HS16, Lemma 4.5]. This then tells
us

σ(a1) = a1, . . . , σ(an) = an, σ(an+1) = a−1
n+1, σ(a0) = an+1a0

⇓
a1, . . . , an ∈ F×, an+1 = σ(a0)a

−1
0 , a0 ∈ E×.

Thus, the maximal non-split torus in GSpin
(ε)
2n+2(F ) is

T = {d(a1, . . . , an, σ(a0)/a0, a0) | ai ∈ F× for i = 1, . . . n, a0 ∈ E×}
For a0 ∈ F×, we have σ(a0)/a0 = 1, so the maximal split torus in

GSpin
(ε)
2n+2(F ) is

A = {d(a1, . . . , an, 1, a0) | ai ∈ F× for i = 0, . . . , n}
(elements written as d(a1, . . . , an, a0) earlier).

For the F -roots forGSpin
(ε)
2n+2(F ), we restrict the roots forGSpin2n+2(E)

to A. To make the results clearer, let

Ei = ei|A for i = 0, . . . , n.

Of course, a Z-basis for the rational characters is

XF = {E1, . . . , En, E0}.
Then,

(e1 − e2)|A = E1 − E2, . . . , (en−1 − en)|A = En−1 −En

and
(en − en+1)|A = (en + en+1)|A = En.

Thus, the simple F -roots are

ΠF = {E1 − E2, . . . , En−1 −En, En}.
A Z-basis for the F -cocharacters for GSpin

(ε)
2n+2(F ) is

X̌F = {Ě1, . . . , Ěn, Ě0},
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where Ěi = ěi|F× viewed as a cocharacter into S∗. This is easily seen

to satisfy Ěj(Ei) = δi,j (calculated via tĚj(Ei) = Ei(Ěj(t)). It remains
to determine Π̌F .
At this point, we note that philosophically, we can move between

the relative Weyl group W ∗
F (see [Spr98, Section 15.3]), a W ∗

F -invariant
inner product, and the F-coroots. That is, given one, the other two
may be determined. In the discussion below, we start with the relative
Weyl group. From this, we then construct a W ∗

F -invariant product and
use that to determine the coroots.
We first observe that W ∗

F consists of the c-invariant elements of W .

To be more precise, recall that c · ěk =
{
ěk for 0 ≤ k ≤ n,
ě0 − ěn+1 for k = n+ 1

(see

[HS16, Lemma 4.5]). It is then a fairly straightforward matter to check
that w ∈ W is c-invariant if and only if w·ěn+1 = ěn+1 or ě0−ěn+1. This
immediately gives a well-defined action of a c-invariant w on Ě0, . . . , Ěn
(via w · Ěi = (w · ěi)|F×). On the other hand, if w ∈ W ∗

F , we may lift it
to a corresponding element w′ ∈ W by defining the action of w′ on ěi,
i = 0, 1, . . . , n+1. There is an obvious action of w on ěi, i = 0, 1, . . . , n
(lifting from Ěi = ěi|F×); we take w′ · ěi = w · ěi for i = 0, 1, . . . , n. For
i = n+ 1, we define

w′ · ěn+1 =

{
ěn+1 if w has an even number of sign changes,
ě0 − ěn+1 if w has an odd number of sign changes.

So defined, w′ gives an element of W whose action on A matches that
of w and which is clearly c-invariant. We remark that if si denotes the
simple reflection corresponding to the simple root αi for GSpin2n+2

(usual ordering), then s1, . . . , sn−1, snsn+1 = sn+1sn are c-invariant and
generate W ∗

F . Further, these give rise to the simple reflections corre-
sponding to ΠF as may be seen by their actions via restriction.
We now turn to W -invariant forms, starting with GSpin2n+2(E).

We first note that it is a straightforward calculation to check that 〈·, ·〉
defined by

〈ei, ej〉 =





α if j = i > 0,
0 if j 6= i with i, j > 0,

−1
2
α if i = 0 or j = 0 but not both,
β if i = j = 0,

is invariant under simple reflections, hence a W -invariant, symmetric
bilinear form; positive definite if α, β > 0. It is also c-invariant. Fur-
ther, any positive definite, symmetric, W -invariant bilinear form is 〈·, ·〉
for some α, β > 0. In what follows, we take α = β = 1 for convenience.
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We now define 〈·, ·〉∗ by

〈Ei, Ej〉∗ = 〈ei, ej〉 for 0 ≤ i, j ≤ n,

to get a symmetric, positive definite bilinear form. To show the W ∗
F -

invariance of 〈·, ·〉∗, it suffices to check it for w = s1, . . . , sn−1, snsn+1 =
sn+1sn. For k < n, we note that sk permutes the Ei’s, so sk · Ei =
sk · Ej ⇔ i = j and

〈sk · Ei, sk · Ej〉∗ = δi,j = 〈Ei, Ej〉∗.
For snsn+1, we note that

snsn+1 ·Ei =





E0 + En if i = 0,
Ei if 1 ≤ i ≤ n− 1,
−En if i = n,

from which it is a straightforward calculation to verify 〈snsn+1·Ei, snsn+1·
Ej〉∗ = 〈Ei, Ej〉∗.
We next determine the simple dual F -roots. For an F -root α, we

want

α̌(x1E1 + · · ·+ xnEn + x0E0) = 2
〈α, x1E1 + · · ·+ xnEn + x0E0〉∗

〈α, α〉∗ .

For αi = Ei − Ei+1, 1 ≤ i ≤ n− 1, we get

α̌i(x1E1 + · · ·+ xnEn + x0E0) = xi − xi+1;

for αn = En,

α̌n(x1E1 + · · ·+ xnEn + x0E0) = 2xn − x0.

We then have

Π̌F = {Ě1 − Ě2, . . . , Ěn−1 − Ěn, 2Ěn − Ě0}.
While the action of W ∗

F on A is described above, we also need the
action on T . We now take up this question. For 1 ≤ i ≤ n−1, we have

si · d(a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an, σ(a0)/a0, a0)

= d(a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an, σ(a0)/a0, a0),

and

snsn+1 · d(a1, . . . , an−1, an, σ(a0)/a0, a0)

= d(a1, . . . , an−1, a
−1
n , a0/σ(a0), σ(a0)an).

In particular, note that the action of snsn+1 includes a Galois conjuga-
tion of a0.
We now take a moment to discuss the proof of the formula µ∗(λ⋊π) =

N∗(λ)⋊̃µ∗(π) from above. The proof parallels that of Theorem 5.2 of
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[Tad95] for GSp2n, formally calculating N∗(λ)⋊̃µ∗(π) from the defini-
tions above and comparing it to µ∗(λ⋊π) calculated via [BZ77, Lemma
2.12 (Geometrical Lemma)]. The calculation of N∗(λ)⋊̃µ∗(π) follows
that of [Tad95, Theorem 5.2] very closely. Most of the calculation is,
in fact, just a process of re-indexing summations, which does not de-
pend on the underlying group. The difference in the definitions of ⋊̃ is
what results in the central character of the GSpin representation be-
ing attached to the inverted GL representation rather than the other
way around. (Technical note: [Tad95] does the contragredient for the
inverted GL representations as part of ⋊̃ whereas here we include it in
the definition of N∗, but this is not significant.)
The calculation of µ∗(λ⋊π) from [BZ77] is done using the Weyl group

double-coset representatives calculated in [Tad95, Section 4]. These
calculations depend only on the Weyl group, not the underlying group,
so we have the same representatives for GSpin∗

2n+2. The difference
here arises in the action of these double-coset representatives, done in
[Tad95, Lemma 5.1] and the discussion immediately preceding it. In
particular, using the superscript to denote the rank of the underlying
group and following the notation of [Tad95],

qn(d, k)
−1
i1,i2

(
π
(j)
1 ⊗ π

(i1−d−k)
2 ⊗ π

(d)
3 ⊗ π

(i2−d−k)
4 ⊗ σ(n−i1−i2+d+k)

)

= π
(j)
1 ⊗ π

(i2−d−k)
4 ⊗ ω(π

(d)
3 )∨ ⊗ π

(i1−d−k)
2 ⊗ σ(n−i1−i2+d+k),

where ω = ωσ(n−i1−i2+d+k). With this, the calculation of µ∗(λ⋊ π) then
matches that of N∗⋊̃µ∗(π), as needed.
We next discuss characters of GSpin∗

2n+2(F ). The restriction of a
rational character of GSpin∗

2n+2(F ) to A produces a Weyl-invariant
character of A. Write

λ|A = c1E1 + · · ·+ cnEn + c0E0, c1, . . . , cn, c0 ∈ Z.

Then, for i < n,

si · λ = c1E1 + . . . ci−1Ei−1 + ci+1Ei + ciEi+1 + ci+2Ei+2 + · · ·+ cnEn + c0E0

⇓
ci = ci+1.

For i = n,

sn · λ = c1E1 + · · ·+ cn−1En−1 + (c0 − cn)En + c0E0

⇓
cn = c0 − cn.

Combining these, we get λ = cE1 + . . . cEn−1 + 2cEn + cE0. We take
c = 1 for our basic character, so ξn|A = E1 + · · ·+ En + 2E0.
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We now determine I(sα̃, τ⊗σ(0)) for GSpin∗
2n+2. By [Sha10, Section

1.2], we may use the F -roots to calculate 〈ρU , α〉. By [Sha10, (1.2.6)],
we have

〈ρU , α〉 = 2
(ρU , α)

(α, α)
,

where (·, ·) denotes a W -invariant inner product. Note that this is also
α̌(ρU ), which can be used with the dual roots above.
We first look at ρUmin for the Borel subgroup. The positive F -roots

are Ei − Ej for i < j (1-dimensional root space), Ei + Ej for i < j
(1-dimensional root space), Ei (2-dimensional root space–corresponds
to uei−en+1(x)uei+en+1(x̄), x ∈ E). Then,

ρUmin =
1

2

(
n∑

i=1

n∑

j=i+1

1[(Ei − Ej) + (Ei + Ej)] +

n∑

i=1

2[Ei]

)
=

n∑

i=1

(n−i+1)Ei,

noting the coefficients of 1 or 2 depend on the dimension of the root
space. For the standard parabolic subgroup P having M = GLk(F )×
GSpin∗

2(n−k)+2(F ), we have

ρU = ρUmin − ρUM,min

=
n∑

i=1

(n− i+ 1)Ei −
[
1

2

k∑

i=1

k∑

j=i+1

(Ei − Ej) +
n∑

i=k+1

(n− i+ 1)Ei

]

=
k∑

i=1

(
n+

−k + 1

2

)
Ei

If we observe that

α̌ =

{
Ěk − Ěk+1 if k < n,
2Ěn − Ě0 if k = n,

we immediately obtain

〈ρP , α̌〉 =
{
n + −k+1

2
if k < n,

n + 1 if k = n.

Thus,

α̃ =

{
E1 + · · ·+ Ek for k < n,
1
2
(E1 + · · ·+ En) for k = n.

Noting that determinant on GLk corresponds to E1+ · · ·+Ek, we then
see

I(sα̃, τ ⊗ σ(0)) =

{
νsτ ⋊ σ(0) for k < n,
ν
s
2 τ ⋊ σ(0) for k = n.
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Remark 3.13. While char(F ) 6= 2 is enough for most of the discussion
in §3, there is one key result which requires char(F ) = 0 (at least at
present): the characterization of generic cuspidal reducibility points
(Cα) (based on [Sha90a]).

4. Generic representations

In this section, we classify irreducible generic representations for the
groups under consideration. Although not essential to the discussion
which follows, in §4.1 we classify their Whittaker modules. §4.2 con-
structs a basic family of representations needed later, which are es-
sentially generalized Steinberg representations. In §4.3, we start our
classification by classifying square-integrable generic representations.
Building on this, we classify irreducible tempered generic representa-
tions in §4.4 and irreducible generic (admissible) representations in
§4.5.
We note that the assumption char(F ) = 0 is not needed in §4.1;

char(F ) 6= 2 suffices. However, the Standard Module Conjecture
([HO13]), generic cuspidal reducibility conditions (Cα) (using [Sha90a])
and R-group results (following [Gol94], etc.) all use char(F ) = 0. So,
while the requirement char(F ) = 0 is not directly needed in the combi-
natorial arguments presented in the rest of §4, the results do not hold
without it.

4.1. Whittaker models. Recall that an irreducible representation is
called generic if it admits a nontrivial Whittaker model. In this sec-
tion, we review the properties of Whittaker models and classify the
Whittaker models for the families of groups under consideration. We
remark that this is more information than is actually needed in this
paper but is included for the sake of completeness.
Let G be a quasi-split group defined over F , B = TU a fixed Borel

subgroup, and α1, . . . , αn the corresponding simple roots. To be precise,
we view G as in [Spr98]–a based root datum (X,Π, X̌, Π̌) with an action
of the Galois group (so simple root refers to elements of Π, not F -roots).
Recall (see [Sha74, Appendix] or [Sha88, Section 3]) an F -morphism
f : U −→ F̄ is called non-degenerate if it satisfies the following: for
u = uα1(x1) . . . uαn(xn) (with uαi root subgroup map from F̄ to U
corresponding to α),

f(u) = k1x1 + k2x2 + · · ·+ knxn

with k1, . . . , kn 6= 0. If G is quasi-split but not split, there are additional
constraints described below. A generic character is then one of the form

Ψ(u) = Ψ(uα1(x1)uα2(x2) . . . uαn(xn)) = ψ(k1x1+· · ·+kn−1xn−1+knxn),
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with ψ a fixed nontrivial additive character of F . We remark that by
[Tat67], any other nontrivial additive character has the form ψ(b)(x) =
ψ(bx) for some b ∈ F× hence produces the same family of possible Ψ.
An irreducible representation (π,G(F ), Vπ) is Ψ-generic if it admits a
Whittaker model with respect to Ψ, i.e., there is a nontrivial linear
functional ℓ on Vπ satisfying

ℓ(π(u)v) = Ψ(u)ℓ(v)

for all u ∈ U(F ) and v ∈ Vπ). Note that if π admits a Whittaker model
with respect to Ψ, it is unique ([Rod73] in the split case and [Sha74]
more generally).
For t ∈ T (F ), let t · Ψ(u) = Ψ(t−1ut). As in [Jia06], we note that

if π is Ψ-generic, then π is also t · Ψ generic for all t ∈ T (F ). In par-
ticular, the T (F )-orbits of generic characters parameterize the distinct
Whittaker models. In the remainder of this section, we parameterize
those orits for the groups under consideration.
Let d = d(a1, . . . , an) (for classical groups) and d(a1, . . . , an, a0) (for

similitude groups) be as before.
We begin with the split cases (noting the odd and even special or-

thogonal groups are done in [JS04] and [JL14], respectively, and are
included here for the sake of completeness). For the classical groups,
we have

d−1 ·Ψ[uα1(x1) . . . uαn−1(xn−1)uαn(xn)]

= Ψ[uα1(α1(d)x1) . . . uαn−1(αn−1(d)xn−1)uαn(αn(d)xn)]

=





ψ(k1(a1a
−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(a

2
n)xn)

for Gn = Sp2n,
ψ(k1(a1a

−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(an)xn)

for Gn = SO2n+1,
ψ(k1(a1a

−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn−1kn(an−1an)xn)

for Gn = SO2n.

If we take a1 = ank
−1
1 k−1

2 . . . k−1
n−1, a2 = ank

−1
2 k−1

3 . . . k−1
n−1, . . . , an−1 =

ank
−1
n−1, we get

d−1 ·Ψ[uα1(x1) . . . uαn−1(xn−1)uαn(xn)]
= Ψ[uα1(α1(d)x1) . . . uαn−1(αn−1(d)xn−1)uαn(αn(d)xn)]

=





ψ(x1 + · · ·+ xn−1 + kn(a
2
n)xn) for Gn = Sp2n,

ψ(x1 + · · ·+ kn(an)xn) for Gn = SO2n+1,
ψ(x1 + · · ·+ k−1

n−1kn(a
2
n)xn) for Gn = SO2n.
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From this, we see that there is one orbit of generic characters for SO2n+1

while the generic characters of Sp2n and SO2n are parameterized by
F×/(F×)2.
For the split similitude groups, we have

d−1 ·Ψ[uα1(x1) . . . uαn−1(xn−1), uαn(xn)]
= Ψ[uα1(α1(d)x1) . . . uαn−1(αn−1(d)xn−1)uαn(αn(d)xn)]

=






ψ(k1(a1a
−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(a

2
na

−1
0 )xn)

for Gn = GSp2n,
ψ(k1(a1a

−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(an−1ana

−1
0 )xn)

for Gn = GSO2n,
ψ(k1(a1a

−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(an)xn)

for Gn = GSpin2n+1,
ψ(k1(a1a

−1
2 )x1 + · · ·+ kn−1(an−1a

−1
n )xn−1 + kn(an−1an)xn)

for Gn = GSpin2n.

For Gn = GSp2n, if we choose a0 = k−1
n−1, an = 1, an−1 = k−1

n−1,
an−2 = k−1

n−1k
−1
n−2, . . . , a1 = k−1

n−1k
−1
n−2 . . . k

−1
1 , we get

d−1 ·Ψ(uα1(x1)uα2(x2) . . . uαn(xn)) = ψ(x1 + · · ·+ xn−1 + xn);

for GSO2n, if we choose a0 = k−1
n−1kn, an = 1, an−1 = k−1

n−1, an−2 =
k−1
n−1k

−1
n−2, . . . , a1 = k−1

n−1k
−1
n−2 . . . k

−1
1 , we get

d−1 ·Ψ(uα1(x1)uα2(x2) . . . uαn(xn)) = ψ(x1 + · · ·+ xn−1 + xn).

Thus there is one orbit in both cases. For GSpin2n+1 and GSpin2n,
as the roots match those for SO2n+1 and SO2n, respectively, one can
take a0 = 1 and the remaining values of ak as above to see there is
one orbit in the odd case and orbits parameterized by F×/(F×)2 in the
even case.
We now turn to the quasi-split groups. Fix E = F (

√
ε). First,

Gn = SO∗
2n+2, GSO

∗
2n+2, and GSpin∗

2n+2 have root data that of the
corresponding split groups with Galois action given by c as earlier. In
particular, the F -points are those X ∈ Gn(E) satisfying σ(X) = c ·X
(σ ∈ Gal(E/F ) nontrivial). Similarly, for UN , the root data is that of
GLN with Galois action – also denoted c for convenience – given by
c : X 7−→ J ′

N
−1(TX−1)J ′

N , with J
′
N as earlier. Again, the F -points are

those X ∈ GLN (E) satisfying σ(X) = c ·X .
Let d ∈ Gn(E) in the maximal torus be given by

d =





d(a1, . . . , an, an+1) for Gn = SO∗
2n+2,

d(a1, . . . , an, an+1, a0) for Gn = GSO∗
2n+2, GSpin

∗
2n+2,

d(a1, . . . , an, an+1, an+2, . . . , a2n+1) for Gn = U2n+1,
d(a1, . . . , an, an+1, . . . , a2n) for Gn = U2n.
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Then,

c · d =





d(a1, . . . , an, a
−1
n+1) for Gn = SO∗

2n+2,
d(a1, . . . , an, a0a

−1
n+1, a0) for Gn = GSO∗

2n+2,
d(a1, . . . , an, a

−1
n+1, a0an+1) for Gn = GSpin∗

2n+2,
d(a−1

2n+1, . . . , a
−1
n+2, a

−1
n+1, a

−1
n , . . . , a−1

1 ) for Gn = U2n+1,
d(a−1

2n , . . . , a
−1
n+1, a

−1
n , . . . , a−1

1 ) for Gn = U2n.

Thus, d ∈ Gn(F ) if σ(d) = c · d, i.e.,

Gn condition
SO∗

2n+2 ā1 = a1, . . . , ān = an, ān+1 = a−1
n+1

GSO∗
2n+2 ā1 = a1, . . . , ān = an, ān+1 = a0a

−1
n+1

GSpin∗
2n+2 ā1 = a1, . . . , ān = an, an+1 = ā0a

−1
0

U2n+1 a2n+1 = ā−1
1 , . . . , an+2 = ā−1

n , an+1 = ā−1
n+1

U2n a2n = ā−1
1 , . . . , an+1 = ā−1

n

Table 6. Quasi-split tori

(compare with the descriptions in §3).
Similarly, let u ∈ Gn(E) in the unipotent radical be given by

u =





uα1(x1) . . . uαn−1(xn−1)uαn(xn)uαn+1(xn+1)
for Gn = SO∗

2n+2, GSO
∗
2n+2, GSpin

∗
2n+2,

uα1(x1) . . . uαn(xn)uαn+1(xn+1) . . . uα2n(x2n)
for Gn = U2n+1,
uα1(x1) . . . uαn−1(xn−1)uαn(xn)uαn+1(xn+1) . . . uα2n−1(x2n−1)
for Gn = U2n.

Then

c · u =





uα1(x1) . . . uαn−1(xn−1)uαn+1(xn)uαn(xn+1)
for Gn = SO∗

2n+2, GSO
∗
2n+2, GSpin

∗
2n+2,

uα2n(x1) . . . uαn+1(xn)uαn(xn+1) . . . uα1(x2n)
for Gn = U2n+1,
uα2n−1(x1) . . . uαn+1(xn−1)uαn(xn)uαn−1(xn+1) . . . uα1(x2n−1)
for Gn = U2n.

Thus u ∈ G(F ) if σ(u) = c · u, i.e.,

Gn condition
SO∗

2n+2, GSO
∗
2n+2, GSpin

∗
2n+2 x̄1 = x1, . . . , x̄n−1 = xn−1, x̄n+1 = xn

U2n+1 x2n = x̄1, . . . , xn+1 = x̄n
U2n x2n−1 = x̄1, . . . , xn+1 = x̄n−1, x̄n = xn

Table 7. Unipotent radicals, quasi-split cases
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Note that for SO∗
2n+2, GSO

∗
2n+2, GSpin

∗
2n+2, we have x1, . . . , xn−1 ∈ F

and xn ∈ E; for Gn = U2n+1, U2n, xi ∈ E except for xn ∈ F in the case
of U2n.
Now, let

(4.1) Ψ(u) = ψ(k1x1 + · · ·+ kmxm)

withm = n+1 (resp., 2n, 2n−1) forGn = SO∗
2n+2, GSO

∗
2n+2, GSpin

∗
2n+2

(resp., Gn = U2n+1, Gn = U2n). Writing ki = kαi , the coefficients must
satisfy σ(kαi) = kc·αi (see [Sha88, Section 3] or [Sha74, Appendix]).
This results in the same constraints as in Table 7 with ki in place of
xi. In particular,
(4.2)

Ψ(u) =






ψ(k1x1 + · · ·+ kn−1xn−1 + knxn + k̄nx̄n)
for Gn = SO∗

2n+2, GSO
∗
2n+2, GSpin

∗
2n+2,

ψ(k1x1 + · · ·+ knxn + k̄nx̄n + · · ·+ k̄1x̄1)
for Gn = U2n+1,
ψ(k1x1 + · · ·+ kn−1xn−1 + knxn + k̄n−1x̄n−1 + . . . k̄1x̄1)
for Gn = U2n.

Next, in (4.1), we have

d−1 ·Ψ(u) = Ψ(d · u) = ψ
(
α1(d)k1x1 + · · ·+ αm(d)kmxm

)
.

For Gn = SO∗
2n+2, GSO

∗
2n+2, GSpin

∗
2n+2, using Table 6 above, we

have
α1(d) = a1a

−1
2 , . . . , αn−1(d) = an−1a

−1
n ,

and

αn(d) = ana
−1
n+1 =

{
ana

−1
n+1 for Gn = SO∗

2n+2, GSO
∗
2n+2

ana0ā
−1
0 for Gn = GSpin∗

2n+2,

αn+1(d) =






anan+1 = ānā
−1
n+1 for Gn = SO∗

2n+2,
anan+1a

−1
0 = ānā

−1
n+1 for Gn = GSO∗

2n+2,
anan+1 = ānā0a

−1
0 for Gn = GSpin∗

2n+2.

For Gn = SO∗
2n+2, taking aj = ank

−1
n k−1

n−1 . . . k
−1
j for 1 ≤ j ≤ n − 1

(noting that a1, . . . , an, k1, . . . , kn−1 ∈ F×) gives

(4.3) Ψ(d · u) = ψ(x1 + · · ·+ xn−1 + knana
−1
n+1xn + k̄nānā

−1
n+1x̄n).

Since kn ∈ E×, an ∈ F×, and an+1 ∈ N1(E/F ), we have orbits pa-
rameterized by E×/(F× ·N1(E/F )). The situation for Gn = GSO∗

2n+2

is similar except that instead of an+1ān+1 = 1 we have an+1ān+1 = a0
(a0 ∈ F×), so may choose an = 1, an+1 = kn and a0 = an+1ān+1 to
reduce (4.3) to

Ψ(d · u) = ψ(x1 + · · ·+ xn−1 + xn + x̄n),
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telling us there is only one orbit of generic characters in this case. For
Gn = GSpin∗

2n+2, again taking aj = ank
−1
n k−1

n−1 . . . k
−1
j for 1 ≤ j ≤ n−1

(noting that a1, . . . , an, k1, . . . , kn−1 ∈ F×) gives

Ψ(d · u) = ψ(x1 + · · ·+ xn−1 + knana0ā
−1
0 xn + k̄nānā0a

−1
0 x̄n).

With kn ∈ E×, a0ā
−1
0 ∈ N1(E/F ), and an ∈ F× (and noting every

element of N1(E/F ) may be written in the form a0ā
−1
0 by Hilbert’s

Theorem 90), we again have the orbits of generic characters parame-
terized by E×/(F× ·N1(E/F )).
For Gn = U2n+1, using Table 6 above, we have

α1(d) = a1a
−1
2 , . . . , αn(d) = ana

−1
n+1,

αn+1(d) = an+1a
−1
n+2 = ānā

−1
n+1, . . . , α2n(d) = a2na

−1
2n+1 = ā1ā

−1
2 .

Noting that aj , kj ∈ E× for 1 ≤ j ≤ n and an+1 ∈ N1(E/F ), we may
take an+1 = 1 and aj = ank

−1
n k−1

n−1 . . . k
−1
j for 1 ≤ j ≤ n. Then, (4.2)

becomes

Ψ(d · u) = ψ(x1 + · · ·+ xn−1 + xn + x̄n + x̄n−1 + · · ·+ x̄1),

telling us there is only one orbit of generic characters. Since Gn =
GU2n+1 has the same unipotent radical but larger torus, it also has
only one orbit of generic characters.
For Gn = U2n, using Table 6 above, we have

α1(d) = a1a
−1
2 , . . . , αn−1(d) = an−1a

−1
n and αn(d) = ana

−1
n+1 = anān,

αn+1(d) = an+1a
−1
n+2 = ān−1ā

−1
n , . . . , α2n(d) = a2na

−1
2n+1 = ā1ā

−1
2 .

We may take aj = ank
−1
n k−1

n−1 . . . k
−1
j for 1 ≤ j ≤ n− 1 (noting aj, kj ∈

E× for 1 ≤ j ≤ n except that kn ∈ F×). Then, (4.2) becomes

Ψ(d · u) = ψ(x1 + · · ·+ xn−1 + knanānxn + x̄n−1 + · · ·+ x̄1),

telling us the orbits of generic characters are parameterized by F×/N×(E/F ).
For GU2n, the matrix realization tells us d′ = d(1, . . . , 1, a0) (noting
a0 ∈ F×) has

Ψ(d′d · u) = ψ(x1 + · · ·+ xn−1 + kna
−1
0 anānxn + x̄n−1 + · · ·+ x̄1),

so we may choose an = 1 and a0 = kn to reduce to ψ(x1 + · · ·+ xn−1 +
xn + x̄n−1 + · · ·+ x̄1) and see that there is only one orbit in this case
(n.b. x1, . . . , xn−1 ∈ E and xn ∈ F ).
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4.2. Generalized Steinberg representations. In this section, we
construct a family of representations which we call generalized Stein-
berg representations, as well as establishing some properties of them
needed later. Except for τ ⋊ σ(0) or its irreducible subquotients in
the (C0) or (CN) cases, they are essentially square-integrable repre-
sentations. For similitude groups, note that the assumption σ(0) uni-
tary ensures unitary central character for GSpin groups, giving square-
integrable representations in those cases; for other similitude groups,
a suitable twist is needed to make them square-integrable representa-
tions. For α > 0, these are strongly positive square-integrable represen-
tations (see [MT02] in the classical case, as well as [Kim15], [Kim16],
[KM19] for some of the other families considered; also [Mui06]). We
note that the results in this section do not involve genericity except for
Corollary 4.6.
The following is known in some settings ([Tad98a]):

Lemma 4.1. Let τ be an irreducible unitary supercuspidal representa-
tion of Hm(F ) and σ

(0) an irreducible unitary supercuspidal representa-
tion of Gm0(F ). Further, assume that (τ ; σ(0)) satisfies (Cα) for some
α 6∈ {0, 1, N}. Then, δ([ν−1τ, ντ ])⋊ σ(0) is irreducible.

Proof. Note that the hypotheses imply τ ⊗ σ(0) ramified (see (3.5)). In
particular, if Gn = SO2n, GSO2n, or GSpin2n, the minimal (nonzero)
Jacquet module has 8 terms, the same as for the other families consid-
ered (as either τ is from an even-dimensional general linear group or
the leftover sign changes can be absorbed into σ(0)).
By duality ([Aub95]), it suffices to show that ζ([ν−1τ, ντ ]) ⋊ σ(0) is

irreducible. We use an argument from the second example in [Jan98,
Section 6]. Let π be an irreducible subquotient of ζ([ν−1τ, ντ ])⋊σ(0); by
unitarity, necessarily a subrepresentation. Then, using the irreducibil-
ity of ντ ⋊ σ(0), we have

π →֒ ζ([ν−1τ, ντ ])⋊σ(0) →֒ ζ([ν−1τ, τ ])×ντ⋊σ(0) ∼= ζ([ν−1τ, τ ])×ν−1τ⋊νκσ(0),

where

κ =

{
m for Gn = GSp2n, GSO2n, GSO

∗
2n+2, GU2n+1, or GU2n,

0 otherwise.

By the irreducibility of ζ([ν−1τ, τ ])× ν−1τ , we have

π →֒ ν−1τ × ζ([ν−1τ, τ ])⋊ νκσ(0) →֒ ν−1ρ× ν−1τ ⋊ (τ ⋊ νκσ(0)).

By the (subrepresentation version of the) Langlands classification, π =
Lsub(ν

−1τ × ν−1τ ⊗ τ ⋊ νκσ(0)), noting that τ ⋊ νκσ(0) is irreducible by
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hypothesis and Lemma 3.3. As this applies to any irreducible subquo-
tient, and Lsub(ν

−1τ ×ν−1τ ⊗ τ ⋊νκσ(0)) appears with multiplicity one
in ν−1τ × ν−1τ ⋊ (τ ⋊ νκσ(0)), we have the irreducibility claimed. �

The following is based on [Gol94] (also [Gol95], [Gol97]) and requires
characteristic zero.

Corollary 4.2. With hypotheses as in Lemma 4.1, we have δ([ν−1τ, ντ ])×
τ ⋊ σ(0) irreducible.

Proof. For G = SO2n+1, Sp2n, or SO2n (resp., G = U2n or U2n+1; G =
GSp2n, GU2n, GU2n+1; G = SO∗

2n+2; G = GSpin2n+1 or GSpin2n), the
result follows from the irreducibility results above and [Gol94] (resp.,
[Gol95]; [Gol97]; [LMT04]; [BG15]).
Note that δ([ν−1τ, ντ ])⋊σ(0) and τ⋊σ(0) are irreducible (by Lemma 4.1

and the the assumption (Cα) with α 6∈ {0, 1, N}). That this implies
δ([ν−1τ, ντ ])× τ ⋊ σ(0) is irreducible follows as in [Gol94, Section 4]
We sketch the argument, using the notation of [Gol94]. First, we

observe that

W (δ([ν−1τ, ντ ])⊗ τ ⊗ σ(0)) = {w ∈ W | w(δ([ν−1τ, ντ ])⊗ τ ⊗ σ(0))

∼= δ([ν−1τ, ντ ])⊗ τ ⊗ σ(0)}
∼= Z2

2.

Recall that the R-group is

R = {w ∈ W (δ([ν−1τ, ντ ])⊗ τ ⊗ σ(0)) |wβ > 0 for all β ∈ ∆′},
where ∆′ = {α ∈ Φ(P,A) |µα(δ([ν−1τ, ντ ]) ⊗ τ ⊗ σ(0)) = 0} (with
µα(δ([ν

−1τ, ντ ])⊗τ⊗σ(0)) the Plancherel measure as in [Gol94])). Now,
suppose τ is a representation of Hm1(F ) and σ(0) a representation of
Gm0(F ) (defining m0, m1); by abuse of notation, we also let ei denote
the restriction to A of ei. If we show ∆′ = Φ(P,A) = {α3m1 , α4m1},
where αk denotes the kth simple root as listed in the Appendix, then
W (δ([ν−1τ, ντ ]) ⊗ τ ⊗ σ(0)) is the Weyl group for ∆′, so R = 1 and
we have irreducibility. That ∆′ = Φ(P,A) follows as in Lemma 4.8
of [Gol94]: both τ ⊗ σ(0) and δ([ν−1τ, ντ ]) ⊗ σ(0) are ramified and
both τ ⋊ σ(0) and δ([ν−1τ, ντ ]) ⋊ σ(0) are irreducible. Consequently,
µ(δ([ν−1τ, ντ ])⊗ σ(0)) = 0 and µ(τ ⊗ σ(0)) = 0. As µα′

1
(δ([ν−1τ, ντ ])⊗

τ ⊗ σ(0)) = µ(δ([ν−1τ, ντ ]) ⊗ σ(0)) and µα′

2
(δ([ν−1τ, ντ ]) ⊗ τ ⊗ σ(0)) =

µ(τ ⊗ σ(0)), we have ∆′ as claimed. �

Lemma 4.3 below is done in [Tad98a, Section 6] for G = SO2n+1 and
Sp2n; the proof here uses the same basic approach. To facilitate the
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proof, we borrow some notation from [Tad98a], which is used frequently
in the remainder of this section and §4.3.
Let α = (m1, . . . , mk) be a tuple having m1 + · · ·+mk ≤ n and Mα

the standard parabolic subgroup of Gn having M ∼= Hm1(F ) × · · · ×
Hmk(F )×Gn−(m1+···+mk)(F ). We then set

(4.4) sα = rMα,Gn.

Similar notation is used for general linear groups but with rα replacing
sα. If a representation of Gn(F ) is a subquotient of some τ1×· · ·×τk⋊σ
with τi a supercuspidal representation of Hmτi

(F ) and σ a supercuspi-
dal representation of Gm0(F ), we let sGL = s(m1+···+mk).

Lemma 4.3. Suppose (τ ; σ(0)) satisfies (Cα) with α 6∈ {0, 1, N}. Then
δ([τ, ντ ])⋊ σ(0) is irreducible.

Proof. Suppose δ([τ, ντ ])⋊ σ(0) were reducible. As

s(m)(δ([τ, ντ ])⋊ σ(0)) = ντ ⊗ (τ ⋊ σ(0)) + τ ⊗ (ντ ⋊ σ(0)),

(noting that the hypotheses imply τ⊗σ(0) ramified) with both terms on
the right-hand side irreducible, we must have δ([τ, ντ ])⋊σ(0) = λ1+λ2,
where s(m)(λ1) = ντ ⊗ (τ ⋊ σ(0)) and s(m)(λ2) = τ ⊗ (ντ ⋊ σ(0)). We

now consider δ([ν−1τ, τ ])× δ([τ, ντ ])⋊ σ(0). On the one hand,

δ([ν−1τ, τ ])× δ([τ, ντ ])⋊ σ(0) = δ([ν−1τ, τ ])⋊ λ1 + δ([ν−1τ, τ ])⋊ λ2.

On the other hand,

δ([ν−1τ, τ ])× δ([τ, ντ ])⋊ σ(0)

= δ([ν−1τ, ντ ])× τ ⋊ σ(0) + Lsub(δ([ν−1τ, τ ])⊗ δ([τ, ντ ]))⋊ σ(0).

Therefore, noting the irreducibility in Corollary 4.2, we must have
δ([ν−1τ, ντ ])× τ ⋊ σ(0) ≤ δ([ν−1τ, τ ])⋊ λi for some i. However,

|s(m,m,m,m)(δ([ν
−1τ, τ ])⋊ λi)| = 48,

while |s(m,m,m,m)(δ([ν
−1τ, ντ ]) × τ ⋊ σ(0))| = 64, a contradiction. The

lemma follows. �

Proposition 4.4. Suppose (τ ; σ(0)) satisfies either (1) (Cα) for α ∈
1
2
Z with α ≥ 0, or (2) (CN).

(1) If (τ ; σ(0)) satisfies (Cα), suppose b ≥ α with b ≡ αmod 1.
(a) If α = 0, write τ ⋊ σ(0) = T1(τ ; σ

(0)) ⊕ T−1(τ ; σ
(0)) (with

T1(τ ; σ
(0)) the generic component if σ(0) is generic). Then,
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δ([νατ, νbτ ])⋊ σ(0) contains exactly two irreducible subrep-
resentations, which we denote δi([τ, ν

bτ ]; σ(0)), i = ±1 (tak-
ing (δi([τ, ν

bτ ]; σ(0))) = Ti(τ ; σ
(0)) for b = 0). Further, we

have

s(m)

(
δi([τ, ν

bτ ]; σ(0))
)
= νbτ ⊗ δi([τ, ν

b−1τ ; σ(0)).

(b) If α > 0, then δ([νατ, νbτ ]) ⋊ σ(0) contains a unique irre-
ducible subrepresentation, which we denote δ([νατ, νbτ ]; σ(0)).
Further, we have

s(m)

(
δ([νατ, νbτ ]; σ(0))

)
= νbτ ⊗ δ([νατ, νb−1τ ]; σ(0)).

(2) If (τ ; σ(0)) satisfies (CN), suppose b ≥ 0 with b ≡ 0mod 1. Then
δ([τ, νbτ ])⋊σ(0) contains a unique irreducible subrepresentation
δ([τ, νbτ ]; σ(0)). Further, we have

s(m)

(
δ([τ, νbτ ]; σ(0))

)
= νbτ ⊗ δ([τ, νb−1τ ]; σ(0)) if b > 0

for b > 0 (with τ ⋊ σ(0) irreducible for b = 0).

Proof. The proof is by induction on b. The case b = α (resp., b = 0) is
immediate from the definition of (Cα) (resp., (CN)).
To uniformize the presentation, for b > α (resp., b > 0 in the (CN)

case), let
(4.5)

δi(τ, b; σ
(0)) =





δ([νατ, νbτ ]; σ(0)) for (Cα) with α > 0 (i = 1 only),
δi([τ, ν

bτ ]; σ(0)) for (C0) (i = ±1),
δ([τ, νbτ ]; σ(0)) for (CN) (i = 1 only).

Note that it follows from the formula for smin(δi(τ, b; σ
(0))) and the

inductive assumption that s(m)(δi(τ, b; σ
(0))) = νbτ ⊗ δi(τ, b− 1; σ(0)).

We now assume inductively that the result holds for b with b ≥ α.
Consider the induced representations

I =

{
δ([νατ, νb+1τ ])⋊ σ(0) for (Cα),
δ([τ, νb+1τ ])⋊ σ(0) for (CN),

I ′i = νb+1τ ⋊ δi(τ, b; σ
(0)),

and

I ′′ =

{
νb+1τ × δ([νατ, νbτ ])⋊ σ(0) for (Cα),
νb+1τ × δ([τ, νbτ ])⋊ σ(0) for (CN).

Clearly, I →֒ I ′′. To see I ′i →֒ I ′′, note that it follows from induction
and the Jacquet module formula that

sGL(δi(τ, b; σ
(0))) =

{
δ([νατ, νbτ ])⊗ σ(0) for (Cα),
δ([τ, νbτ ])⊗ σ(0) + δ([τ, νbτ ])⊗ σ′(0) for (CN)
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(see (CN) conditions for the possible σ′(0)); note that δ([τ, νbτ ]; σ(0)) ∼=
δ([τ, νbτ ]; σ′(0)). By Frobenius reciprocity–and replacing σ(0) by σ′(0) in
the (CN) case if needed–it follows that I ′i →֒ I ′′.
Observe that from the µ∗ formula, if we interpret α = 0 in the (CN)

case, we have

s(m)(I) = νb+1τ ⊗
(
δi([ν

ατ, νbτ ])⋊ σ(0)
)
+ ν−ατ ⊗ (. . . ),

noting that for GSpin groups, (Cα) and (CN) require ωσ(0) τ̃
∼= τ (and

τ̌ ∼= τ for the remaining groups). The particular representation appear-
ing with ν−ατ is not important for the argument which follows and is
omitted to save space. Similarly,

s(m)(I
′
i) = νb+1τ ⊗ δi(τ, b; σ

(0)) + ν−b−1τ ⊗ (. . . ) + νbτ ⊗ (. . . ),

and

s(m)(I
′′) = νb+1τ ⊗

(
δi([ν

ατ, νbτ ])⋊ σ(0)
)
+ ν−b−1τ ⊗ (. . . )

+ νbτ ⊗ (. . . ) + ν−ατ ⊗ (. . . ).

Note that b + 1 > b,−b − 1,−α. It is then easy to see that νb+1τ ⊗
δi(τ, b; σ

(0)) appears with mutliplicity one in s(m)(I), s(m)(I
′
i), and s(m)(I

′′).
Hence I and I ′i have a common irreducible subquotient π satisfying
s(m)(π) ≥ νb+1τ ⊗ δi(τ, b; σ

(0)). It remains to show that s(m)(π) =

νb+1τ ⊗ δi(τ, b; σ
(0)). However, we immediately see that as long as

b 6= −α, the only term in common between s(m)(I) and s(m)(I
′
i) is

νb+1τ ⊗ δi(τ, b; σ
(0)). Then,

s(m)(δi(τ, b+ 1; σ(0))) = νb+1τ ⊗ δi(τ, b; σ
(0)),

from which the result is immediate.
If b = −α, we must have α = 0 and b = 0. In particular, (τ ; σ(0)) is

either (C0) or (CN). In the (CN) case, note that τ ⋊ σ(0) ∼= τ ⋊ σ′(0)

with σ′(0) depending on the group, but σ′(0) 6∼= σ(0). Observe that
ντ ⊗ τ ⊗ σ(0) is regular. Further, we have

δ([τ, ντ ])⋊ σ ≤ ντ × τ ⋊ σ(0)

and

δ([τ, ντ ])⋊ σ′(0) ≤ ντ × τ ⋊ σ′(0) = ντ × τ ⋊ σ(0).

As

s(m)(δ([τ, ντ ])⋊ σ(0)) = ντ ⊗ (τ ⋊ σ(0)) + τ ⊗ (ντ ⋊ σ′(0))

and

s(m)(δ([τ, ντ ])⋊ σ′(0)) = ντ ⊗ (τ ⋊ σ(0)) + τ ⊗ (ντ ⋊ σ(0)),
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we see that δ([τ, ντ ])⋊σ(0) and δ([τ, ντ ])⋊σ′(0) must have an irreducible
subquotient in common. Comparing Jacquet modules–and noting ντ⋊
σ(0) 6∼= ντ ⋊ σ′(0)–we see that this irreducible subquotient must have
Jacquet module consising of ντ ⊗ (τ ⋊ σ(0)). The (CN) case follows.
In the (C0) case, we adapt an argument from the proof of [Jan96a,

Proposition 3.11]. We consider some induced representations which
appear in ντ × τ ⋊ σ(0). Observe that (noting the ramified conditions
on τ ⊗ σ(0) required for (C0))

s(m)(δ([τ, ντ ])⋊σ
(0)) = ντ⊗T1(ρ; σ(0))+ντ⊗T−1(τ ; σ

(0))+τ⊗L(ντ⊗σ(0)),

and for i ∈ {±1},
s(m)(ντ⋊Ti(τ ; σ

(0))) = ντ⊗Ti(τ ; σ(0))+ν−1τ⊗Ti(τ ; σ(0))+τ⊗L(ντ⊗σ(0)).

Let πi, i ∈ {±1}, be the irreducible subquotient of ντ × τ ⋊ σ(0) such
that s(m)(πi) contains (the unique copy of) ντ ⊗ Ti(τ ; σ

(0)). Com-
paring Jacquet modules above, we see that these are distinct and
s(m)(πi) ≤ ντ⊗Ti(τ ; σ(0))+τ⊗L(ντ⊗σ). Further, by central character

considerations, we must have πi →֒ ντ ⋊ Ti(τ ; σ
(0)). Now, since

δ([τ, ντ ])⋊ σ(0) →֒ ντ × τ ⋊ σ(0) ∼= ντ ⋊
(
T1(τ ; σ

(0))⊕ T−1(τ ; σ
(0))
)
,

we see that both π1 and π−1 appear as subrepresentations of δ([τ, ντ ])⋊
σ(0). By the Langlands classification, we have L(δ([τ, ντ ]) ⊗ σ(0)) as
unique irreducible quotient, making this distinct from π±1. Looking
at the Jacquet modules above, it is then clear that s(m)(πi) = ντ ⊗
Ti(τ ; σ

(0)) and s(m)(L(δ([τ, ντ ]) ⊗ σ(0)) = τ ⊗ L(ντ ; σ(0)). The result
follows. �

Corollary 4.5. The representations δ([νατ, νbτ ]; σ(0)) (for (Cα) with
α > 0), δi([τ, ν

bτ ]; σ(0)) (for (C0)), and δ([τ, νbτ ]; σ(0)) (for (CN)) of
Proposition 4.4 are essentially square-integrable if b > 0. If b = 0–
which can happen only in the cases of (C0) or (CN)–the representations
are essentially tempered but not essentially square-integrable.

Proof. This follows from the Jacquet module characterization given in
Proposition 4.4 and the Casselman criterion. �

Recall that in the (C0) case, we have chosen T1(τ ; σ
(0)) to be the

ψa-generic component.

Corollary 4.6. The representations δ([νατ, νbτ ]; σ(0)) (for (Cα) with
α > 0), δ1([τ, ν

bτ ]; σ(0)) (for (C0)), and δ([τ, νbτ ]; σ(0)) (for (CN)) of
Proposition 4.4 are ψa-generic.
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Proof. We use the notation of (4.5).
The proof is by induction on b. The base case b = α follows from

the Standard Module Conjecture (for (Cα) with α > 0), choice of
T1(τ ; σ

(0)) (for (C0)), and irreducibility (for (CN)). For b > α, one
observes inductively that both I and I ′1 contain the generic subquotient;
the characterization of δ1(τ, b; σ

(0)) as the unique common irreducible
subquotient then finishes the proof. �

Remark 4.7. A few words on square-integrability vs. essential square-
integrability for similitude groups are in order at this point. Suppose
νx1τ1⊗· · ·⊗νxkτk⊗σ(0) (with τ1, . . . , τk and σ

(0) irreducible unitary su-
percuspidal representations) is in the Jacquet module for an essentially
square-integrable representation π. For Gn = GSpin2n+1, GSpin2n, or
GSpin∗

2n+2, the central character of π is ωσ(0) , so π is square-integrable.
On the other hand, for Gn = GSp2n, GSO2n, GSO

∗
2n+2, GU2n+1, or

GU2n, the central character has the form ωνx1τ1 . . . ωνxkτkω
′
σ(0)

(where
ω′
σ(0)

= ωσ(0) , ω
2
σ(0)

, or ωσ(0) ◦NE/F ). In particular, the central character
is not unitary (by the requirement n1x1 + · · ·+ nkxk > 0 in the Cassel-
man criterion). To obtain a square-integrable representation, one can
twist by a suitable unramified character χ0. This amounts to twisting
σ(0) by χ0 (Lemma 3.3). Thus, for π square-integrable, we write

π →֒ νx1τ1 × . . . νxkτk ⋊ χ0σ
(0),

noting χ0 trivial for classical or general spin groups. For the generalized
Steinberg representations of Proposition 4.4, we write

δi([ν
ατ, νbτ ];χ0σ

(0)) = χ0δi([ν
ατ, νbτ ]; σ(0)),

noting they are generic for i = 1 (by Corollary 4.6). We further note
that for these groups, it follows from Proposition 4.4 and Lemma 3.3
that

s(m, . . . ,m︸ ︷︷ ︸
b−α+1

)

(
δi([ν

ατ, νbτ ];χ0σ
(0))
)
= νbτ ⊗ νb−1τ ⊗ · · · ⊗ νατ ⊗ χ0σ

(0).

Similar notation is used for more general χ0 (not just that needed to
ensure unitarity).

In the classical case, the next lemma may be deduced from [Mui04]
or (via duality) [Jan96a].

Lemma 4.8. Suppose (τ ; σ(0)) satisfies (C1). Let a, b ∈ N with a ≤ b.
Then δ([ντ, νaτ ])⋊ δ([ντ, νbτ ]; σ(0)) is irreducible.
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Proof. We start with the case a = b = 1, upon which the lemma is
inductively based. The proof here follows that in [Tad98a, Proposition
5.1]. Note that to satisfy (C1), we must have τ ⊗ σ(0) ramified.
For a = b = 1, we argue indirectly–suppose ντ ⋊ δ(ντ ; σ(0)) were

reducible. Letting

ω =

{
ωντ for Gn = GSp2n, GSO2n, GSO

∗
2n+2, GU2n+1, GU2n,

1 otherwise,

we have

sGL(ντ ⋊ δ(ντ ; σ(0))) = (ντ × ντ)⊗ σ(0) + (ντ × ν−1τ)⊗ ωσ(0).

Therefore, were the induced representation reducible, one irreducible
subquotient would satisfy sGL(θ) = (ντ × ντ) ⊗ σ(0). Note that by
the Casselman criterion, θ is essentially square-integrable (and square-
integrable for classical and general spin groups–see Table 3).
Consider the induced representations I1 = τ⋊θ, I2 = δ([ν−1τ, ντ ])⋊

ωσ(0), and I3 = ντ × ντ × τ ⋊σ(0). Note that I1, I2 ≤ I3. Observe that
ντ × δ([τ, ντ ]) ⊗ σ(0) appears with multiplicity two in µ∗(Ii) for i =
1, 2, 3. If π ≤ I1 is an irreducible subquotient such that µ∗(π) ≥ ντ ×
δ([τ, ντ ])⊗σ(0), then π ≤ I2 as well. Observe that as I1 is an essentially
unitary representation (see Lemma 3.3 for similitude groups other than
general spin groups), Frobenius reciprocity tells us µ∗(π) ≥ τ ⊗ θ.
However, as there are no terms of the form τ ⊗ . . . in µ∗(I2), we have
a contradiction. Thus we must have had ντ ⋊ δ(ντ ; σ(0)) irreducible.
We next show inductively that ντ ⋊ δ([ντ, νbτ ]; σ(0)) is irreducible,

with the base case b = 1 done above. Observe that (using Proposi-
tion 4.4)

s(m)(ντ ⋊ δ([ντ, νbτ ]; σ(0)))

= ντ ⊗ δ([ντ, νbτ ]; σ(0)) + ν−1τ ⊗ δ([ντ, νbτ ];ωσ(0))

+ νbτ ⊗ ντ ⋊ δ([ντ, νb−1τ ]; σ(0))

= θ + θ′ + θ′′

(defining θ, θ′, θ′′). By inductive hypothesis, all three terms are irre-
ducible. Let π ≤ ντ ⋊δ([ντ, νbτ ]; σ(0)) be irreducible with s(m)(π) ≥ θ′.
Now,

s(m,m)(π) ≥ s(m,m)(θ
′) ≥ ν−1τ ⊗ νbτ ⊗ δ([ντ, νb−1τ ]; σ(0))

⇓
s(2m)(π) ≥ (ν−1τ × νbτ)⊗ δ([ντ, νb−1τ ]; σ(0))

⇓
s(m)π ≥ νbτ ⊗ ...
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noting the irreducibility of ν−1τ×νbτ . In particular, this forces s(m)(π) ≥
θ′′. If b > 2, a similar argument starting with s(m,m)(π) ≥ s(m,m)(θ

′′) ≥
νbτ ⊗ ντ ⊗ δ([ντ, νb−1τ ]; σ(0)) tells us s(m)(π) ≥ θ as well. If b = 2, we

start with s(m,m,m)(π) ≥ s(m,m,m)(θ
′′) ≥ ν2τ ⊗ ντ ⊗ ντ ⊗ σ(0). Then,

s(3m)(π) ≥ δ([ντ, ν2τ ])× ντ ⊗ σ(0) ⇒ s(m)(π) ≥ ντ ⊗ . . . , again giving
s(m)(π) ≥ θ. As we now have s(m)(π) accounting for the entire Jacquet
module, irreducibility follows.
We now address δ([ντ, νaτ ])⋊δ([ντ, νbτ ]; σ(0)). Let π →֒ δ([ντ, νaτ ])⋊

δ([ντ, νbτ ]; σ(0)) be irreducible. Using the irreducibility already proved,
we have

π →֒ νaτ × · · · × ν3τ × ν2τ × ντ ⋊ δ([ντ, νbτ ]; σ(0))
∼= νaτ × · · · × ν3τ × ν2τ × ν−1τ ⋊ δ([ντ, νbτ ];ωσ(0))
∼= ν−1τ × νaτ × · · · × ν3τ × ν2τ ⋊ δ([ντ, νbτ ];ωσ(0))
→֒ ν−1τ × νaτ × · · · × ν3τ × ν2τ × δ([ντ, νbτ ])⋊ ωσ(0)

∼= ν−1τ × δ([ντ, νbτ ])× νaτ × · · · × ν3τ × ν2τ ⋊ ωσ(0)

∼= ν−1τ × δ([ντ, νbτ ])× νaτ × · · · × ν3τ × ν−2τ ⋊ ω3σ(0)

∼= ν−1τ × ν−2τ × δ([ντ, νbτ ])× νaτ × · · · × ν3τ ⋊ ω3σ(0)

...
∼= ν−1τ × ν−2τ × · · · × ν−aτ ⋊ δ([ντ, νbτ ])⋊ ωrσ(0)

(r = a(a+1)
2

). By [Jan97, Lemma 5.5] (see Lemma 4.10 below), π →֒
λ×δ([ντ, νbτ ])⋊ωrσ(0) for some irreducible λ ≤ ν−1τ×ν−2τ×· · ·×ν−aτ .
Any λ other than δ([ν−aτ, ν−1τ ]) would imply r(m)(λ) ≥ ν−xτ . . . for
some x 6= 1, hence s(m)(π) ≥ ν−xτ ⊗ . . . –a contradiction. Thus,

π →֒ δ([ν−aτ, ν−1τ ])× δ([ντ, νbτ ])⋊ ωrσ(0)

⇓ ([Jan97, Lemma 5.5])
π →֒ δ([ν−aτ, ν−1τ ])⋊ φ

for some irreducible φ ≤ δ([ντ, νbτ ]) ⋊ ωrσ(0). Since the only term of
the form δ([ν−aτ, ν−1τ ])⊗φ in µ∗(δ([ν−aτ, ν−1τ ])⋊ δ([ντ, νbτ ]; σ(0))) is
δ([ν−aτ, ν−1τ ])⊗ δ([ντ, νbτ ];ωrσ(0)), Frobenius reciprocity tells us

π →֒ δ([ν−aτ, ν−1τ ])× δ([ντ, νbτ ];ωrσ(0)).

By the Langlands classification,

π = Lsub(δ([ν
−aτ, ν−1τ ])⊗ δ([ντ, νbτ ];ωrσ

(0)))

= L(δ([ντ, νaτ ])⊗ δ([ντ, νbτ ]; σ(0)))

([Jan98, Lemma 1.1]). Thus, as π appears as both a subrepresentation
and the unique irreducible quotient in δ([ντ, νaτ ]) ⋊ δ([ντ, νbτ ]; σ(0)),
we must have irreducibility, as needed. �



THE GENERIC DUAL OF P-ADIC GROUPS 53

Remark 4.9. More generally, the same argument could be used to show
that in the (C1) case, δ([νcτ, νaτ ])⋊δ([ντ, νbτ ]; σ(0)) is irreducible when
1 ≤ c ≤ a ≤ b.

4.3. Square-integrable generic representations. The starting point
for the classification of generic admissible representations is the classi-
fication of square-integrable generic representations, which we address
in this section.
We begin with a general lemma, which is essentially a combination

of [Jan97, Lemma 5.5] and a result of [Rod73], applied as in [Mui98b,
Lemma 1.1]:

Lemma 4.10. Suppose π is an irreducible representation with π →֒
iG,L(λ). If M > L, we have the following:

(1) There is an irreducible θ ≤ iM,L(λ) such that π →֒ iG,M(θ).
(2) If π is generic (so that λ generic), then θ must be the irreducible

generic subquotient of iM,L(λ).

We record the following conditions on essentially square-integrable
representations of general groups δ([ν−aτ, νbτ ]) needed in the classifi-
cation of square-integrable generic representations:

(DS1): If (τ ; σ(0)) satisfies (C1), then a ∈ N ∪ {−1}.
(DS2): If (τ ; σ(0)) satisfies (C0), then a ∈ Z≥0.
(DS3): If (τ ; σ(0)) satisfies (C1/2), then a ∈ −1

2
+ Z≥0.

(DS4): If (τ ; σ(0)) satisfies (CN), then a ∈ Z≥0.

We retain the Jacquet module notation of (4.4).

Lemma 4.11. Suppose (τ ; σ(0)) satisfies (Cα) or (CN) with δ([ν−aτ, νbτ ])
satisfying (the appropriate one of) (DS1)–(DS4) above. Let π be the
irreducible generic subquotient of δ([ν−aτ, νbτ ])⋊σ(0), with b > a. Then
if η ⊗ θ is an irreducible representation occurring in sGL(π), we have

(4.6) η ≤ 2

|a|∑

i=−a

δ([ν−i+1τ, νaτ ])× δ([νiτ, νbτ ]).

Proof. The only cases with a < 0 have a = −1
2
(in the (C1/2) case)

and a = −1 (in the (C1) case). In these situations, it follows from
Corollary 4.6 that π is a generalized Steinberg representation. The
result then follows from Proposition 4.4. In the (C0) and (CN) cases,
a = 0 also corresponds to a generalized Steinberg; in the (C1/2) and
(C1) cases, a = 0 does not satisfy (DS1) or (DS3). Thus, we assume
a > 0 below (so also have |a| = a).
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As b ≥ a+ 1 > 1, we have

π ≤ δ([ν−aτ, να−1τ ])× δ([νατ, νbτ ])⋊ σ(0)

⇓ (Lemma 4.10 and Corollary 4.6)
π ≤ δ([ν−aτ, να−1τ ])× δ1([ν

ατ, νbτ ]; σ(0)).

By Proposition 4.4 and the µ∗ structure, we immediately see that
ν−a−1τ, ν−a−2τ, . . . , ν−bτ do not appear in the supercuspidal support
of π. On the other hand, consider

sGL(π) ≤ sGL(δ([ν
−aτ, νbτ ])⋊ σ(0))

=
b+1∑

i=−a

δ([ν−i+1τ, νaτ ])× δ([νiτ, νbτ ])⊗ ωi,a,τ (c
mi,a,τ · σ(0)),

with ωi,a,τ depending on the group (but nontrivial only forGn = GSp2n,
GSO2n, GSO

∗
2n+2, GU2n+1, and GU2n) and cmi,s,τ relevant only for

SO∗
2n+2, GSO2n, GSO

∗
2n+2, GSpin2n, and GSpin

∗
2n+2 in the (CN) case.

Here, terms from ν−a−1τ, ν−a−2τ, . . . , ν−bτ do appear when i ≥ a + 2.
It follows that

sGL(π) ≤
a+1∑

i=−a

δ([ν−i+1τ, νaτ ])× δ([νiτ, νbτ ])⊗ ωi,a,τ (c
mi,a,τ · σ(0)).

Now, for i = a + 1, we have

δ([ν−aτ, νaτ ])× δ([νa+1τ, νbτ ])

= δ([ν−aτ, νbτ ]) + L(δ([νa+1τ, νbτ ])⊗ δ([ν−aτ, νaτ ])).

Observe that δ([ν−aτ, νbτ ]) occurs in right-hand side of (4.6) as a
second copy of the term corresponding to i = −a, so is not an is-
sue. For L(δ([νa+1τ, νbτ ]) ⊗ δ([ν−aτ, νaτ ])) observe that any term in
rmin(L(δ([νa+1τ, νbτ ]) ⊗ δ([ν−aτ, νaτ ])) has exactly one ν−aτ, νaτ , and
νa+1τ in its supercuspidal support, and the copy of νaτ always ap-
pears to the left of the copy of νa+1τ . However, to be in sGL(π) ≤
(δ([ν−aτ, νbτ ])⋊ σ(0)), if there is only one copy of νaτ , it must appear
to the right of νa+1τ . The lemma now follows. �

Definition 4.12. Fix σ(0) and let P ′ be a collection of τ ’s such that
(τ ; σ(0)) satisfies (Cα) or (CN) and the appropriate one of (DS1)–
(DS4) above. For each τ ∈ P ′, suppose we have a collection of segments
Di(τ) = [ν−ai(τ)τ, νbi(τ)], i = 1, 2, . . . , eτ , which satisfy

a1(τ) < b1(τ) < a2(τ) < b2(τ) < · · · < aeτ (τ) < beτ (τ).

Let X ′ = {τ ∈ P ′|(τ ; σ(0)) satisfies (C1)}.
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Proposition 4.13. With notation as above, the ψa-irreducible generic
subquotient of

δ(∆1)× · · · × δ(∆k)⋊ χ0σ
(0) =

(
∏

τ∈P ′

eτ∏

i=1

δ([ν−ai(τ)τ, νbi(τ)τ ])

)
⋊ χ0σ

(0)

(defining ∆1, . . . ,∆k) is square-integrable, where χ0 ensures unitary
central character as in Remark 4.7. We denote this representation by
σ(2) = δ(∆1, . . . ,∆k;χ0σ

(0))ψa and write P ′ = P ′(σ(2)), X ′ = X ′(σ(2))
for future reference.

Proof. Following [Tad02, Lemma 4.6], we prove the following by induc-
tion on k:
(4.7)

sGL(π) ≤ d

|a1|∑

i1=−a1

· · ·
|ak|∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])× . . .

×δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])⊗ ωi1,...,ik(c
mi1,...,ik · χ0σ

(0))

for some d depending on σ(0) and the segments, and ωi1,...,ik , c
mi1,...,ik

similar to their counterparts in the proof of Lemma 4.11 above. The
case k = 1 is covered by Lemma 4.11.
Now, observe that for any 1 ≤ j ≤ k,

π ≤ δ(∆j)⋊
(
δ(∆1)× · · · × δ(∆j−1)× δ(∆j+1)× · · · × δ(∆k)⋊ χ0σ

(0)
)

⇓
π ≤ δ(∆j)⋊ λ

for some λ ≤ δ(∆1)× · · · × δ(∆j−1)× δ(∆j+1)× · · · × δ(∆k)⋊ χ0σ
(0).

By genericity, it is the ψa-generic subquotient,

δ(∆1, . . .∆j−1,∆j+1, . . . ,∆k;χ0σ
(0))ψa ,

essentially square-integrable by inductive hypothesis. Thus,

sGL(π) ≤ sGL
(
δ(∆j)⋊ δ(∆1, . . .∆j−1,∆j+1, . . . ,∆k;χ0σ

(0))ψa
)
,

where the right-hand side may be calculated by taking those terms
in N∗(δ(∆j))⋊̃sGL

(
δ(∆1, . . .∆j−1,∆j+1, . . . ,∆k;χ0σ

(0))ψa
)
having N∗
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contribution of the form τ1 ⊗ τ2 ⊗ 1. Then, for each such j, we get

sGL(π)

≤ dj

|a1|∑

i1=−a1

· · ·
|aj−1|∑

ij−1=−aj−1

bj+1∑

ij=−aj

|aj+1|∑

ij+1=−aj+1

· · ·
|ak|∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])× · · · × δ([ν−ik+1τk, ν
akτk])

× δ([νikτk, ν
bkτk])⊗ ωi1,...,ik(c

mi1,...,ik · χ0σ
(0)).

(4.8)

Without loss of generality, we may assume that if τi = τj for some
i < j, then ai < bi < aj < bj . Looking at (4.8) for j = 1 (noting
k > 1), we see that ν−ak−1τk, ν

−ak−2τk, . . . , ν
−bkτk do not appear in

the supercuspidal support of π. Therefore, looking at (4.8) for j = k,
we may refine the bound by removing those terms which contain one
of ν−ak−1τk, ν

−ak−2τk, . . . , ν
−bkτk, i.e., if ak > 0, those terms having

ik > ak + 1. (If ak ≤ 0–which can happen if τi 6= τk for any i < k–
all but ik = |ak| are removed and we immediately obtain the needed
bound.) This gives

sGL(π)

≤ dk

|a1|∑

i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

ak+1∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])⊗ ωi1,...,ik(c
mi1,...,ik · χ0σ

(0)).

(4.9)

The only terms in (4.9) which are not part of (4.7) are those corre-
sponding to ik = ak + 1, i.e.,

dk

|a1|∑

i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik−1+1τk−1, ν
ak−1τk−1])

× δ([νik−1τk−1, ν
bk−1τk−1])× δ([ν−akτk, ν

akτk])

× δ([νak+1τk, ν
bkτk])⊗ ωi1,...,ik−1,ak+1(c

mi1,...,ik−1,ak+1 · χ0σ
(0)).

Now, observe that

δ([ν−akτk, ν
akτk])× δ([νak+1τk, ν

bkτk])

= δ([ν−akτk, ν
bkτk]) + Lsub(δ([ν−akτk, νakτk])⊗ δ([νak+1τk, ν

bkτk])).
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We note that in any term in the Jacquet module of Lsub(δ([ν−akτk, νakτk])⊗
δ([νak+1τk, ν

bkτk])), the copy of ν
akτk always precedes the copy of ν

ak+1τk;
the opposite holds for δ([ν−akτk, ν

bkτk]). Now, looking at (4.8) with
j = 1, we see the only terms there having ν−akτk in their supercuspidal
support are those corresponding to ik = −ak, which all have the form
· · ·×δ([ν−akτk, νbkτk]). In particular, the only copy of νak+1τk in such a
term always precedes the only copy of νakτk. This means that the terms
above coming from Lsub(δ([ν−akτk, νakτk]) ⊗ δ([νak+1τk, ν

bkτk])) × . . .
cannot contribute to µ∗

GL(π). Thus, removing those terms from (4.9),
we get

sGL(π)

≤ dk

|a1|∑

i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

|ak|∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])

⊗ ωi1,...,ik(c
mi1,...,ik · χ0σ

(0))

+ dk

|a1|∑

i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik−1+1τk−1, ν
ak−1τk−1])× δ([νik−1τk−1, ν

bk−1τk−1])

× δ([ν−akτk, ν
bkτk])⊗ ωi1,...,ik−1,ak+1(c

mi1,...,ik−1,ak+1 · χ0σ
(0)).

If we take ik = −ak in the first set of sums, we obtain the second set
of sums. Therefore,

sGL(π)

≤ 2dk

|a1|∑

i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

|ak |∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])⊗ ωi1,...,ik(c
mi1,...,ik · χ0σ

(0)),

the needed inequality. Square-integrability is then immediate from the
Casselman criterion. �

Remark 4.14. Observe that proof shows more: any irreducible sub-
quotient appearing in both

δ(∆1)⋊ δ(∆2, . . . ,∆k; σ
(0))ψa

and
δ(∆k)⋊ δ(∆2, . . . ,∆k−1; σ

(0))ψa
is essentially square-integrable.
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We next turn to the task of showing that a square-integrable generic
representation has the form δ(∆1, . . . ,∆k;χ0σ

(0))ψa as in Proposition 4.13.
To start, we restrict the possible supercuspidal support in the next
few lemmas. Note that Lemmas 4.15, 4.16, and 4.17 apply to square-
integrable representations in general, not just square-integrable generic
representations. Thus we assume only that α ∈ {0} ∪ 1

2
N (known for

many of the groups under consideration from [Mœ14] in characteristic
zero and [GL18] in positive characteristic). We also remark that the
first condition in Lemma 4.15 below is equivalent to (τ ; σ(0)) does not
satisfy (Cα) or (CN).

Lemma 4.15. If

τ 6∼=
{
ωσ(0) τ̌ for Gn = GSpin2n+1, GSpin2n, GSpin

∗
2n+2,

τ̌ otherwise,

or x 6∈ 1
2
Z, then νxτ does not appear in the supercuspidal support of a

square-integrable representation.

Proof. The proofs are essentially those in [Tad98a] for classical groups
and symplectic similitude groups or [Asg02] for general spin groups
(noting that the ωσ(0) is missing from [Asg02] but the argument works
the same way).
We first consider the case whereGn 6= SO2n, SO

∗
2n+2, GSO2n, GSO

∗
2n+2,

GSpin2n+1, GSpin2n, or GSpin
∗
2n+2. Now, suppose π were a square-

integrable representation with νxτ in its supercuspidal support but
either τ 6∼= τ̌ or x 6∈ 1

2
Z. Write

π →֒ νx1τ1 × · · · × νxnτn ⋊ χ0σ
(0)

with τ1, . . . , τn, and σ
(0) unitary supercuspidal; χ0 a character chosen to

ensure π has unitary central character (see Remark 4.7). By commuting
arguments, we may assume without loss of generality that

π →֒ νx1τ × · · · × νxkτ × νxk+1 τ̌ × · · · × νxm τ̌ × Λ⋊ χ0σ
(0),

where xi ≡ x mod1 for 1 ≤ i ≤ k, xi ≡ −x mod 1 for k + 1 ≤ i ≤ m,
and Λ = νxm+1τm+1 × · · · × νxnτn has νxiρi 6∈ {νyτ, ν−y τ̌}y∈x+Z for
m + 1 ≤ i ≤ n. Then, by the Casselman criterion (and Frobenius
reciprocity), we have x1 + · · ·+ xk > 0. Also, as (commuting)

νx1τ×· · ·×νxkτ×νxk+1 τ̌×· · ·×νxm τ̌ ∼= νxk+1 τ̌×. . . νxm τ̌×νx1τ×· · ·×νxkτ,

we must have xk+1 + · · ·+ xm > 0.
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Now, suppose x1 + · · ·+ xk ≥ xk+1 + · · ·+ xm. Then,

π →֒ (νx1τ × · · · × νxkτ)× (νxk+1 τ̌ × · · · × νxm τ̌)× Λ⋊ σ(0)

∼= Λ× (νxk+1 τ̌ × · · · × νxm τ̌)× (νx1τ × · · · × νxkτ)⋊ σ(0)

∼= Λ× (νxk+1 τ̌ × · · · × νxm τ̌)× (ν−xk τ̌ × · · · × ν−x1 τ̌ )⋊ ωσ(0)

∼= (νxk+1 τ̌ × · · · × νxm τ̌ )× (ν−xk τ̌ × · · · × νx1 τ̌ )× Λ⋊ ωσ(0)

for the appropriate ω. Observe that xk+1+ · · ·+xm−xk−· · ·−x1 ≤ 0,
contradicting (via Frobenius reciprocity) the Casselman criterion. The
argument if we originally had x1+ · · ·+xk ≤ xk+1+ · · ·+xm is similar
but with νxk+1 τ̌ , . . . , νxm τ̌ getting inverted.
The cases where Gn = SO2n, SO

∗
2n+2, GSO2n, GSpin2n+1, GSO

∗
2n+2,

GSpin2n, or GSpin
∗
2n+2 are similar, but with (1) τ̌ replaced by ωσ(0) τ̌

for Gn = GSpin2n+1, GSpin2n, or GSpin∗
2n+2 (noting that ωσ(0) τ̌ is

still unitary supercuspidal), and (2) σ(0) possibly replaced by cσ(0) in
some places for Gn = SO2n, SO

∗
2n+2, GSO2n, GSO

∗
2n+2, GSpin2n, or

GSpin∗
2n+2. �

For Gn = Sp2n or SO2n+1, the following is a special case of [Tad98a,
Theorem 9.1].

Lemma 4.16. (1) If (τ ; σ(0)) satisfies (Cα) with α ∈ −1
2
+N, then

δ([ν−aτ, νbτ ])⋊ σ(0), b > a, is irreducible when a ∈ Z.
(2) If (τ ; σ(0)) satisfies (CN) or (Cα) with α ∈ Z≥0, then δ([ν

−aτ, νbτ ])⋊
σ(0), b > a, is irreducible when a ∈ 1

2
+ Z.

Proof. First, we address (1) with a ≤ −1. Let π = Lsub(δ([ν
−bτ, νaτ ])⊗

ωσ(0)), where ω is such that δ([ν−bτ, νaτ ]) ⊗ ωσ(0) is conjugate to
δ([ν−aτ, νbτ ]) ⊗ σ(0) (n.b.: τ ⊗ σ(0) ramified ensures that such an ω
exists; trivial for classical or general spin groups). Then,

π →֒ δ([ν−bτ, νaτ ])⋊ ωσ(0)

→֒ νaτ × · · · × ν−b+1τ × ν−bτ ⋊ ωσ(0)

→֒ νaτ × · · · × ν−b+1τ × νbτ ⋊ ω′σ(0)

→֒ νbτ × νaτ × · · · × ν−b+1τ ⋊ ω′σ(0),

noting the irreducibility of νbτ ⋊ σ(0) and νbτ × νxτ for x = a, a −
1, . . . ,−b+ 1. Iterating this processs, we eventually arrive at

π →֒ νbτ × νb−1τ · · · × ν−aτ ⋊ σ(0).
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By Lemma 4.10, we have π →֒ λ ⋊ σ(0) for some irreducible λ ≤
νbτ × νb−1τ · · · × ν−aτ ⋊ σ(0). Any λ other than δ([ν−aτ, νbτ ]) would
have m∗(λ)–hence µ∗(π)–containing a term of the form νxτ ⊗ . . . with
x ∈ {−a,−a + 1, . . . , b − 1}. As this is not possible, we have λ =
δ([ν−aτ, νbτ ]). This makes π both a subrepresentation and unique irre-
ducible quotient (Langlands quotient) of δ([ν−aτ, νbτ ])⋊σ(0), implying
irreducibility. The argument for (2) with a ≤ −1

2
is similar.

We now address (1) when a = 0. In this case, there are terms
in {τ, ντ, . . . , νbτ} and {ν−bτ, . . . , ν−1τ, τ} for which their product is
reducible and the commuting argument above breaks down. We may
repair the argument using Lemma 4.3. First, note that the result is
immediate if b = 0 and follows from Lemma 4.3 if b = 1. Thus, assume
b ≥ 2. Then,

π →֒ δ([ν−bτ, τ ])⋊ ωσ(0)

→֒ δ([ν−1τ, τ ])× ν−2τ × · · · × ν−bτ ⋊ ωσ(0)

∼= νbτ × · · · × ν2τ × δ([ν−1τ, τ ])⋊ ω′σ(0)

∼= νbτ × · · · × ν2τ × δ([τ, ντ ])⋊ σ(0)

using the commuting/inverting argument above in conjunction with
Lemma 4.3. The argument now concludes as above.
We now take up (1) when a > 0. Using the case a ≤ 0 above, we

have
π →֒ δ([ν−bτ, νaτ ])⋊ ωσ(0)

→֒ δ([ντ, νaτ ])× δ([ν−bτ, τ ])⋊ ωσ(0)

∼= δ([ντ, νaτ ])× δ([τ, νbτ ])⋊ ω′σ(0)

∼= δ([τ, νbτ ])× δ([ντ, νaτ ])⋊ ω′σ(0)

∼= δ([τ, νbτ ])× δ([ν−aτ, ν−1τ ])⋊ σ(0)

for the appropriate ω′. By Lemma 4.10, we have either

π →֒ δ([ν−aτ, νbτ ])⋊ σ(0)

or
π →֒ Lsub(δ([ν−aτ, τ ])⊗ δ([ντ, νbτ ]))⋊ σ(0).

As the latter would imply µ∗(π) contains terms of the form τ ⊗ . . . ,
which is not the case as µ∗(π) ≤ N∗

(
δ([ν−aτ, νbτ ])

)
⋊̃(1⊗σ(0)), it must

be the former. Again, π appears as both the unique irreducible quotient
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(Langlands quotient) and as a subrepresentation in δ([ν−aτ, νbτ ])⋊σ(0),
implying irreducibility, as needed. �

Lemma 4.17. Suppose (τ ; σ(0)) satisfies (Cα) or (CN). Then νxτ can
appear in the supercuspidal support of a square-integrable representa-
tion only if x ∈ α + Z (resp., x ∈ Z in the (CN) case).

Proof. By Lemma 4.15, we need eliminate only the following possibili-
ties: (1) x ∈ Z in the (Cα) case when α ∈ 1

2
+ Z≥0, and (2) x ∈ 1

2
+ Z

in the (CN) and (Cα), α ∈ Z≥0, cases.
Suppose not and let π be a square-integrable representation with

such a νxτ in its supercuspidal support. By a commuting argument
(and Remark 4.7), we may write

π →֒ νx1τ × · · · × νxkτ × νxk+1τk+1 × · · · × νxmτm ⋊ χ0σ
(0)

where x1, . . . , xk ∈ x + Z and for each k + 1 ≤ i ≤ m we have either
τi 6∼= τ or xi 6∈ x+ Z. By Lemma 4.10,

π →֒ Σ× Λ⋊ χ0σ
(0)

for some irreducible Σ ≤ νx1τ × · · · × νxkτ and Λ ≤ νxk+1τ1 × · · · ×
νxk+mτm. Further, by the Langlands classification for general linear
groups (subrepresentation setting) and a commuting argument (or [Jan00a,
Section 2.2]), we may write

Σ →֒ δ([ν−a1τ, νb1τ ])× δ([ν−a2τ, νb2τ ])× · · · × δ([ν−aℓτ, νbℓτ ])

with b1 ≤ b2 ≤ · · · ≤ bℓ.
We first claim bi > ai for all i with 1 ≤ i ≤ ℓ. Were this not the case,

let j be the smallest value such that aj > bj . Then, for i < j, we have
aj > bj ≥ bi ≥ ai, hence δ([ν

−aiτ, νbiτ ]) × δ([ν−ajτ, νbjτ ]) irreducible.
Commuting, we get

π →֒ δ([ν−ajτ, νbjτ ])× δ([ν−a1τ, νb1τ ])× . . .

contradicting the Casselman criterion. Thus bi > ai for all 1 ≤ i ≤ ℓ.
We now apply Lemma 4.16:

π →֒ δ([ν−a1τ, νb1τ ])× · · · × δ([ν−aℓ−1τ, νbℓ−1τ ])
× δ([ν−aℓτ, νbℓτ ])× Λ× χ0σ

(0)

→֒ δ([ν−a1τ, νb1τ ])× · · · × δ([ν−aℓ−1τ, νbℓ−1τ ])
× Λ× δ([ν−aℓτ, νbℓτ ])× χ0σ

(0)

→֒ δ([ν−a1τ, νb1τ ])× · · · × δ([ν−aℓ−1τ, νbℓ−1τ ])
× Λ× δ([ν−bℓτ, νaℓτ ])× ωχ0(c

rσ(0))
→֒ δ([ν−a1τ, νb1τ ])× · · · × δ([ν−aℓ−1τ, νbℓ−1τ ])

× δ([ν−bℓτ, νaℓτ ])× Λ× ωχ0(c
r · σ(0))
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for the appropriate ω (when Gn = GSp2n, GSO2n, GSO
∗
2n+2, GU2n+1 or

GU2n) and c
r (for Gn = SO2n, SO

∗
2n+2, GSO2n, GSO

∗
2n+2, GSpin2n, or

GSpin∗
2n+2 in the (CN) case). If δ([ν−aℓ−1τ, νbℓ−1τ ])× δ([ν−bℓτ, νaℓτ ]) is

irreducible, we may commute δ([ν−bℓτ, νaℓτ ]) around δ([ν−aℓ−1τ, νbℓ−1τ ]).
If not, Lemma 4.10 implies

π →֒ δ([ν−a1τ, νb1τ ])× · · · × δ([ν−bℓτ, νbℓ−1τ ])× δ([ν−aℓ−1τ, νaℓτ ])
×Λ× ωχ0(c

r · σ(0))

or

π →֒ δ([ν−a1τ, νb1τ ])× · · · × Lsub(δ([ν−bℓτ, νaℓτ ])⊗ δ([ν−aℓ−1τ, νbℓ−1τ ]))
×Λ× ωχ0(c

r · σ(0)).

In either case, we have

δ([ν−a1τ, νb1τ ])× · · · × δ([ν−aℓ−2τ, νbℓ−2τ ])× δ([ν−bℓτ, νb
′

ℓτ ])× . . .

with b′ℓ−1 ≤ bℓ. Iterating, we eventually arrive at

π →֒ δ([ν−bℓτ, νb
′

1τ ])× . . .

with b′1 ≤ bℓ. However, this contradicts the Casselman criterion, fin-
ishing the proof. �

For π a square-integrable representation, write

π →֒ νx1ρ1 × · · · × νxnρn ⋊ χ0σ
(0)

with x1+ · · ·+xn as small as possible (as in [Jan00a, Definition 4.1.1])
and appropriate χ0 (see Remark 4.7). By Lemma 4.10, we have π →֒
φ ⋊ χ0σ

(0) for some irreducible φ ≤ νx1ρ1 × · · · × νxnρn. Write φ =
Lsub(δ([ν−a1τ1, νb1τ1]) ⊗ · · · ⊗ δ([ν−akτk, ν

bkτk])). As the next results
are for square-integrable generic representations only (not arbitrary
square-integrable representations), we note that we may assume

Lsub(δ([ν−a1τ1, νb1τ1])⊗ · · · ⊗ δ([ν−akτk, ν
bkτk]))

= δ([ν−a1τ1, ν
b1τ1])× · · · × δ([ν−akτk, ν

bkτk])

is irreducible (by genericity). Then,

(4.10) π →֒ δ([ν−a1τ1, ν
b1τ1])× · · · × δ([ν−akτk, ν

bkτk])⋊ χ0σ
(0)

(with (−a1 + · · ·+ b1) + · · ·+ (−ak + · · ·+ bk) minimal). Note that the
argument in the proof of Lemma 4.17 tells us bi > ai for all i. Further,
a commuting argument allows us to assume without loss of generality
that b1 ≤ b2 ≤ · · · ≤ bk.
We also remark that for discrete series, one has β = 0 (see Defini-

tion 3.6 and Lemma 3.7).
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Lemma 4.18. Let π be a square-integrable generic representation. With
notation as above, [ν−aiτi, ν

biτi] must satisfy one of (DS1)–(DS4).

Proof. Based on Lemmas 4.15 and 4.17, all that remains to be shown
is the following:

(1) ai ≥ 0 in the (C0) and (CN) cases.
(2) ai ≥ −1

2
in the (C1/2) case, and

(3) ai ≥ −1 and ai 6= 0 in the (C1) case.

Fix a δ([ν−aiτi, ν
biτi]) and let τ = τi.

For (2), we argue indirectly. Let j be maximal with τj ∼= τ and
aj < −1

2
. Then, ν−ajτj × δ([ν−aℓτℓ, ν

bℓτℓ]) is irreducible for all ℓ > j.

Thus, writing Λ = δ([ν−a1τ1, ν
b1τ1])×· · ·×δ([ν−aj−1τj−1, ν

bj−1τj−1]), we
have

π →֒ Λ× δ([ν−aj+1τ, νbjτ ])× ν−ajτ × δ([ν−aj+1τj+1, ν
bj+1τj+1])

× · · · × δ([ν−akτk, ν
bkτk])⋊ χ0σ

(0)

∼= Λ× δ([ν−aj+1τ, νbjτ ])× δ([ν−aj+1τj+1, ν
bj+1τj+1])

× · · · × δ([ν−akτk, ν
bkτk])× ν−ajτ ⋊ χ0σ

(0)

∼= Λ× δ([ν−aj+1τ, νbjτ ])× δ([ν−aj+1τj+1, ν
bj+1τj+1])

× · · · × δ([ν−akτk, ν
bkτk])× νajτ ⋊ ωjχ0σ

(0),

noting the irreducibility of ν−ajτ ⋊ χ0σ
(0) ∼= νajτ ⋊ ωjχ0σ

(0). As aj <
−aj , this contradicts the minimality of x1+ · · ·+xn, finishing this case.
The same argument shows we cannot have ai < −1 in the (C1) case or
ai < 0 in the (C0),(CN) cases.
It remains to show that ai 6= 0 in the (C1) case. We first consider the

case where aj 6= −1 for all j having τj ∼= τ . Then, arguing indirectly,
let j be the largest such value for which aj = 0. Again, writing Λ =
δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−aj−1τj−1, ν
bj−1τj−1]), we have

π →֒ Λ× δ([τ, νbjτ ])× δ([ν−aj+1τj+1, ν
bj+1τj+1])× . . .

×δ([ν−akτk, νbkτk])⋊ χ0σ
(0)

π →֒ Λ× δ([ν−aj+1τj+1, ν
bj+1τj+1])× · · · × δ([ν−akτk, ν

bkτk])
×δ([τ, νbjτ ])⋊ χ0σ

(0)

noting that for all ℓ > j having τℓ ∼= τ , we have bℓ ≥ bj and aℓ >
aj = 0 implying the irreducibility of δ([τ, νbjτ ]) × δ([ν−aℓτ, νbℓτ ]). By
Lemma 4.10,

π →֒ Λ× δ([ν−aj+1τj+1, ν
bj+1τj+1])× · · · × δ([ν−akτk, ν

bkτk])⋊ θ

for some irreducible θ ≤ δ([τ, νbjτ ])⋊ χ0σ
(0). Now, noting that

δ([ντ, νbjτ ];χ0σ
(0))
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is the irreducible generic subquotient of δ([ντ, νbjτ ])⋊χ0σ
(0) (Remark 4.7),

we have

θ ≤ δ([ντ, νbjτ ])× τ ⋊ χ0σ
(0) = τ × δ([ντ, νbjτ ])⋊ χ0σ

(0)

⇓ (Lemma 4.10)
θ ≤ τ ⋊ δ([ντ, νbjτ ];χ0σ

(0)).

As the induced representation is essentially unitary, τ⋊δ([ντ, νbjτ ];χ0σ
(0))

decomposes as a direct sum, so

θ →֒ τ ⋊ δ([ντ, νbjτ ;χ0σ
(0))

⇓
π →֒ Λ× δ([ν−aj+1τj+1, ν

bj+1τj+1])× · · · × δ([ν−akτk, ν
bkτk])× τ

⋊δ([ντ, νbjτ ];χ0σ
(0))

∼= τ × Λ× δ([ν−aj+1τj+1, ν
bj+1τj+1])× · · · × δ([ν−akτk, ν

bkτk])
⋊δ([ντ, νbjτ ];χ0σ

(0))

(noting the irreducibility of τ×δ([ν−aℓτℓ, νbℓτℓ]) for ℓ < j), contradicting
the Casselman criterion.
To finish, we first establish that among the j having τj ∼= τ , there

at most one index such aj = −1. Suppose not and let j1 < j2 be
the two largest values such that aj1 = aj2 = −1 with τj1

∼= τj2
∼=

τ . Writing Λ1 = δ([ν−a1τ1, ν
b1τ1]) × · · · × δ([ν−aj1−1τj1−1, ν

bj1−1τj1−1]),
Λ2 = δ([ν−aj1+1τj1+1, ν

bj1+1τj1+1]) × · · · × δ([ν−aj2−1τj2−1, ν
bj2−1τj2−1]),

and Λ3 = δ([ν−aj2+1τj2+1, ν
bj2+1τj2+1])×· · ·×δ([ν−akτk, νbkτk]), the usual

commuting argument gives

π →֒ Λ1 × δ([ντ, νbj1 τ ])× Λ2 × δ([ντ, νbj2 τ ])× Λ3 ⋊ χ0σ
(0)

∼= Λ1 × Λ2 × Λ3 × δ([ντ, νbj1 τ ])× δ([ντ, νbj2 τ ])⋊ χ0σ
(0)

⇓ (Lemma 4.10 and Corollary 4.6)
π →֒ Λ1 × Λ2 × Λ3 × δ([ντ, νbj1 τ ])⋊ δ([ντ, νbj2 τ ];χ0σ

(0))

→֒ Λ1 × Λ2 × Λ3 × δ([ν2τ, νbj1 τ ])× ντ ⋊ δ([ντ, νbj2 τ ];χ0σ
(0))

∼= Λ1 × Λ2 × Λ3 × δ([ν2τ, νbj1 τ ])× ν−1τ ⋊ δ([ντ, νbj2 τ ];ωχ0σ
(0))

by Lemma 4.8 (twisted by χ0), for the appropriate ω. However, this
contradicts the minimality of x1 + · · ·+ xn. Thus there is at most one
j having τj ∼= τ and aj = −1.
Finally, suppose we had j1, j2 with τj1 = τj2 = τ , aj1 = 0 and

aj2 = −1; without loss of generality, assume j1 maximal. As above, we
may commute to get

π →֒ Λ1 × Λ2 × Λ3 × δ([τ, νbj1 τ ])× δ([ντ, νbj2 τ ])⋊ χ0σ
(0),
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noting that if j1 > j2, then δ([ντ, νbj2 τ ]) × δ([τ, νbj1 τ ]) is irreducible
so may be commuted into the order above (though that is not crucial
to the argument below). Again, by Lemma 4.10 and Corollary 4.6, we
have

π →֒ Λ1 × Λ2 × Λ3 × θ

for some irreducible generic θ ≤ δ([τ, νbj1 τ ]) × δ([ντ, νbj2 τ ]) ⋊ χ0σ
(0).

If bj1 > bj2 , the unique irreducible generic representation with this
supercuspidal support is δ([ν−bj2 τ, νbj1 τ ];ωχ0σ

(0))ψa for the appropriate
ω, so θ = δ([ν−bj2 τ, νbj1τ ];ωχ0σ

(0))ψa . Then,

π →֒ Λ1 × Λ2 × Λ3 ⋊ δ([ν−bj2 τ, νbj1 τ ];ωχ0σ
(0))ψa

→֒ Λ1 × Λ2 × Λ3 × δ([ν−bj2 τ, νbj1 τ ])⋊ ωχ0σ
(0),

which contradicts the minimality of x1 + · · ·+ xn. A similar argument
applies if bj1 < bj2 . If bj1 = bj2 = b, the irreducible generic subquotient
of δ([τ, νbτ ]) × δ([ντ, νbτ ]) ⋊ χ0σ

(0) is also (by supercuspidal support
considerations) the irreducible generic component of δ([ν−bτ, νbτ ]) ⋊
ωχ0σ

(0) for the appropriate ω. Noting the essential unitarity of this
representation, we then have

π →֒ Λ1 × Λ2 × Λ3 × δ([ν−bτ, νbτ ])⋊ ωχ0σ
(0),

giving the same contradiction as above. This finishes the case where
aj = −1 for some j having τj ∼= τ , and the lemma. �

Lemma 4.19. Let π = δ([ν−aτ, νbτ ];χ0σ
(0))ψa as in Proposition 4.13.

Then,

π →֒ δ([ν−aτ, νbτ ])⋊ χ0σ
(0).

Further, we have

π →֒





δ([ντ, νaτ ])× δ([ντ, νbτ ])⋊ T1(τ ;ω1χ0σ
(0))

in the (C0) case,

δ([ν
1
2 τ, νaτ ])× δ([ν

1
2 τ, νbτ ])⋊ ω2χ0σ

(0)

in the (C1/2) case,
δ([ντ, νaτ ])× δ([ντ, νbτ ])⋊ (τ ⋊ ω1χ0c1 · σ(0))
in the (C1) and (CN) cases,

where c1, ω1, ω2 are such that the inducing representation appears in the
Jacquet module of δ([ν−aτ, νbτ ])⋊ χ0σ

(0).

Proof. As in (4.10), write

π →֒ δ([ν−x1τ, νy1τ ])× · · · × δ([ν−xsτ, νysτ ])⋊ χ′
0σ

(0)
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(with (−x1+ · · ·+y1)+ · · ·+(−xs+ · · ·+ys) minimal). Recall that the
irreducibility of δ([ν−x1τ, νy1τ ])× · · · × δ([ν−xsτ, νysτ ]) and Casselman
criterion tell us yi > xi for all i.
We first argue that s = 1. Let m(t) be the number of times ν±tτ

appears in νt1τ ⊗ · · · ⊗ νtrτ ⊗ ω′χ′
0(c

′ · σ(0)) ≤ rM,G(π), noting that
this is well-defined and depends only on the supercuspidal support of
π (by the requirements for (Cα) and (CN), νxτ becomes ν−xτ under
block sign change). In the (C0) and (CN) cases, we have m(0) = 1,
from which we see that s = 1 (noting Lemma 4.18). In the (C1) case,
we also have m(0) = 1. This means we have xi ≥ 0 for at least one
i; by Lemma 4.18, we must then have xi > 0 for this i. Noting that
m(1) = 2, δ([ν−xiτ, νyiτ ]) then accounts for both copies of ν±1τ in
the supercuspidal support. As any additional δ([ν−xjτ, νyjτ ]) would
increase m(1), we see that we also have s = 1 here. Finally, in the
(C1/2) case, we have m(1

2
) = 2. There are then two possibilities: (1)

s = 1 and x1 > 0, or (2) s = 2 and xi = −1
2
for both i. To eliminate

(2), observe that

θ →֒ δ([ν
1
2 τ, νy1τ ])× δ([ν

1
2 τ, νy2τ ])⋊ χ′

0σ
(0)

→֒ δ([ν
3
2 τ, νy1τ ])× δ([ν

3
2 τ, νy2τ ])× ν

1
2 τ × ν

1
2 τ ⋊ χ′

0σ
(0)

⇓ (Lemma 4.10)

θ →֒ δ([ν
3
2 τ, νy1τ ])× δ([ν

3
2 τ, νy2τ ])⋊ ξ

for some irreducible generic ξ ≤ ν
1
2 τ×ν 1

2 τ⋊χ′
0σ

(0). As the generic com-

ponent of ν
1
2 τ ×ν 1

2 τ ⋊χ′
0σ

(0) is a subrepresentation of δ([ν−
1
2 τ, ν

1
2 τ ])⋊

ωχ′
0σ

(0) (ω trivial for classical or general spin groups, ω = ω
ν−

1
2 τ

or

ω2

ν−
1
2 τ

for the other similitude groups), we have ξ →֒ δ([ν−
1
2 τ, ν

1
2 τ ]) ⋊

ωχ′
0σ

(0). Then,

θ →֒ δ([ν
3
2 τ, νy1τ ])× δ([ν

3
2 τ, νy2τ ])× δ([ν−

1
2 τ, ν

1
2 τ ])⋊ ωχ′

0σ
(0),

which contradicts the minimality of x1 + · · ·+ xn. Thus s = 1.
By supercuspidal support considerations, the only possibilities with

s = 1 are δ([ν−x1τ, νy1τ ]) = δ([ν−aτ, νbτ ]) or δ([ν−bτ, νaτ ]), and as it
is clearly not the latter (e.g., by Proposition 4.13 and the Casselman
criterion), we have

π →֒ δ([ν−aτ, νbτ ])⋊ χ0σ
(0),

as needed.
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For the second embedding, we do the (C1) case; the remaining cases
are similar. Observe that

π →֒ δ([ν−aτ, νbτ ])⋊ χ0σ
(0) →֒ δ([ντ, νbτ ])× δ([ν−aτ, τ ])⋊ χ0σ

(0)

⇓ (Lemma 4.10)
π →֒ δ([ντ, νbτ ])× T

where T ≤ δ([ν−aτ, τ ])⋊ χ0σ
(0) is the irreducible generic subquotient.

Note that by supercuspidal support considerations, T is also the generic
component of τ ⋊ δ([ντ, νaτ ];ω1χ0σ

(0))ψa . As the inducing representa-
tion is essentially unitary, we have T →֒ τ ⋊ δ([ντ, νaτ ];ω1χ0σ

(0))ψa .
Thus,

π →֒ δ([ντ, νbτ ])× τ × δ([ντ, νaτ ])⋊ ω1χ0σ
(0)

⇓ (Lemma 4.10)
π →֒ δ([τ, νbτ ])× δ([ντ, νaτ ])⋊ ω1χ0σ

(0)

∼= δ([ντ, νaτ ])× δ([τ, νbτ ])⋊ ω1χ0σ
(0)

→֒ δ([ντ, νaτ ])× δ([ντ, νbτ ])⋊ (τ ⋊ ω1χ0σ
(0))

as claimed. �

Proposition 4.20. Let π be an irreducible square-integrable generic
representation. Then π is of the form δ(∆1, . . . ,∆k;χ0σ

(0))ψa as in
Proposition 4.13. Further,

π →֒ δ(∆1)× · · · × δ(∆k)⋊ χ0σ
(0)

and the segments which appear are unique up to permutations of the
∆i.

Proof. Consider the embedding in (4.10) (with the assumptions that
x1 + . . . xn is minimal and the di’s are nondecreasing) and recall that
ai < bi for all i. Fix a particular τ and via a commuting argument,
write

π →֒ δ([ν−c1τ, νd1τ ])× · · · × δ([ν−cℓτ, νdℓτ ])× Λ⋊ χ0σ
(0),

where Λ contains all the δ([ν−aiτi, ν
biτi]) having τi 6∼= τ and ci, di are

the ai, bi for those τi having τi ∼= τ .
As a result of Lemma 4.18, it suffices to show that ci+1 > di for all

1 ≤ i ≤ ℓ− 1 (noting that if ℓ = 1 there is nothing to show). Suppose
this were not the case and let i be the largest index such that di ≥ ci+1.
Write

π →֒ Λ1 × δ([ν−ciτ, νdiτ ])× δ([ν−ci+1τ, νdi+1τ ])× Λ2 ⋊ χ0σ
(0),

where Λ1 = δ([ν−c1τ, νd1τ ])× · · · × δ([ν−cj−1τ, νdj−1τ ]) and

Λ2 = δ([ν−ci+2τ, νdi+2τ ])× · · · × δ([ν−cℓτ, νdℓτ ])× Λ.
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For j > i + 1, we have dj > cj > di+1 > ci+1, so δ([ν
−ci+1τ, νdi+1τ ]) ×

δ([ν−cjτ, νdjτ ]) is irreducible. A similar argument applies to

δ([ν−ciτ, νdiτ ])× δ([ν−cjτ, νdjτ ]).

Therefore, we may commute δ([ν−ciτ, νdiτ ]) and δ([ν−ci+1τ, νdi+1τ ]) to
the right to get

π →֒ Λ1 × Λ2 × δ([ν−ciτ, νdiτ ])× δ([ν−ci+1τ, νdi+1τ ])⋊ χ0σ
(0)

⇓ (Lemma 4.10)
π →֒ Λ1 × Λ2 ⋊ θ

for some irreducible generic θ ≤ δ([ν−ciτ, νdiτ ])× δ([ν−ci+1τ, νdi+1τ ])⋊
χ0σ

(0).
If di = ci+1, write di for both. Then,

θ ≤ δ([ν−ciτ, νdiτ ])× δ([ν−diτ, νdi+1τ ])⋊ χ0σ
(0)

≤ δ([ν−diτ, νdiτ ])× δ([ν−ciτ, νdi+1τ ])⋊ χ0σ
(0).

Now, δ([ν−ciτ, νdi+1τ ];χ0σ
(0))ψa is the irreducible generic subquotient

of δ([ν−ciτ, νdi+1τ ])⋊ χ0σ
(0) (definition in Proposition 4.13). Thus,

θ ≤ δ([ν−diτ, νdiτ ])× δ([ν−ciτ, νdi+1τ ];χ0σ
(0))ψa .

As the inducing representation is essentially unitary, we have

θ →֒ δ([ν−diτ, νdiτ ])× δ([ν−ciτ, νdi+1τ ];χ0σ
(0))ψa .

It then follows that

π →֒ Λ1 × Λ2 × δ([ν−diτ, νdiτ ])× δ([ν−ciτ, νdi+1τ ];χ0σ
(0))ψa .

As δ([ν−cjτ, νdjτ ])× δ([ν−diτ, νdiτ ]) is irreducible for all j < i (as cj <
dj ≤ di), a commuting argument gives

π →֒ δ([ν−diτ, νdiτ ])× Λ1 × Λ2 ⋊ δ([ν−ciτ, νdi+1τ ];χ0σ
(0))ψa ,

which (by Frobenius reciprocity) contradicts the Casselman criterion
for the square-integrability of π. Thus we cannot have di = ci+1.
If di > ci+1 ≥ 0, first suppose ci+1 > ci. Then, we have

θ ≤ δ([ν−ciτ, νdiτ ])× δ([ν−ci+1τ, νdi+1τ ])⋊ χ0σ
(0)

≤ δ([νci+1+1τ, νdiτ ])× δ([ν−ciτ, νci+1τ ])× δ([ν−ci+1τ, νdi+1τ ])⋊ χ0σ
(0)

≤ δ([ν−diτ, ν−ci+1−1τ ])× δ([ν−ciτ, νci+1τ ])× δ([ν−ci+1τ, νdi+1τ ])
⋊ω′χ0c

′ · σ(0)

⇓ (Lemma 4.10 and definition in Proposition 4.13)
θ = δ([ν−ciτ, νci+1τ ], [ν−diτ, νdi+1τ ];ω′χ0c

′ · σ(0))ψa ,
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for the appropriate ω′, c′. From Lemma 4.22 below, we then have

θ →֒ δ([ν−ciτ, νci+1τ ])× δ([ν−diτ, νdi+1τ ])⋊ ω′χ0c
′ · σ(0)

⇓
π →֒ Λ1 × Λ2 × δ([ν−ciτ, νci+1τ ])× δ([ν−diτ, νdi+1τ ])⋊ ω′χ0c

′ · σ(0).

However, this contradicts the minimality of x1+· · ·+xn. The argument
if ci > ci+1 is similar, but with θ = δ([ν−ci+1τ, νciτ ], [ν−diτ, νdi+1τ ];ω′′χ0c

′′·
σ(0))ψa . The argument is also similar if ci = ci+1, but in this case, θ
is the generic component of δ([ν−ciτ, νciτ ])⋊ δ1([ν

−diτ, νdi+1τ ];χ0σ
(0)).

This no longer has θ essentially square-integrable, but one still has
θ →֒ δ([ν−ciτ, νciτ ]) ⋊ δ([ν−diτ, νdi+1τ ]; σ(0))ψa by essential unitarity.
Thus we have eliminated the possibility di > ci+1 ≥ 0.
It now remains to eliminate the possibility di > ci+1 with ci+1 < 0.

By Lemma 4.18, the only such possibilities are ci+1 = −1
2
in the (C1/2)

case and ci+1 = −1 in the (C1) case. In either case, we must have
ci ≥ ci+1. We first argue that we cannot have ci = ci+1. For the (C1)
case, this is done in the proof of (3) in Lemma 4.18. In the (C1/2)
case, we have

π →֒ Λ1 × Λ2 × δ([ν
1
2 τ, νdiτ ])× δ([ν

1
2 τ, νdi+1τ ])⋊ χ0σ

(0).

By the definition in Proposition 4.13, the irreducible generic subquo-
tient of δ([ν

1
2 τ, νdiτ ])⋊δ([ν

1
2 τ, νdi+1τ ])⋊χ0σ

(0) is δ([ν−diτ, νdi+1τ ];χ0σ
(0))ψa .

Therefore,

π →֒ Λ1 × Λ2 ⋊ δ([ν−diτ, νdi+1τ ];χ0σ
(0))ψa

→֒ Λ1 × Λ2 ⋊ δ([ν−diτ, νdi+1τ ])⋊ χ0σ
(0)

by Lemma 4.19, contradicting the minimality of x1 + · · ·+ xn. Thus,
ci > ci+1. Now, observe that di < di+1 implies δ([ν−ciτ, νdiτ ]) ×
δ([ν−ci+1τ, νdi+1τ ]) reducible, also contradicting the conditions in (4.10).
Thus we must have di = di+1. However, were this the case we would
have (letting α = 1

2
or 1, as appropriate)

π →֒ Λ1 × Λ2 ⋊ θ

for θ the irreducible generic subquotient of δ([ν−ciτ, νdiτ ])×δ([νατ, νdiτ ])⋊
χ0σ

(0). Then θ is also the generic component of the (essentially unitary)
representation δ([ν−diτ, νdiτ ])⋊ δ([νατ, νciτ ]);χ0σ

(0)). Thus,

π →֒ Λ1 × Λ2 × δ([ν−diτ, νdiτ ])⋊ δ([νατ, νciτ ]);χ0σ
(0)),

contradicting the minimality of x1 + · · ·+ xn and finishing this case.
We have now shown that π embeds in an induced representation of

the form in Proposition 4.13; that π is the corresponding representation
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from Proposition 4.13 is immediate from genericity. It remains to show
the uniqueness of the data claimed.
The argument for the uniqueness of the data follows the approach

of [Jan18, Lemma 2.1.1] (based on [Jan00b, Lemma 3.1]), essentially
the observation that the supercuspidal support determines the seg-
ment ends. Suppose there were two such sets of data for π and fix
τ ∈ P . Suppose one set has corresponding segments [ν−a1(τ), νb1(τ)],
. . . , [ν−ak(τ), νbk(τ)] and the other [ν−a

′

1(τ), νb
′

1(τ)], . . . , [νa
′

ℓ
(τ), νb

′

ℓ
(τ)]. As

in Lemma 4.19, let mτ (x) be the number of times ν±xτ appears in a
term in the minimal Jacquet module of π. It is not difficult, based on
the conditions a1(τ) < b1(τ) < · · · < ak(τ) < bk(τ) and similarly for
a′i(τ), b

′
i(τ)–that the largest value of x having mτ (x) = 1 is x = bk(τ) =

b′ℓ(τ). The largest x having mτ (x) = 2 is x = ak(τ) = a′ℓ(τ); if no such

x exists, ak(τ) = a′ℓ(τ) =

{
−α for (Cα),
0 for (CN)

(and k = ℓ = 1). Iterating

this argument gives the uniqueness of the segments claimed. �

Remark 4.21. Observe that if (τ, σ(0)) satisfies (CN), then

δ([τ, ντ ]; σ(0))ψa
∼= δ([τ, ντ ]; cσ(0))ψa ,

so one may not have uniqueness of σ(0).

Lemma 4.22. Suppose a < b < c < d with

θ = δ([ν−aτ, νbτ ], [ν−cτ, νdτ ];χ0σ
(0))ψa

as in Proposition 4.13 (so (DS1)–(DS4) satisfied). Then,

θ →֒ δ([ν−aτ, νbτ ])× δ([ν−cτ, νdτ ])⋊ χ0σ
(0).

Proof. As in (4.10), write

θ →֒ δ([ν−x1τ, νy1τ ])× · · · × δ([ν−xsτ, νysτ ])⋊ χ′
0(c

′ · σ(0))

with δ([ν−x1τ, νy1τ ]) × · · · × δ([ν−xsτ, νysτ ]) irreducible (and (−x1 +
· · ·+ y1) + · · ·+ (−xs + · · ·+ ys) minimal). Further, by Lemma 4.18,
we have xi ≥ −α for (Cα) or xi ≥ 0 for (CN).
We next show that s = 2. As in Lemma 4.19, let m(t) be the number

of times ν±tτ appears in νt1τ ⊗ · · · ⊗ νtrτ ⊗ χ0ω(d · σ(0)) ≤ rM,G(θ). In
the (C0) and (CN) cases, we have m(0) = 2, from which we see that
s = 2. In the (C1) case, we have m(0) = 2 if a 6= −1 (resp., m(0) = 1
if a = −1). This means we have xi ≥ 0 for at least two i when a 6= −1
(resp., at least one i when a = −1); by Lemma 4.18, we must then have
xi > 0 for these i. Noting that m(1) = 4 when a 6= −1 (resp., m(1) = 3
when a = −1), these then account for all 4 (resp., all 3) copies of ν±1τ
in the supercuspidal support. As any additional δ([ν−xjτ, νyjτ ]) would
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increase that value, we see that we also have s = 2 here. Finally, in
the (C1/2) case, first suppose a 6= −1

2
. In this case, m(1

2
) = 4. There

are then three possibilities: (1) s = 2 and xi > 0 for both i, (2) s = 3
with x3 > 0 and x1 = x2 = −1

2
, or (3) s = 4 and xi = −1

2
for all i. To

eliminate (2), observe that

θ →֒ δ([ν
1
2 τ, νy1τ ])× δ([ν

1
2 τ, νy2τ ])× δ([ν−x3τ, νy3τ ])⋊ χ′

0(c
′ · σ(0))

∼= δ([ν−x3τ, νy3τ ])× δ([ν
1
2 τ, νy1τ ])× δ([ν

1
2 τ, νy2τ ])⋊ χ′

0(c
′ · σ(0))

⇓ (Lemma 4.10 and definition in Proposition 4.13)
θ →֒ δ([ν−x3τ, νy3τ ])⋊ δ([ν−y1τ, νy2τ ];ω′χ′

0(c
′′ · σ(0)))ψa

⇓ (Lemma 4.19)
θ →֒ δ([ν−x3τ, νy3τ ])× δ([ν−y1τ, νy2τ ])⋊ ω′χ′

0(c
′′ · σ(0))

which contradicts the minimality of x1 + · · ·+ xn. We may eliminate
(3) similarly, leaving s = 2 as the only possibility. The argument when
a = −1

2
is similar but somewhat easier as there are fewer cases to

consider; we omit the details.
Next, observe that x1, x2, y1, y2 must be a, b, c, d in some order by

supercuspidal support considerations (as the values of m change at
the segment ends; see [Jan00b, Lemma 3.1] for a more general ver-
sion of this observation). To satisfy δ([ν−x1τ, νy1τ ]) × δ([ν−x1τ, νy1τ ])
irreducible and the Casselman criterion, there are only two possibili-
ties: δ([ν−x1τ, νy1τ ])⊗ δ([ν−x2τ, νy2τ ]) = δ([ν−aτ, νbτ ])⊗ δ([ν−cτ, νdτ ])
or δ([ν−aτ, νcτ ])⊗ δ([ν−bτ, νdτ ]). To see that the latter does not hold,
suppose it did. In the (C1) case, one then has

θ →֒ δ([ν−aτ, νcτ ])× δ([ν−bτ, νdτ ])⋊ χ1σ
(0)

→֒ δ([ντ, νcτ ])× δ([ν−aτ, τ ])× δ([ν−bτ, νdτ ])⋊ χ1σ
(0)

∼= δ([ντ, νcτ ])× δ([ν−bτ, νdτ ])× δ([ν−aτ, τ ])⋊ χ1σ
(0)

→֒ δ([ντ, νcτ ])× δ([τ, νdτ ])× δ([ν−bτ, ν−1τ ])× δ([ν−aτ, τ ])⋊ χ1σ
(0)

⇓ (Lemma 4.10)
→֒ δ([ντ, νcτ ])× δ([τ, νdτ ])⋊ δ([ν−aτ, νbτ ];ω1χ1σ

(0))ψa
⇓ (Lemma 4.19)

→֒ δ([ντ, νcτ ])× δ([τ, νdτ ])× δ([ντ, νaτ ])× δ([ντ, νbτ ])⋊ (τ ⋊ ω2χ1σ
(0))

∼= δ([ντ, νaτ ])× δ([ντ, νbτ ])× δ([ντ, νcτ ])× δ([τ, νdτ ])⋊ (τ ⋊ ω2χ1σ
(0))

⇓ (Lemma 4.10)
→֒ δ([ντ, νaτ ])× δ([ντ, νbτ ])⋊ T1([ν

−cτ, νdτ ]; τ ⋊ ω3χ1σ
(0))



72 CHRIS JANTZEN AND BAIYING LIU

where T1([ν
−cτ, νdτ ]; τ ⋊ ω3χ1σ

(0)) is the generic component of

δ([ντ, νcτ ])× δ([τ, νdτ ])⋊ (τ ⋊ ω3χ1σ
(0)).

By supercuspidal support considerations, this is also the generic com-
ponent of τ ⋊ δ([ν−cτ, νdτ ];ω3χ1σ

(0))ψa . By essential unitarity,

T1([ν
−cτ, νdτ ]; τ ⋊ ω3χ1σ

(0)) →֒ τ ⋊ δ([ν−cτ, νdτ ];ω3χ1σ
(0))ψa .

Thus,

θ →֒ δ([ντ, νaτ ])× δ([ντ, νbτ ])× τ ⋊ δ([ν−cτ, νdτ ];ω3χ1σ
(0))ψa

⇓ (Lemma 4.19)
→֒ δ([ντ, νaτ ])× δ([ντ, νbτ ])× τ × δ([ν−cτ, νdτ ])⋊ ω3χ1σ

(0)

∼= δ([ν−cτ, νdτ ])× δ([ντ, νaτ ])× δ([ντ, νbτ ])× τ ⋊ ω3χ1σ
(0)

⇓ (Lemma 4.10)
→֒ δ([ν−cτ, νdτ ])⋊ δ1([ν

−aτ, νbτ ];χ0σ
(0))

⇓ (Lemma 4.19)
θ →֒ δ([ν−cτ, νdτ ])× δ([ν−aτ, νbτ ])⋊ χ0σ

(0),

implying the needed embedding. The (C0), (C1/2), and (CN) cases
are argued similarly. �

We close this section by discussing essentially square-integrable rep-
resentations for the similitude cases. Let σ(e2) be an irreducible, generic,
essentially square-integrable representation and write σ(e2) = χσ(2) for
some character χ; without loss of generality, we may assume χ = | · |s,
s ∈ R. Now,

σ(2) = δ(∆′
1, . . . ,∆

′
k;χ0σ

(0))ψa ,

for some ∆′
1, . . . ,∆

′
k, χ0σ

(0) as above. By Lemma 3.3 and Proposi-
tion 4.13, if σ(0) is a representation of Gn0(F ) (and recalling n0 6= 1 for
GSO2n and GSpin2n),

χσ(2) →֒ χ(δ(∆′
1)× · · · × δ(∆′

k)⋊ χ0σ
(0))

∼=





δ(∆′
1)× · · · × δ(∆′

k)⋊ χχ0σ
(0)

if Gn = GSp2n, GSO2n, GSO
∗
2n+2, GU2n+1, GU2n,

χδ(∆′
1)× · · · × χδ(∆′

k)⋊ χχ0σ
(0)

if Gn = GSpin2n+1, GSpin2n with n0 > 0,
χδ(∆′

1)× · · · × χδ(∆′
k)⋊ χ2χ0σ

(0)

if Gn = GSpin2n+1, GSpin2n with n0 = 0,
χδ(∆′

1)× · · · × χδ(∆′
k)⋊ χχ0σ

(0)

if Gn = GSpin∗
2n+2 (any n0).
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Letting δ(∆i) be δ(∆′
i) or χδ(∆′

i) as needed, and σ(e0) be χχ0σ
(0) or

χ2χ0σ
(0) as appropriate, we write

(4.11) σ(e2) = δ(∆1, . . . ,∆k, σ
(e0))ψa .

For groups other than GSpin2n+1, GSpin2n, and GSpin
∗
2n+2, we still

have ∆1, . . . ,∆k satisfying (DS1)–(DS4). For GSpin2n+1, GSpin2n,
and GSpin∗

2n+2, we note that χ0 is trivial. Writing χ = | · |s with

s ∈ R as above, we have ωσ(e0) = | · |sωσ(0) unless n0 = 0 (where σ(0)

is a representation of Gn0) and the general spin group is split. This
implies the conditions (DS1)–(DS4) are shifted up by the exponent
of σ(e0). When n0 = 0 and the group is split, the shift is half the ex-
ponent. This then gives the following conditions on essentially square-
integrable representations of general groups δ([ν−aτ, νbτ ]) which occur
in the classification of generic essential square-integrable representa-
tions, with β = β(σ(e0)) as in Definition 3.6:

(EDS1): If (τ ; σ(0)) satisfies (C1), then a ∈ β + (N ∪ {−1}).
(EDS2): If (τ ; σ(0)) satisfies (C0), then a ∈ β + Z≥0.
(EDS3): If (τ ; σ(0)) satisfies (C1/2), then a ∈ β − 1

2
+ Z≥0.

(EDS4): If (τ ; σ(0)) satisfies (CN), then a ∈ β + Z≥0.

4.4. Tempered generic representations. Let σ(2) be a ψa-square-
integrable generic representation of Gk0(F ) and β1, . . . , βc (repetition
possible) irreducible unitary supercuspidal representations of Hk1(F ),
. . . , Hkc(F ), resp. For i = 1, . . . , c, let δ(Ψ′

i) = δ([ν−eiβi, ν
eiβi]),

2ei ∈ Z≥0 be a sequence of (unitary) square-integrable representations
(of Hki(2ei+1)(F ), i = 1, . . . , c, resp.). Then the unique ψa-generic com-

ponent σ(t)

(4.12) σ(t) →֒ δ(Ψ′
1)× · · · × δ(Ψ′

c)⋊ σ(2)

is a tempered representation ofGn(F ), where n = k0+2
∑c

i=1(2ei+1)ki.
It follows from a result of Harish-Chandra (see [Wal03, Proposition

4.1]) that all irreducible tempered generic representations of G are ob-
tained this way, and the inducing data are unique up to conjugation.
In particular, the data {δ(Ψ′

i)}ci=1 and σ(2) are determined up to re-
placements of the form

δ(Ψ′
i) ↔ δ(Ψ̌′

i)

for SO2n+1, Sp2n, U2n+1, U2n. The replacement δ(Ψ′
i) ↔ δ(Ψ̌′

i) also re-
quires σ(2) ↔ c(2ei+1)ki · σ(2) for SO2n and SO∗

2n+2; σ
(2) ↔ ωδ(Ψ′

i)
σ(2) for

GSp2n, GU2n+1, and GU2n; σ
(2) ↔ ωδ(Ψ′

i)
(c(2ei+1)ki ·σ(2)) for GSO2n and

GSO∗
2n+2. For general spin groups, the replacement is

δ(Ψ′
i) ↔ ωσ(2)δ(Ψ̌

′
i)
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(see (3.5)); for GSpin2n and GSpin∗
2n+2, we also have σ(2) ↔ c(2ei+1)ki ·

σ(2). Note that in the cases of SO2n, SO
∗
2n+2, GSp2n, GSO2n, GSO

∗
2n+2,

GU2n+1, GU2n, GSpin2n, and GSpin∗
2n+2, the effects on σ(2) accumu-

late. Also note that the replacements indicated need not be nontrivial.
We close this section by discussing essentially tempered representa-

tions in the similitude cases. If σ(et) is an irreducible (generic) essen-
tially tempered representation, we may write σ(et) = νεσ(t) for some ir-
reducible (generic) tempered represetation σ(t) and some ε = ε(σ(et)) ∈
R. Letting β = β(σ(et)) as in Definition 3.6 and Note 3.8, it follows
from Lemma 3.3 that

σ(et) = νεσ(t) →֒ νε
(
δ(Ψ′

1)× · · · × δ(Ψ′
c)⋊ σ(2)

)

∼= νβδ(Ψ′
1)× · · · × νβδ(Ψ′

c)⋊ σ(e2),

where

σ(e2) =

{
ν2εσ(2) if Gn = GSpin2n+1, GSpin2n with k0 = 0,
νεσ(2) otherwise,

Letting

(4.13) δ(Ψi) = νβδ(Ψ′
i)

for i = 1, . . . , c, we may then write

(4.14) σ(et) →֒ δ(Ψ1)× · · · × δ(Ψc)⋊ σ(e2).

4.5. Generic representations. We consider the representations δ(Σ1),
. . . , δ(Σf), where

(4.15) Σ1 = [v−q1ξ1, v
−q1+w1ξ1],

Σ2 = [v−q2ξ2, v
−q2+w2ξ2],

...

Σf = [v−qf ξf , v
−qf+wf ξf ],

and ξ1, ξ2, · · · , ξf are irreducible unitary and supercuspidal, with pos-
sible repetitions, qi ∈ R, wi ∈ Z≥0. Let σ(et) be a generic essentially
tempered representation of Gn(F ) as in (4.14), β = β(σ(et)) (see Defi-
nition 3.6 and Note 3.8), and suppose

qi 6=
wi
2

− β

for all i.
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We are interested in the induced representation δ(Σ1)×· · ·×δ(Σf )⋊
σ(et). In the Grothendieck group, we have δ(Σi)×δ(Σj) = δ(Σj)×δ(Σi)
and
(4.16)

δ(Σi)⋊σ
(et) =






δ(Σ̌i)⋊ σ(et) if Gn = SO2n+1, Sp2n, U2n+1, U2n,
δ(Σ̌i)⋊ cni · σ(et) if Gn = SO2n, SO

∗
2n+2,

ωσ(et)δ(Σ̌i)⋊ σ(et) if Gn = GSpin2n+1,
δ(Σ̌i)⋊ ωδ(Σi)σ

(et) if Gn = GSp(2n, F ), GU2n+1, GU2n,
δ(Σ̌i)⋊ ωδ(Σi)(c

ni · σ(et)) if Gn = GSO2n, GSO
∗
2n+2,

ωσ(et)δ(Σ̌i)⋊ cni · σ(et) if Gn = GSpin2n, GSpin
∗
2n+2

(where δ(Σi) is a representation ofHni(F )). Therefore, replacing δ(Σi),
σ(et) by their counterparts on the right-hand side of (4.16) and com-
muting as needed, we may–and do–assume that the exponents of

δ(Σ1), δ(Σ2), · · · , δ(Σf), σ(et)

are in the order needed for Langlands data (see (3.4)):

(4.17)
w1

2
− q1 ≥ · · · ≥ wf

2
− qf > β.

Recall that (Standard Module Conjecture – see [HO13]) the Langlands
quotient

L(δ(Σ1)⊗ · · · ⊗ δ(Σf )⊗ σ(et))

is generic if and only if δ(Σ1) × · · · × δ(Σf ) ⋊ σ(et) is irreducible. In
the remainder of this section, we determine the conditions under which
this happens.
First, we have Theorem 4.23 below. The proof is essentially the same

as in [Jan96b] (see [Jan96b, Theorem 3.3 and Remark 3.4]), which in
turn is based on that in [Tad94]. To allow for a more uniform argument,
we make the following notational conventions: for δ(Σ) a representation
of Hm(F ), let
(4.18)

ω′
Σ =

{
ωδ(Σ) for Gn = GSp2n, GSO2n, GSO

∗
2n+2, GU2n+1, GU2n,

1 otherwise,

ω′
σ(et)

=

{
ωσ(et) for Gn = GSpin2n+1, GSpin2n, GSpin

∗
2n+2,

1 otherwise;

cΣ =

{
cm for Gn = SO2n, SO

∗
2n+2, GSO2n, GSO

∗
2n+2, GSpin2n, GSpin

∗
2n+2,

1 otherwise.

With these conventions, we have the following consequence of (4.16):

(4.19) δ(Σi)⋊ σ(et) = ω′
σ(et)δ(Σ̌i)⋊ ω′

Σi
(cΣi · σ(et))

for all the families of groups under consideration.



76 CHRIS JANTZEN AND BAIYING LIU

Theorem 4.23. With notation as above (including (4.17)), the repre-
sentation σ of G defined by

σ := δ(Σ1)× δ(Σ2)× · · · × δ(Σf)⋊ σ(et)

is irreducible if and only if {Σj}fj=1 and σ
(et) satisfy the following prop-

erties (notation as in (4.18)):

(G1) δ(Σi) × δ(Σj) and δ(Σi) × ω′
σ(et)

δ(Σ̌j) are irreducible for all 1 ≤
i 6= j ≤ f ;

(G2) δ(Σi)⋊ σ(et) is irreducible for all 1 ≤ i ≤ f.

Proof. For the first part of (G1), if δ(Σi)× δ(Σj) is reducible for some
i 6= j, then σ is clearly reducible. Also, for (G2), if δ(Σi) ⋊ σ(et) is
reducible, then σ is reducible. For the second part of (G1), (4.19) tells
us that

σ = δ(Σ1)×· · ·×δ(Σj−1)×ω′
σ(et)δ(Σ̌j)×δ(Σj+1)×· · ·×δ(Σf )⋊ω′

Σj
(cΣi·σ(et))

in the Grothendieck group. It now follows that the reducibility of
δ(Σi) × ω′

σ(et)
δ(Σ̌j) for i 6= j implies the reducibility of σ, as needed.

Thus conditions (G1) and (G2) are necessary for the irreducibility of
σ.
To see that (G1) and (G2) are sufficient, let π = L(δ(Σ1) ⊗ · · · ⊗

δ(Σf)⊗σ(et)). Then, π = Lsub(ω
′
σ(et)

δ(Σ̌1)⊗ω′
σ(et)

δ(Σ̌2)⊗· · ·⊗ω′
σ(et)

δ(Σ̌f)⊗
ω′
Σ1
ω′
Σ2
. . . ω′

Σf
(cΣ1cΣ2 . . . cΣj · σ(et))) (e.g., [Jan98, Lemma 1.1]). Now,

using (G1) and (G2), and noting that δ(Σi)×δ(Σj) (resp., δ(Σi)⋊σ(et))
is irreducible if and only if ω′

σ(et)
δ(Σ̌i)×ω′

σ(et)
δ(Σ̌j) (resp., ω

′
σ(et)

δ(Σ̌i)⋊
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ω′
Σi+1

. . . ω′
Σf
(cΣi+1

. . . cΣf ·σ(et))) is irreducible (see Lemma 3.3 and Re-

mark 3.9), we get

π →֒ ω′
σ(et)

δ(Σ̌1)× ω′
σ(et)

δ(Σ̌2)× · · · × ω′
σ(et)

δ(Σ̌f)
⋊ω′

Σ1
ω′
Σ2
. . . ω′

Σf
(cΣ1cΣ2 . . . cΣf · σ(et))

∼= ω′
σ(et)

δ(Σ̌2)× · · · × ω′
σ(et)

δ(Σ̌f )× ω′
σ(et)

δ(Σ̌1)
⋊ω′

Σ1
ω′
Σ2
. . . ω′

Σf
(cΣ1cΣ2 . . . cΣf · σ(et))

∼= ω′
σ(et)

δ(Σ̌2)× · · · × ω′
σ(et)

δ(Σ̌f )× δ(Σ1)
⋊ω′

Σ2
. . . ω′

Σf
(cΣ2 . . . cΣf · σ(et))

∼= δ(Σ1)× ω′
σ(et)

δ(Σ̌2)× · · · × ω′
σ(et)

δ(Σ̌f )
⋊ω′

Σ2
. . . ω′

Σf
(cΣ2 . . . cΣf · σ(et))

... (continuing with δ(Σ2), δ(Σ3), . . . in succession)

∼= δ(Σ1)× δ(Σ2)× · · · × δ(Σf )⋊ σ(et).

This induced representation is the standard module admitting π as
its Langlands quotient. As π appears with multiplicity one in the
the standard module and is both a subrepresentation and the unique
irreducible quotient, we must have irreducibility, as needed. Thus (G1)
and (G2) are also sufficient. �

We now take up the question of when δ(Σ)⋊ σ(et) is irreducible. As
above, to uniformize the presentation, we retain the notational conven-
tions of Note 3.8, (4.13), (4.14) and (4.18). We note that for a char-
acter χ of F×, the corresponding character χ ◦ ξn of GSpin2n+1(F ),
GSpin2n(F ), or GSpin

∗
2n+2(F ) (see discussion preceding Lemma 3.3)

satisfies

ωχ◦ξn =





χ2 for Gn = GSpin2n+1 or GSpin2n if n > 0,
χ for Gn = GSpin2n+1 or GSpin2n if n = 0,
χ2 for Gn = GSpin∗

2n+2
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(e.g., for n > 0, one calculates χ◦(e1+· · ·+en+2e0)(d(1, . . . , 1, a0))–see
§3). In particular, if ε = ε(σ(e0)), β = β(σ(e0)), and σ(e0) a representa-
tion of Gn0(F ),
(4.20)
ωσ(e0) = ωνεσ(0)

=





ν2εωσ(0) if Gn0 = GSpin2n0+1, GSpin2n0 with n0 > 0
νεωσ(0) if Gn0 = GSpin2n0+1, GSpin2n0 with n0 = 0,
ν2εωσ(0) if Gn0 = GSpin∗

2n0+2

= ν2βωσ(0) .

Theorem 4.24. For Σ = [ν−qξ, ν−q+wξ] and σ(et) as above (satisfying
(4.17)), δ(Σ)⋊ σ(et) is irreducible if and only if the following hold:

(G3) δ(Σ)×δ(Ψj) and ω
′
σ(e2)

δ(Σ̌)×δ(Ψj) are irreducible for all 1 ≤ j ≤ c
(where Ψj is given in (4.14) and ω′

σ(e2)
in (4.18)), and

(G4) δ(Σ)⋊ σ(e2) is irreducible.

Proof. Let δi = δ(Ψi).
First, suppose (G3) and (G4) hold. We must show δ(Σ) ⋊ σ(et) is

irreducible. Let (see (4.18) for notation)

π = L(δ(Σ)⊗ σ(et)) = Lsub(ω
′
σ(e2)δ(Σ̌);ω

′
Σ(cΣ · σ(et))).

noting ω′
σ(et)

= ω′
σ(e2)

by Table 2 and (4.14). Then,

π →֒ ω′
σ(e2)

δ(Σ̌)× δ1 × · · · × δk ⋊ ω′
Σ(cΣ · σ(e2))

(using (G3))
∼= δ1 × · · · × δk × ωσ(e2)δ(Σ̌)⋊ ω′

Σ(cΣ · σ(e2))
(using (G4))
∼= δ1 × · · · × δk × δ(Σ)⋊ σ(e2)

(using (G3))
∼= δ(Σ)× δ1 × · · · × δk ⋊ σ(e2).

Therefore, π →֒ δ(Σ)⋊T for some irreducible T ≤ δ1×· · ·× δk⋊σ(e2).
We claim T = σ(et). To see this, observe that

µ∗(π) ≤ µ∗(δ(Σ)⋊ T ) = µ∗(ω′
T δ(Σ̌)⋊ ω′

Σ(cΣ · T ))
By properties of the Langlands classification ([BJ08]), ω′

T δ(Σ̌)⋊ω
′
Σ(cΣ ·

T ) is the only term in µ∗(δ(Σ)⋊T ) of its central character. By unique-
ness of the Langlands subrepresentation data for π, we must then have
T = σ(et). However, we now have π appearing as both a subrepresen-
tation and the Langlands quotient in δ(Σ) ⋊ σ(et). This contradicts
multiplicity one in the Langlands classification unless δ(Σ) ⋊ σ(et) is
irreducible, as needed.
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Now, suppose (at least) one of (G3) or (G4) fails. We must show
δ(Σ)⋊ σ(et) is reducible.
First, suppose (G3) fails with some δ(Σ)× δi reducible (the slightly

harder case); without loss of generality, say δ(Σ) × δ1. Note that this
implies δ(Σ̌) × δ̌1 is reducible. Write σ(et) →֒ δ1 ⋊ T . Now, suppose
δ(Σ) ⋊ σ(et) were irreducible (hence generic) so π = δ(Σ) ⋊ σ(et). We
consider π̌ = δ(Σ̌)⋊ σ̌(et). By contragredience, we have

π̌ ∼= δ(Σ̌)⋊ σ̌(et) →֒ δ(Σ̌)× δ(Ψ̌1)⋊ Ť
⇓ (Lemma 4.10)

π̌ →֒ δ(Σ̌ ∩ Ψ̌1)× δ(Σ̌ ∪ Ψ̌1)⋊ Ť
or

π̌ →֒ Lsub(δ(Σ̌)⊗ δ(Ψ̌1))⋊ Ť .

Noting that π̌ is generic (with respect to ψa◦σ in the unitary or general
unitary case, we must have the former. On the other hand, we claim
that properties of the Langlands classification imply it must be the
latter. In particular, we claim that µ∗(δ(Σ̌ ∩ Ψ̌1) × δ(Σ̌ ∪ Ψ̌1) ⋊ Ť )
contains no terms of the form δ(Σ̌)⊗ . . . . To this end, we make things
more explicit: noting that Ψ = [ν−e1+ββ1, ν

e1+ββ1] (see (4.13)), we have

Σ̌ = [ν−w+q ξ̌, νq ξ̌] and Ψ̌1 = [ν−β−e1 β̌1, ν
−β+e1β̌1].

Reducibility requires β1 = ξ and−w+q < −β−e1 ≤ q+1 < −β+e1+1.
Then,

Σ̌ ∩ Ψ̌1 = [ν−β−e1 ξ̌, νq ξ̌] and Σ̌ ∪ Ψ̌1 = [ν−w+q ξ̌, ν−β+e1 ξ̌].

If µ∗(Ť ) =
∑

i κi ⊗ θi, then by the µ∗ structures discussed in §3, we
must have

δ([ν−w+qξ̌, νq ξ̌]) ≤ δ([νx1 ξ̌, νq ξ̌])× δ([ω′
Ťν

y1ξ, ω′
Ťν

e1+βξ])× δ([νx2 ξ̌, ν−β+e1 ξ̌])

× δ([ω′
Ť
νy2ξ, ω′

Ť
νw−qξ])× κi.

(4.21)

First, observe that since e1 − β > q, we must have x2 = e1 − β + 1.
Using (4.20), we have

ε(ω′
Ť
) = −2β

for general spin groups. It then follows from (4.17) that ε(ω′
Ť
νq−wξ) =

q − w − 2β > q, also giving y2 = w − q + 1. Further, ε(ω′
Ť
νe1+βξ) =

e1 − β > q, giving y1 = e1 + β + 1. Thus we are reduced to

(4.22) δ([ν−w+q ξ̌, νq ξ̌]) ≤ δ([νx1 ξ̌, νq ξ̌])× κi.

We now argue that ν−w+q ξ̌ cannot appear in the right-hand side of
(4.22). First, ν−w+qξ̌ cannot appear in δ([νx1 ξ̌, νq ξ̌]) since x1 ≥ −e1 −
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β > −w + q. It also cannot appear in κi as we would have

ε(κi) =
−w + q + x1 − 1

2
≤ −w

2
+ q < −β,

contradicting the Casselman criterion for the essential temperedness of
Ť and finishing the argument for the case where the first possibility in
(G3) fails.
Now suppose it is ω′

σ(e2)
δ(Σ̌)× δ1 which is reducible. In this case, we

use

π →֒ ω′
σ(e2)δ(Σ̌)⋊ ω′

Σ(cΣ · σ(et)) →֒ ω′
σ(e2)δ(Σ)⋊ ω′

Σ(cΣ · (δ1 ⋊ T ))

∼= ω′
σ(e2)δ(Σ)× δ1 ⋊ ω′

Σ(cΣ · T )
(see Lemma 3.3, noting ω′

Σ trivial for the GSpin cases) and argue as
above.
The proof for (G4) is similar. Here, since (G3) has been addressed

above, we are free to assume (G3) holds but (G4) fails. Then,

π̌ →֒ δ(Σ̌)× δ̌1 × · · · × δ̌k ⋊ σ̌(e2) ∼= δ̌1 × · · · × δ̌k × δ(Σ̌)⋊ σ̌(e2).

Write δ(Σ̌)⋊ σ̌(e2) = L(δ(Σ̌)⊗ σ̌(e2)) +
∑

j Qj . Note that by the Stan-

dard Module Conjecture, L(δ(Σ̌) ⊗ σ̌(e2)) is not generic. Again, by
Lemma 4.10,

π̌ →֒ δ̌1 × · · · × δ̌k × δ(Σ̌)⋊ σ̌(e2)

⇓
π̌ →֒ δ̌1 × · · · × δ̌k ⋊ L(δ(Σ̌)⊗ σ̌(e2))

or
π̌ →֒ δ̌1 × · · · × δ̌k ⋊Qi

for some i. As above, genericity implies it must be the second, but
properties of the Langlands classification require it be the first. We
again have π̌ appearing with multiplicity two in δ̌1×· · ·×δ̌k×δ(Σ̌)⋊σ̌(e2),
giving a contradiction and finishing the proof. �

We now take up the question of when δ(Σ) ⋊ σ(e2) is irreducible.
Write

σ(e2) = δ(∆1, . . . ,∆k; σ
(e0))ψa

as in (4.11). Again, to uniformize the presentation, we retain the no-
tational conventions (4.18). We also point out that it follows from
Lemma 3.3 that for similitude groups,

(4.23) λ⋊ σ(e0) is irreducible ⇔ ν−βλ⋊ σ(0) is irreducible,

with β = β(σ(e0)) as in Definition 3.6.
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Theorem 4.25. For Σ as above, δ(Σ)⋊σ(e2) is irreducible if and only
if the following hold:

(G5) δ(Σ) × δ(∆i) and ω′
σ(e0)

δ(Σ̌) × δ(∆i) are irreducible for all i =
1, . . . , k, and
(G6) either (a) δ(Σ)⋊σ(e0) is irreducible, or (b) q = −1+β (so (ξ, σ(0))
satisfies (C1)) and there is some i having δ(∆i) = δ([ν1+βξ, νbi+βξ])
with bi ≥ −q + w.

Proof. We first address (⇐). That is, we assume (G5) and (G6) both
hold and show δ(Σ)⋊σ(e2) is irreducible. We assume it is (G6)(a) which
holds, and comment on the changes needed for (G6)(b) afterwards.
Let π →֒ δ(Σ)⋊ σ(e2) be an irreducible subrepresentation. Then,

(4.24)
π →֒ δ(Σ)× δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−akτk, ν
bkτk])⋊ σ(e0)

(using (G5))
∼= δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−akτk, ν
bkτk])× δ(Σ)⋊ σ(e0)

(using (G6)(a))
∼= δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−akτk, ν
bkτk])× ω′

σ(e0)
δ(Σ̌)⋊ ω′

Σ(cΣ · σ(e0))
(using (G5))
∼= ω′

σ(e0)
δ(Σ̌)× δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−akτk, ν
bkτk])⋊ ω′

Σ(cΣ · σ(e0)).

In particular, π has a term of the form ω′
σ(e0)

δ(Σ̌) ⊗ θ in its Jacquet

module. Note that δ(Σ)⋊σ(e2) = ω′
σ(e0)

δ(Σ̌)⋊ω′
Σ(cΣ ·σ(e2)) (as ω′

σ(e2)
=

ω′
σ(e0)

– see Table 2). From properties of the Langlands classification

([BJ08]), the only term of the form ω′
σ(e0)

δ(Σ̌)⊗θ in the Jacquet module

of ω′
σ(e0)

δ(Σ̌) ⋊ ω′
Σ(cΣ · σ(e2)) is ω′

σ(e0)
δ(Σ̌) ⊗ ω′

Σ(cΣ · σ(e2)). Thus θ =

ω′
Σ(cΣ · σ(e2)). Now,

π →֒ ω′
σ(e0)

δ(Σ̌)⋊ ω′
Σ(cΣ · σ(e2))

⇓
π ∼= L(δ(Σ)⊗ σ(e2))

as L(δ(Σ) ⊗ σ(e2)) is the Langlands subrepresentation of ω′
σ(e0)

δ(Σ̌) ⋊

ω′
Σ(cΣ · σ(e2)). Thus, π appears as both irreducible subrepresentation

(from above) and unique irreducible quotient in δ(Σ) ⋊ σ(e2), contra-
dicting multiplicity one in the Langlands classification unless we have
irreducibility.
We now discuss the changes needed if it is (G6)(b) which holds. Since

δ([ν−aiτi, ν
biτi]) × δ([ν−ajτj , ν

bjτj ]) is irreducible for all i 6= j–hence
may be commuted while preserving equivalences–we may without loss
of generality assume τk ∼= ξ with ak = −1 + β. Then, to produce the
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inversion of δ(Σ) of (4.24), first observe that1

σ(e0) →֒ δ([ν−a1τ1, ν
b1τ1])× · · · × δ([ν−ak−1τk−1, ν

bk−1τk−1])
×δ([ν1−βξ, νbkξ])⋊ σ(e0)

⇓ (Lemma 4.10)
σ(0) →֒ δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−ak−1τk−1, ν
bk−1τk−1])⋊ θ

for some irreducible θ ≤ δ([ν1−βξ, νbkξ])⋊ σ(e0). By genericity,

θ = δ([ν1−βξ, νbkξ]; σ(e0))ψa .

Then,

π →֒ δ(Σ)× δ([ν−a1τ1, ν
b1τ1])× · · · × δ([ν−ak−1τk−1, ν

bk−1τk−1])
⋊δ([ν1−βξ, νbkξ]; σ(e0))ψa
(using (G5))

∼= δ([ν−a1τ1, ν
b1τ1])× · · · × δ([ν−ak−1τk−1, ν

bk−1τk−1])
⋊
(
δ(Σ)⋊ δ([ν1−βξ, νbkξ]; σ(e0))ψa

)
∼= δ([ν−a1τ1, ν

b1τ1])× · · · × δ([ν−ak−1τk−1, ν
bk−1τk−1])

⋊
(
ω′
σ(e0)

δ(Σ̌)⋊ ω′
ΣcΣ · δ([ν1−βξ, νbkξ]; σ(e0))ψa

)
,

by irreducibility (Lemma 4.8 and Lemma 3.3), noting that we have
ω′
δ([ν1−βξ,νbkξ];σ(e0))ψa

= ω′
σ(e0)

from Table 3. The rest of the argument

proceeds the same way.
We now turn to (⇒). First, suppose it is (G5) which fails and it is

δ(Σ)⋊ δ(∆i) which reduces; without loss of generality, we take i = 1.
Now, observe that by Lemma 4.10,

σ(e2) →֒ δ(∆1)⋊ δ(∆2, . . . ,∆k; σ
(e0))ψa

Thus,

δ(Σ)⋊ σ(e2) →֒ δ(Σ)× δ(∆1)⋊ δ(∆2, . . . ,∆k; σ
(e0))ψa ;

the argument now proceeds as in the proof of Theorem 4.24; in partic-
ular, the proof that reducibility of δ(Σ)× δ(Ψj) implies the reducbility
of δ(Σ)⋊ σ(e0). The case where ω′

σ(e0)
δ(Σ̌)⋊ δ(∆i) is reducible is simi-

lar. �

Remark 4.26. We remark that the results in Theorems 4.24 and 4.25
do not hold if σ(et) and σ(e2) are not assumed to be the generic subquo-
tients of (4.14) and the induced representation in Proposition 4.13. To
show this, consider the case of classical groups and suppose (ρ, σ) satis-
fies (C1/2). Looking at [MT02, Example 14.1.4] and using the notation
there, we note that there are 4 square-integrable subrepresentations of

δ([ν
−2k1+1

2 ρ, ν
2k2−1

2 ρ])× δ([ν
−2k3+1

2 ρ, ν
2k4−1

2 ρ])⋊ σ,

1This represents a minor correction to the proof of [JL14, Theorem 3.11].
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corresponding to ε1, ε4, ε13, ε16. By [Han10], the square-integrable generic
representation is the one corresponding to ε1. Suppose k3 = k2 + 1.

By [Jan18, Lemma 3.2 (1)], ν
2k3+1

2 ρ ⋊ δ is reducible if and only if
ε(ρ, 2k3) = ε(ρ, 2k2), i.e., if ε = ε1 or ε16 (but not ε4 or ε13). One can
construct a similar example for tempered representations using [Jan18,
Theorem 4.7].

It remains to address the question of when δ(Σ)⋊ σ(e0) is reducible
(see [Tad98a, Theorem 9.1] and [JL14, Theorem 3.13] for the split clas-
sical groups). Recall that Lemma 3.7 implies β = β(σ(et)) = β(σ(e0)),
so w, q satisfy the following (from (4.17)):

w

2
− q > β.

Theorem 4.27. Write σ(e0) = νε0σ(0) and set

ω′
σ(0) =

{
ωσ(0) if Gn = GSpin2n+1, GSpin2n, GSpin

∗
2n+2,

1 if not,

as in (4.18). For Σ as above (in particular, requiring w
2
− q > β), we

have δ(Σ)⋊ σ(e0) irreducible if and only if the following hold:
(G7) ω′

σ(0)
ξ̌ 6∼= ξ, or

(G8) q + β 6∈
{

−α + Z≥0 if (ξ, σ(0)) satisfies (Cα) for α ∈ {0, 1
2
, 1},

Z≥0 if (ξ, σ(0)) satisfies (CN).

Proof. First, suppose (G7) holds. Let

π = L(δ([ν−qξ, ν−q+wξ])⊗ σ(e0))

= Lsub(δ([ω
′
σ(0)ν

q−w+2β ξ̌, ω′
σ(0)ν

q+2β ξ̌])⊗ ω′
Σ(cΣ · σ(e0))),

where ω′
Σ and cΣ are as in (4.18). Then,

(4.25)
π →֒ δ([ω′

σ(0)
νq−w+2β ξ̌, ω′

σ(0)
νq+2β ξ̌])⋊ ω′

Σ(cΣ · σ(e0))

→֒ ω′
σ(0)

νq+2β ξ̌ × ω′
σ(0)

νq+2β−1ξ̌ × · · · × ω′
σ(0)

νq−w+2β+1ξ̌

×ω′
σ(0)

νq−w+2β ξ̌ ⋊ ω′
Σ(cΣ · σ(e0))

∼= ω′
σ(0)

νq+2β ξ̌ × ω′
σ(0)

νq+2β−1ξ̌ × · · · × ω′
σ(0)

νq−w+2β+1ξ̌
×ν−q+wξ ⋊ ω′

Σω
′
νq−w ξ̌

(cξcΣ · σ(e0))
∼= ν−q+wξ × ω′

σ(0)
νq+2β ξ̌ × ω′

σ(0)
νq+2β−1ξ̌

× · · · × ω′
σ(0)

νq−w+2β+1ξ̌ν−q+wξ ⋊ ω′
Σω

′
νq−w ξ̌

(cξcΣ · σ(e0))
... (iterating)

∼= ν−q+wξ × ν−q+w−1ξ × · · · × ν−q+1ξ × ν−qξ ⋊ σ(e0).

By Lemma 4.10, π →֒ λ ⋊ σ(e0) for some irreducible λ ≤ ν−q+wξ ×
ν−q+w−1ξ×· · ·×ν−q+1ξ×ν−qξ. A subquotient other than δ([ν−qξ, ν−q+wξ])
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would produce (by Frobenius reciprocity) a term of the form νxξ⊗ ≤
µ∗(π) with x 6= −q+w, which is not possible. Thus λ = δ([ν−qξ, ν−q+wξ])
and

π →֒ δ([ν−qξ, ν−q+wξ])⋊ σ(e0).

We now have π appearing as both a subrepresentation and the Lang-
lands quotient in δ([ν−qξ, ν−q+wξ]) ⋊ σ(e0). As π must appear with
multiplicity one, we see that δ([ν−qξ, ν−q+wξ])⋊ σ(e0) is irreducible.
Now, suppose it is (G8) which holds; by the argument above, we may

also assume (G7) does not, i.e., that ω′
σ(0)

ξ̌ ∼= ξ. If q + β 6≡ 0, 1
2
mod 1,

the same argument as above works. The case where q + β ∈ 1
2
Z but

q+β 6≡ α mod1 (resp., q+β 6≡ mod1 in the (CN) case) is covered by
Lemmas 4.16 and 3.3. If q + β ≡ α mod 1 (or 0 in the (CN) case), the
same basic argument as above also works, but the commuting/inverting
argument in (4.25) is less obvious. To see that νq+2β−kξ ⋊ ω′

kckσ
(e0),

0 ≤ k ≤ w is irreducible, note that by Lemma 3.3,

νq+2β−kξ ⋊ ω′
kckσ

(e0) ∼= νβ(νq+β−kξ ⋊ ω′
kckσ

(0)).

Then, by (G8),we have

q + β < −α ⇒ q + β − k < −α
implying the needed irreducibility. To see that νq+2β−kξ × ν−q+ℓξ, 0 ≤
k < ℓ ≤ w is irreducible, observe that since ℓ > k ≥ 0, we have
−α ≤ k+ℓ−1

2
. Then,

q + β <
k + ℓ− 1

2
⇒ q + 2β < −q + ℓ− 1,

implying the needed irreducibility.
In the other direction, suppose both (G7) and (G8) fail. Except

when −q + β = 0 in the (C1) case, the conditions (EDS1)-(EDS4)
are satisfied. Then δ(Σ; σ(e0))ψa is an essentially square-integrable sub-
quotient of δ(Σ) ⋊ σ(e0) (Proposition 4.13 and the discussion at the
end of §4.3). On the other hand, the conditions on q, w are those re-
quired in the Langlands classification; consequently, L(Σ⊗σ(e0)) is the
unique irreducible quotient of δ(Σ) ⋊ σ(e0). Reducibility is then clear.
When q + β = 0 in the (C1) case, we note that the generalized Stein-
berg representation δ([νβ+1ξ, νβ+wξ]; σ(e0)) is generic (Corollary 4.6),
so there is a generic subquotient (necessarily a subrepresentation) of
νβξ⋊ δ([νβ+1ξ, νβ+wξ]; σ(e0)), which is essentially tempered but not es-
sentially square-integrable. By genericity and supercuspidal support
considerations, this generic essentially tempered representation must
also be a subquotient of δ([ν−qξ, ν−q+wξ]) ⋊ σ(e0). This is cleary dis-
tinct from the Langlands quotient and reducibility follows. �
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Remark 4.28. We used the generic property to keep the proof above
relatively short, but based on known examples (e.g., [Tad98b], [KLM20],
[BJ03]), we expect the same reducibility points when σ(e0) is not generic.
The above result does not deal with the case q + β = w

2
(nor can it be

obtained from (4.19)). Again, based on known examples, we expect
reducibility if and only if q ≡ α mod 1 (resp., never in the (CN) case).

Note 4.29. Condition (G8) in Theorem 1.2 is restatement of (G8)
above. In particular, note that by (4.23), the condition (ρ, σ(0)) (Cα)
corresponds to νxρ ⋊ σ(e0) having reducibility at x = β + α. It then
suffices to show that for (Cα), q + β 6∈ −α + Z≥0 ⇔ ±α 6∈ {−q −
β,−q + 1− β, . . . ,−q + w − β} (noting −a = −q and b = −q + w).
We check this in the most complicated case, namely the (C1) case.

We first note that if q + β 6∈ Z, both clearly hold. Thus we restrict our
attention to the case where q + β ∈ Z.

(⇒:) We have q + β 6∈ −1 + Z≥0 ⇔ q + β < −1 ⇔ 1 < −q − β. Then

−1 < −q − β as well, so neither ±1 ∈ [−q − β,−q + w − β].

(⇐): Suppose both ±1 6∈ [−q − β,−q − β + w]. Observe that since

−q − β + w ≥ 1, 1 6∈ [−q − β,−q − β + w] ⇒ −q − β > 1 (so
−1 6∈ [−q− β,−q− β+w] as well), or equivalently, q+ β 6∈ −1+Z≥0.

5. Functoriality for quasi-split classical groups

Let Gn = SO2n+1, Sp2n, SO2n, SO
∗
2n+2, U2n+1, U2n, quasi-split classi-

cal groups of rank n. From now on to the end of this paper, we focus on
these groups. We follow [CPSS11] to recall the Langlands functoriality
for Gn as follows.

(1) When Gn = SO2n+1, the L-group is LGn = Sp2n(C)×WF with
connected component LG0

n = Sp2n(C), and we have the natural
embedding

i : LGn = Sp2n(C)×WF →֒ GL2n(C)×WF = LGL2n.

(2) When Gn = Sp2n, the L-group is LGn = SO2n+1(C) × WF

with connected component LG0
n = SO2n+1(C), and we have the

natural embedding

i : LGn = SO2n+1(C)×WF →֒ GL2n+1(C)×WF = LGL2n+1.

(3) When Gn = SO2n, the split special even orthogonal group, the
L-group is LGn = SO2n(C) ×WF with connected component
LG0

n = SO2n(C), and we have the natural embedding

i : LGn = SO2n(C)×WF →֒ GL2n(C)×WF = LGL2n.
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(4) When Gn = SO∗
2n+2, the quasi-split non-split special even or-

thogonal group, the L-group is LGn = SO2n+2(C) ⋊WF with
connected component LG0

n = SO2n+2(C). Here the Weil group
acts through the quotient WF/WE

∼= Gal(E/F ) which gives
the Galois structure of SO∗

2n+2, write the quadratic extension
as E = F (

√
ε). More explicitly, let h ∈ O2n+2 be any ele-

ment of negative determinant, then for the non-trivial element
σ ∈ Gal(E/F ), it acts on LG0

n by σ(g) = h−1gh. Choose an
L-homomorphism

ξ : WF → O2n+2(C)×WF →֒ GL2n+2(C)×WF ,

which induces the isomorphism

WF/WE → Gal(E/F ) ∼= O2n+2(C)/SO2n+2(C),

i.e., ξ factors throughWF/WE
∼= Gal(E/F ) and sends the non-

trivial element σ to h × σ. Write ξ as ξ(w) = ξ′(w) × w with
ξ′(w) ∈ O2n+2(C). Then we have the following embedding

i : SO2n+2(C)⋊WF →֒ GL2n+2(C)×WF ,

given by i(g × 1) = g × 1, i(1× w) = ξ(w) = ξ′(w)× w, where
g ∈ SO2n+2(C) and w ∈ WF .

(5) When Gn = U2n+1 = U(J ′
2n+1), the odd quasi-split unitary

group, where J ′
2n+1 =




1
−1

1

. .
.

−1
1




, the L-group

is LGn = GL2n+1(C) ⋊WF with connected component LG0
n =

GL2n+1(C). Here the Weil group acts through the quotient
WF/WE

∼= Gal(E/F ) which gives the Galois structure of U2n+1,
write the quadratic extension as E = F (

√
ε). More explic-

itly, the non-trivial element σ ∈ Gal(E/F ) acts on LG0
n by

σ(g) = J ′−1
2n+1

tg−1J ′
2n+1. The standard representation of LGn is

C2n+1 × C2n+1, where the action of LG0
n is by (g × 1)(v1, v2) =

(gv1, σ(g)v2), and the Weil group acts through the quotient
WF/WE

∼= Gal(E/F ) with the action of the non-trivial Ga-
lois element by (1 × σ)(v1, v2) = (v2, v1). Then we have the
following embedding

i : LGn →֒ (GL2n+1(C)×GL2n+1(C))⋊WF = L(ResE/FGL2n+1),
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by i(g×w) = (g×σ(g))×w, where on the right hand side, WF

acts onGL2n+1(C)×GL2n+1(C) through the quotientWF/WE
∼=

Gal(E/F ) with σ(g1 × g2) = g2 × g1.
(6) When Gn = U2n = U(J ′

2n), the even quasi-split unitary group,

where J ′
2n =

(
Jn

−Jn

)
and Jn as in the case of U2n+1, the

L-group is LGn = GL2n(C) ⋊WF with connected component
LG0

n = GL2n(C). Here the Weil group acts through the quotient
WF/WE

∼= Gal(E/F ) which gives the Galois structure of U2n,
again, write the quadratic extension as E = F (

√
ε). More

explicitly, the non-trivial element σ ∈ Gal(E/F ) acts on LG0
n

by σ(g) = J ′−1
2n

tg−1J ′
2n. Similar to the case of Gn = U2n+1, we

have the following embedding

i : LGn →֒ (GL2n(C)×GL2n(C))⋊WF = L(ResE/FGL2n),

by i(g×w) = (g×σ(g))×w, where on the right hand side, WF

acts on GL2n(C) × GL2n(C) through the quotient WF/WE
∼=

Gal(E/F ) with σ(g1 × g2) = g2 × g1.

Recall from the introduction thatN = 2n forGn = SO2n+1, U2n, SO2n,
N = 2n + 2 for Gn = SO∗

2n+2, N = 2n+ 1 for Gn = Sp2n, U2n+1. Also
recall that HN = GLN when Gn = SO2n+1, Sp2n, SO2n, SO

∗
2n+2, and

let HN = ResE/FGLN when Gn = U2n+1, U2n. We recall Table 1 which
summarizes the cases of funtoriality we will consider from Gn to HN :

Gn i : LGn →֒ LHN HN

SO2n+1 Sp2n(C)×WF →֒ GL2n(C)×WF GL2n

Sp2n SO2n+1(C)×WF →֒ GL2n+1(C)×WF GL2n+1

SO2n SO2n(C)×WF →֒ GL2n(C)×WF GL2n

SO∗
2n+2 SO2n+2(C)⋊WF →֒ GL2n+2(C)×WF GL2n+2

U2n+1 GL2n+1(C)⋊WF →֒ GL×2
2n+1(C)⋊WF ResE/FGL2n+1

U2n GL2n(C)⋊WF →֒ GL×2
2n (C)⋊WF ResE/FGL2n

6. Surjectivity of local Langlands functorial lifting

maps

In this section, first we carry out the image of the local Langlands
functorial lifting from Π(sg)(Gn) (generic supercuspidal representations)
to HN following [CKPSS04] and [CPSS11], then using the descent
method as in [JS03], we prove that the rest of local Langlands func-
torial lifting given by Cogdell, Piatetski-Shapiro, Shahidi [CPSS11] is
also surjective. In each case, we write down the corresponding local
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Langlands parameters. To the complete, we provide a uniform proof
for Gn, following [JS03, Liu11, JL14].
First, we define

(6.1) R :=






Λ2 if Gn = SO2n+1,

Sym2 if Gn = Sp2n, or SO2n, or SO
∗
2n+2,

Asai if Gn = U2n+1,

Asai⊗ δ if Gn = U2n;

and,

(6.2) R− :=





Sym2 if Gn = SO2n+1,

Λ2 if Gn = Sp2n, or SO2n, or SO
∗
2n+2,

Asai⊗ δ if Gn = U2n+1,

Asai if Gn = U2n.

For symplectic or orthogonal groups, Sym2 and Λ2 denote the sym-
metric and exterior second powers of the standard representation of
GLm(C), respectively. For unitary groups, Asai denotes the Asai rep-
resentation of the L-group of ResE/F (GLm) and δ is the character
associated to the quadratic extension E/F via the class field theory.
Recall that given τ an irreducible unitary supercuspidal representation
of Hk, τ̌ = τ̃ , if Hk = GLk, τ̌ = τ̃ ι, if Hk = ResE/FGLk, where the in-
volution ι is the nontrivial element in the Galois group GalE/F . Given
τ an irreducible unitary supercuspidal representation of Hk, such that
τ̌ = τ , we have the following identities:

L(s, τ × τ ∗) = L(s, τ, R)L(s, τ, R−),

where τ ∗ = τ , if Hk = GLk; τ
∗ = τ ι, if Hk = ResE/FGLk.

Remark 6.1. Assume σ(0) is an irreducible generic supercuspidal rep-
resentation of Gn, τ is an irreducible unitary supercuspidal represen-
tation of Hk. If L(σ(0) × τ, s) has a pole at s = 0 (case (C1)), then
L(τ, R, s) has a pole at s = 0.

Let Φ(Gn) be the set of local Langlands parameters for Gn (for a
definition and discussion of the local Langlands reciprocity conjecture,
see [Liu11, Introduction] and the references therein). These are LGn-
conjugacy classes of admissible homomorphisms

WF × SL2(C) → LGn,

where WF × SL2(C) is the Weil-Deligne group.
Note that when Gn = SO2n, SO

∗
2n+2, we have the embedding

LGn → LGLN .
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Given a local Langlands parameter φ ∈ Φ(GLN ), φ : WF × SL2(C) →
LGLN , assume that it factors through LGn and φ ≇ cφ within LGn,
where cφ is the c-conjugate of φ, here c is the fixed outer automorphism
(see §3). Then φ gives two elements in Φ(Gn) (see [Art13, Chapter 1]),
which are denoted by φ and cφ. To identify φ and cφ in this situation,

let Φ̃(Gn) be the set of c-conjugacy classes of φ ∈ Φ(Gn). Write φ̃ = cφ.
Note that for any φ ∈ Φ(Gn), if φ ≇ cφ, then they automatically have
the same twisted local factors since they come from the same local
Langlands parameter φ ∈ Φ(GLN ). Define the twisted local factors

of φ̃ to be those of φ. From now on, we use the notation Φ̃(Gn), and

when Gn = SO2n+1, Sp2n, U2n+1, U2n, Φ̃(Gn) = Φ(Gn), φ̃ = φ. When
convenience, write G = Gn.

6.1. Supercuspidal generic representations. Let Π(sg)(Gn) be the
set of all equivalence classes of irreducible generic supercuspidal repre-

sentations of Gn. Let Π
(sg)
ε (HN) be the set of all equivalence classes of

irreducible tempered representations of HN(F ) of the following form:

(6.3) τ1 × τ2 × · · · × τr,

with central character χ being trivial when restricting to F ∗ except
when Gn = SO∗

2n+2, in which case it is the quadratic character ηε
associated to the square class ε defining Gn. Here for each 1 ≤ i ≤ r,
τi is an irreducible unitary supercuspidal representation of Hni(F ) such
that τ ∼= τ̌ , L(τi, R, s) has a pole at s = 0, and for i 6= j, τi 6∼= τj .
Cogdell, Kim, Piatetski-Shapiro, Shahidi [CKPSS04, CPSS11], and

Kim, Krishnamurthy [KK04, KK05], constructed the following local
Langlands functorial lifting map:

Theorem 6.2 (Cogdell, Kim, Piatetski-Shapiro, Shahidi, Krishna-

murthy). There is a map l from Π(sg)(Gn) to Π
(sg)
ε (HN) and it preserves

the local factors:
L(σ × τ, s) = L(l(σ)× τ, s),

ǫ(σ × τ, s, ψ) = ǫ(l(σ)× τ, s, ψ),

for any σ ∈ Π(sg)(Gn) and any irreducible generic representation τ of
Hk(F ) (k any positive integer).

The following theorem, which is one of the main ingredients of the
results in this section, shows that the map l in Theorem 6.2 is surjec-
tive. Arthur [Art13] and Mok [Mok15] proved this result using the trace
formula method and the global descent result of Ginzburg, Rallis and
Soudry [GRS11]. Jiang and Soudry [JS12] (forGn = SO2n+1, Sp2n, SO2n,
SO∗

2n+2), Soudry and Tanay [ST15] (for Gn = U2n), constructed the lo-
cal descent map from irreducible supercuspidal representations of HN
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to irreducible supercuspidal representations of Gn. The generaliza-
tion of the descent map from irreducible supercuspidal representations
of HN to representations of the form in (6.3) is straightforward for
Gn = SO2n+1, Sp2n, SO2n, SO

∗
2n+2, but for Gn = U2n, further work

may be needed.

Theorem 6.3 (Arthur, Jiang-Soudry, Mok, Soudry-Tanay). For Gn =
SO2n+1, Sp2n, SO2n, SO

∗
2n+2, U2n+1, U2n, The map l in Theorem 6.2 is

surjective.

Remark 6.4. For σ ∈ Π(sg)(Gn), assume τ1×τ2×· · ·×τr ∈ Π
(sg)
α (HN)

is the lifting of σ. Then it is clear that L(σ× τi, s) has a pole at s = 0,
1 ≤ i ≤ r. Therefore, by Remark 6.1, each pair (τi, σ) must be of (C1).

We have the following proposition about lifting images of σ and cσ
when σ ≇ cσ ∈ Π(sg)(Gn).

Proposition 6.5. If σ ≇ cσ ∈ Π(sg)(Gn), then l(σ) = l(cσ) ∈
Π

(sg)
α (HN). In particular,

L(σ × τ, s) = L(cσ × τ, s),

ǫ(σ × τ, s, ψ) = ǫ(cσ × τ, s, ψ),

for any irreducible generic representation τ of Hk(F ), where k is any
positive integer.

Proof. The proof is similar to that of [JL14, Proposition 4.4] which is
omitted here. �

Next, we figure out the corresponding parameters of irreducible su-
percuspidal generic representations of Gn(F ). We need to recall the
following result.

Theorem 6.6 ([Hen10, CST17, Sha20]). The local Langlands reci-
procity map r for Hk(F ) has the following property:

γ(φ,R, s, ψ) = γ(r(φ), R, s, ψ),

for any local Langlands parameter φ ∈ Φ(Hk).

As in [JS03] and [Liu11], using the above result, we have the following
proposition.

Proposition 6.7. Assume τ is an irreducible supercuspidal represen-
tation of Hk(F ) having local Langlands parameter φ (which is an irre-
ducible admissible k-dimensional complex representation of WF ) such
that τ ∼= τ̌ . Then L(τ, R, s) has a pole at s = 0 if and only if L(φ,R, s)
has a pole at s = 0.
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Proof. By definition

γ(τ̌ , R, s, ψ) = ǫ(τ̌ , R, s, ψ) · L(τ, R, 1− s)

L(τ̌ , R, s)
.

If the local L-function L(τ, R, s) has a pole at s = 0, then the gamma
function γ(τ̌ , R, s, ψ) has a pole at s = 1. Hence by Theorem 6.6, the
gamma function γ(φ̌, R, s, ψ) also has a pole at s = 1. Since we also
have

γ(φ̌, R, s, ψ) = ǫ(φ̌, R, s, ψ)
L(φ,R, 1− s)

L(φ̌, R, s)
,

the L-function L(φ,R, s) has a pole at s = 0. Similarly we can prove
the other direction. This completes the proof. �

Given a local L-parameter φ of Gn, for convenience, if L(φ,R, s) has
a pole at s = 0, then we say φ is of type R; if L(φ,R−, s) has a pole at
s = 0, then we say φ is of type R−.
Let Φ(sg)(Gn) be the subset of Φ(Gn) consisting of all parameters of

type

φ =
⊕

i

φi

with the properties that:
(1) φi’s are irreducible self-dual (resp. self-conjugate-dual in the case

of unitary groups, see [GGP12, Section 3]) representations of WF , and
φi 6∼= φj if i 6= j;
(2) for each i, L(φi, R, s) has a pole at s = 0.
Note that for any φ ∈ Φ(Gn), det(φ) is trivial except when Gn =

SO∗
2n+2, in which case it is the quadratic character ηε associated to the

square class ε defining Gn.

Let Φ̃(sg)(Gn) be the image of Φ(sg)(Gn) in Φ̃(Gn). As a consequence
of Theorem 6.3 and Proposition 6.7, we have the following result for
irreducible generic supercuspidal representations of G:

Theorem 6.8. There is a surjective map ι from Π(sg)(Gn) to the set

Φ̃(sg)(Gn) and it preserves the local factors:

L(σ × τ, s) = L(ι(σ)⊗ r−1(τ), s),

ǫ(σ × τ, s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for any σ ∈ Π(sg)(Gn) and any irreducible generic representations τ of
Hkτ (F ), with all kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible
representation of of WF × SL2(C) of dimension kτ which corresponds
to τ under the local Langlands reciprocity map for Hkτ .
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Remark 6.9. Note that as mentioned at the beginning of this section,

for any φ̃ ∈ Φ̃(Gn), its twisted local factors are defined to be those of φ

(a representative of φ̃).
Also note that by Proposition 6.5 and Theorem 6.8, if σ ≇ cσ ∈

Π(sg)(Gn), then they have the same lifting image and the same twisted
local factors.

6.2. Square-integrable generic representations. First, we recall
the classification of square-integrable generic representations of Gn(F )
given in §4.3.
Let P ′ be a finite set of irreducible supercuspidal self-dual (or self-

conjugate-dual in the case of unitary groups) representations τ ofHkτ (F ).
Assume that for each τ ∈ P ′, there is a sequence of segments

(6.4) Di(τ) = [v−ai(τ)τ, vbi(τ)τ ], i = 1, 2, · · · , eτ ,
satisfying

(6.5) 2ai(τ) ∈ Z and 2bi(τ) ∈ Z≥0,

and

(6.6) a1(τ) < b1(τ) < a2(τ) < b2(τ) < · · · < aeτ (τ) < beτ (τ).

Let σ(0) be an irreducible supercuspidal generic representation ofGn′(F ).
Assume that
(DS1) if (τ, σ(0)) satisfies (C1), then −1 ≤ ai(τ) ∈ Z r {0}, for
1 ≤ i ≤ eτ ;
(DS2) if (τ, σ(0)) satisfies (C0), then ai(τ) ∈ Z≥0, for 1 ≤ i ≤ eτ ;
(DS3) if (τ, σ(0)) satisfies (C 1

2
), then ai(τ) ∈ −1

2
+ Z≥0, for 1 ≤ i ≤ eτ ;

(DS4) if (τ, σ(0)) satisfies (CN), then ai(τ) ∈ Z≥0, for 1 ≤ i ≤ eτ .
Then the unique generic constituent of

(6.7) (×τ∈P ′ ×eτ
i=1 δ(Di(τ)))⋊ σ(0)

is square-integrable. Assume that the (6.7) is a representation of
Gn(F ). Then every square-integrable generic representation of Gn(F )
can be obtained this way for a unique set consisting of a finite set
P ′, segments {Di(τ)|1 ≤ i ≤ eτ , τ ∈ P ′} and a unique generic super-
cuspidal representation σ(0), satisfying conditions (6.5), (6.6), (DS1) -
(DS4).
Recall that we say (τ, σ(0)) satisfies (Cα), where α ∈ {0, 1

2
, 1}, if

v±ατ ⋊ σ(0) reduces, and v±βτ ⋊ σ(0) is irreducible for all |β| 6= α. We
say (τ, σ(0)) satisfies (CN) if τ ∼= τ̌ , kτ is odd, and cσ(0) ≇ σ(0). By
[Sha90a, Sha92, ACS16], we know that our (τ, σ(0)) must satisfy one of
(Cα) or (CN), and the followings hold:
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(1) (τ, σ(0)) satisfies (C1) if and only if L(σ(0) × τ, s) has a pole at
s = 0;
(2) (τ, σ(0)) satisfies (C0) or (CN) if and only if L(τ, R, s) has a pole

at s = 0, but L(σ(0) × τ, s) is holomorphic at s = 0;
(3) (τ, σ(0)) satisfies (C 1

2
) if and only if L(τ, R−, s) has a pole at

s = 0.
Therefore, for convenience, we rephrase conditions (DS1) – (DS4) as

follows:
(DS1′) (C1), if L(σ(0) × τ, s) has a pole at s = 0, then −1 ≤ ai(τ) ∈
Z r {0}, for 1 ≤ i ≤ eτ ;
(DS2′) (C0) or (CN), if L(τ, R, s) has a pole at s = 0, but L(σ(0)×τ, s)
is holomorphic at s = 0, then ai(τ) ∈ Z≥0, for 1 ≤ i ≤ eτ ;
(DS3′) (C 1

2
), if L(τ, R−, s) has a pole at s = 0, then ai(τ) ∈ −1

2
+Z≥0,

for 1 ≤ i ≤ eτ .
Let Π

(dg)
ε (HN) be the set of all equivalence classes of irreducible tem-

pered representations of HN(F ) of the following form:

(6.8) δ([ν−m1τ1, ν
m1τ1])×δ([ν−m2τ2, ν

m2τ2])×· · ·×δ([ν−mrτr, νmrτr]),
with central character χ being trivial when restricting to F ∗ except
whenGn = SO∗

2n+2, in which case it is the quadratic character ηε associ-
ated to the square class ε defining Gn. Here the segments [v−miτi, v

miτi]
are pairwise distinct, τi ∼= τ̌i, and satisfy the following properties for
each i:
(1) if L(τi, R

−, s) has a pole at s = 0, then mi ∈ 1
2
+ Z≥0;

(2) if L(τi, R, s) has a pole at s = 0, then mi ∈ Z≥0.
Then we have the following theorem which is analogous to [JS04,

Theorem 2.1], [Liu11, Theorem 4.8], and [JL14, Theorem 4.8].

Theorem 6.10. There is a surjective map l (which extends the one

in Theorem 6.3) from Π(dg)(Gn) to Π
(dg)
ε (HN) and it preserves the local

factors:

(6.9) L(σ × π, s) = L(l(σ)× π, s),

(6.10) ǫ(σ × π, s, ψ) = ǫ(l(σ)× π, s, ψ),

for any σ ∈ Π(dg)(Gn) and any irreducible generic representation π of
any Hk(F ), k ∈ Z>0.

Proof. This map has already been given by Cogdell, Kim, Piatetski-
Shapiro, and Shahidi (see [CKPSS04] and [CPSS11]), so it suffices to
prove the surjectivity. That is, given a ρ ∈ Π(dg)(HN(F )), to construct
a σρ ∈ Π(dg)(Gn) such that ρ = l(σρ) and (6.9), (6.10) hold.
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We follow the idea as in [JS04]. Let Π(ss)(Hk) be the set of equiv-
alence classes of irreducible supercuspidal representations τ of Hk(F )

(k ∈ Z>0) such that τ ∼= τ̌ . Given ρ ∈ Π
(dg)
α (HN), let

P (ρ) := {τ ∈ Π(ss)(Hk)|L(ρ× τ, s) has a pole in R, k ∈ Z>0}.

Then P (ρ) is finite. For τ ∈ P (ρ), we list the real poles of L(ρ × τ, s)
as follows

(6.11) −mdτ (τ) < · · · < −m2(τ) < −m1(τ) ≤ 0.

Put dτ = 0 if L(ρ× τ, s) is holomorphic for τ irreducible supercuspidal
(τ ∼= τ̌ or not). We consider the following subset of P (ρ):

A(ρ) = {τ ∈ P (ρ)|L(τi, R, s) has a pole at s=0, and dτ is odd},
B(ρ) = {τ ∈ P (ρ)|L(τi, R, s) has a pole at s=0, and dτ is even},
C(ρ) = {τ ∈ P (ρ)|L(τi, R−, s) has a pole at s=0}.

Here R and R− in the L-functions are defined in (6.1) and (6.2). Then

P (ρ) = A(ρ) ∪ B(ρ) ∪ C(ρ).

Further, if τ ∈ A(ρ) ∪ B(ρ), then {mi(τ)}dτi=1 ⊂ Z≥0; if τ ∈ C(ρ), then
{mi(τ)}dτi=1 ⊂ 1

2
+ Z≥0.

Observe that for τ ∈ A(ρ), dτ is odd and the central character ωτ
is quadratic on F ∗; for τ ∈ B(ρ), dτ is even and the central character
ωτ is quadratic on F ∗; for τ ∈ C(ρ), L(τ, R−, s) has a pole at s = 0
which implies that the central character ωτ is trivial on F

∗. Hence, the
following character is trivial on F ∗:

∏

τ∈A(ρ)

ωdτ−1
τ

∏

τ∈B(ρ)

ωdττ
∏

τ∈C(ρ)

ωdττ .

Therefore, the representation ×τ∈A(ρ)τ is a representation of H2k(F )
with central character χ0, which is trivial when restricting to F ∗ ex-
cept when Gn = SO∗

2n+2, in which case it is ηα, k is an integer,
2k =

∑
τ∈A(ρ) kτ , where kτ is so defined that τ is a representation of

Hkτ (F ). Since for τ ∈ A(ρ), L(τ, R, s) has a pole at s=0, by Theorem
6.3, there exists an irreducible supercuspidal generic representation σ(0)

(not necessarily unique up to equivalence) of Gk(F ), such that

(6.12) l(σ(0)) = ×τ∈A(ρ)τ

on H∗(F ).
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Let

A0(ρ) = {τ ∈ A(ρ)|dτ = 1 and m1(τ) = 0},
A1(ρ) = {τ ∈ A(ρ)|dτ ≥ 3 and m1(τ) = 0},
A2(ρ) = {τ ∈ A(ρ)|m1(τ) ≥ 1}.

(6.13)

Then they form a partition of A(ρ). For τ ∈ A1(ρ), let

(6.14) ∆i(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]), i = 1, 2, . . . ,
dτ − 1

2
;

for τ ∈ A2(ρ), let

(6.15) ∆0(τ) = δ([ντ, νm1(τ)τ ]),∆i(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]),

i = 1, 2, . . . ,
dτ − 1

2
.

For τ ∈ B(ρ), let

(6.16) ∆i(τ) = δ([ν−m2i−1(τ)τ, νm2i(τ)τ ]), i = 1, 2, . . . ,
dτ
2
.

Similarly, for τ ∈ C(ρ), if dτ is odd, let

(6.17) ∆0(τ) = δ([ν
1
2 τ, νm1(τ)τ ]),∆i(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]),

i = 1, 2, . . . ,
dτ − 1

2
.

Finally, for τ ∈ C(ρ), if dτ is even, let

(6.18) ∆i(τ) = δ([ν−m2i−1(τ)τ, νm2i(τ)τ ]), i = 1, 2, . . . ,
dτ
2
.

We now define

Jτ =





{1, 2, . . . , dτ−1
2

}, in case (6.14);
{0, 1, 2, . . . , dτ−1

2
}, in cases (6.15), (6.17);

{1, 2, . . . , dτ
2
}, in cases (6.16), (6.18).

and let σρ be the unique irreducible generic constituent of

(6.19) (×τ∈P (ρ)rA0(ρ) ×j∈Jτ ∆j(τ))⋊ σ(0),

where possibly σ(0) = 1 ⊗ c. Observe that σρ is a representation of
Gn(F ). It is now easy to see that the sequence of segments in (6.14)-
(6.18), together with σ(0) satisfy (DS1′)-(DS3′), hence σρ is square-
integrable.
Next we will show that formula (6.9) and (6.10) hold for the pair

(σρ, ρ). First, we show that

(6.20) γ(σρ × π, s, ψ) = γ(ρ× π, s, ψ),
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for all irreducible generic representations π of Hk(F ) with all k ∈ Z>0.
By the multiplicativity of twisted gamma functions ([Sha90b]), it is
enough to show (6.20) for supercuspidal representation π, see also
[CKPSS04, Lemma 7.2].
Since σρ is a constituent of (6.19), using Theorem 6.3 and the fact

that l(σ(0)) = ×τ∈A(ρ)τ , we have

γ(σρ × π, s, ψ)

= [
∏

τ∈P (ρ)rA0(ρ)

∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)]

· γ(σ0 × π, s, ψ)

= [
∏

τ∈P (ρ)rA0(ρ)

∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)]

·
∏

τ∈A(ρ)

γ(τ × π, s, ψ).

(6.21)

We split the product (6.21) into the following five terms

(1):
∏

τ∈A0(ρ)
γ(τ × π, s, ψ),

(2)i:
∏

τ∈Ai(ρ)
γ(τ×π, s, ψ)

∏
j∈Jτ

γ(∆j(τ)×π, s, ψ)γ(∆j(τ)
∨×π, s, ψ),

i = 1, 2,
(3)B:

∏
τ∈B(ρ)

∏
j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ),

(4)C:
∏

τ∈C(ρ)

∏
j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ).

Next, we consider γ(ρ×π, s, ψ). By the assumption on ρ, (6.11) and
the multiplicativity of gamma functions ([Sha90b]), we have

γ(ρ× π, s, ψ)

=
r∏

i=1

γ(δ([ν−miτi, ν
miτi])× π, s, ψ)

=
∏

τ∈P (ρ)

dτ∏

i=1

γ(δ([ν−mi(τ)τ, νmi(τ)τ ])× π, s, ψ).

(6.22)

It suffice to show that the product in (6.22) consists of exactly the
factors which appear in the five products above.
Note that each term in the product (1) appears in (6.22) since for

τ ∈ A0(ρ), we have dτ = 1 and m1(τ) = 0.
For the induced representation

∆j(τ)×∆j(τ)
∨,
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by the multiplicativity of twisted gamma functions, we have

γ((∆j(τ)×∆j(τ)
∨)× π, s, ψ) = γ(∆j(τ)× π, s, ψ)γ(∆j(τ)

∨ × π, s, ψ)

for j ≥ 1.
We consider two cases. In the first case the representation ∆j(τ)

appears in (6.14), (6.15), (6.17), where

∆j(τ)×∆j(τ)
∨ = δ[v−m2j(τ)τ, vm2j+1(τ)τ ]× δ[v−m2j+1(τ)τ, vm2j(τ)τ ].

By [Zel80], we know that if Di(τ) is a segment, then the unique generic
constituent of the representation δ(Di(τ))× δ(Di(τ)

∨) is

δ(Di(τ) ∩Di(τ)
∨)× δ(Di(τ) ∪Di(τ)

∨).

So the unique generic constituent of the representation ∆j(τ)×∆j(τ)
∨

is

δ([ν−m2j(τ)τ, νm2j (τ)τ ])× δ([ν−m2j+1(τ)τ, νm2j+1(τ)τ ]).

By multiplicativity of gamma functions,

γ((∆j(τ)×∆j(τ)
∨)× π, s, ψ)

= γ(δ([ν−m2j (τ)τ, νm2j(τ)τ ])× π, s, ψ)γ(δ([ν−m2j+1(τ)τ, νm2j+1(τ)τ ])× π, s, ψ).

(6.23)

In the second case the representation ∆j(τ) appears in (6.16) and
(6.18), similarly, we have

γ((∆j(τ)×∆j(τ)
∨)× π, s, ψ)

= γ(δ([ν−m2j−1(τ)τ, νm2j−1(τ)τ ])× π, s, ψ)γ(δ([ν−m2j(τ)τ, νm2j (τ)τ ])× π, s, ψ).

(6.24)

By (6.23),

∏

τ∈A1(ρ)

γ(τ × π, s, ψ)
∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)

=
∏

τ∈A1(ρ)

γ(τ × π, s, ψ)

dτ∏

k=2

γ(δ([ν−mk(τ)τ, νmk(τ)τ ])× π, s, ψ)

=
∏

τ∈A1(ρ)

dτ∏

k=1

γ(δ([ν−mk(τ)τ, νmk(τ)τ ])× π, s, ψ).

(6.25)

So, the product of type (2)1 appears in (6.22).
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Similarly, by (6.24), the product of type (3)B appears in (6.22), and
also the following part of (4)C appears in (6.22)

∏

τ∈C(ρ)
dτ even

∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)

=
∏

τ∈C(ρ)
dτ even

dτ∏

i=1

γ(δ([ν−mi(τ)τ, νmi(τ)τ ])× π, s, ψ).

(6.26)

The product (2)2 can be treated as in (6.25), except that we still
have to consider that j = 0 and τ ∈ A2(ρ) in (6.15), where

∆0(τ)×∆0(τ)
∨ × τ = δ[vτ, vm1(τ)τ ]× δ[v−m1(τ)τ, v−1τ ]× τ.

By [Zel80], the unique generic constituent of this representation is

δ[v−m1(τ)τ, vm1(τ)τ ].

So,

γ(τ × π, s, ψ)γ(∆0(τ)× π, s, ψ)γ(∆0(τ)
∨, s, ψ)

= γ(δ[v−m1(τ)τ, vm1(τ)τ ]× π, s, ψ).
(6.27)

By (6.23) and (6.27), for j ≥ 1

∏

τ∈A2(ρ)

γ(τ × π, s, ψ)
∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)

=
∏

τ∈A2(ρ)

γ(δ[v−m1(τ)τ, vm1(τ)τ ]× π, s, ψ)
dτ∏

i=2

γ(δ[v−mi(τ)τ, vmi(τ)τ ]× π, s, ψ)

=
∏

τ∈A2(ρ)

dτ∏

i=1

γ(δ[v−mi(τ)τ, vmi(τ)τ ]× π, s, ψ).

(6.28)

Therefore, the product (2)2 appears in (6.22).
The product of type (4)C with dτ odd can be treated similarly to the

last case and to (6.28). We only have to consider j = 0 and τ ∈ C(ρ)
in (6.17), where

∆0(τ)×∆0(τ)
∨ = δ[v

1
2 τ, vm1(τ)τ ]× δ[v−m1(τ)τ, v−

1
2 τ ].

By [Zel80], the unique generic constituent of this representation is

δ[v−m1(τ)τ, vm1(τ)τ ].
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As in (6.26) and (6.28),
∏

τ∈C(ρ)
dτ odd

∏

j∈Jτ

γ(∆j(τ)× π, s, ψ)γ(∆j(τ)
∨ × π, s, ψ)

=
∏

τ∈C(ρ)
dτ odd

dτ∏

i=1

γ(δ[v−mi(τ)τ, vmi(τ)τ ]× π, s, ψ).

(6.29)

Multiplying (6.26) and (6.29), we see that (3)C appears in (6.22). Since

P (ρ) = A(ρ) ∪ B(ρ) ∪ C(ρ),
the identity (6.20) is now proved.
Since both σρ and ρ are tempered, by [Sha90a], see also [CKPSS04],

[CS98] and [JS04], we know that (6.9) and (6.10) follow from (6.20). �

Remark 6.11. Note that if ρ(2) = l(σ(2)), then the A2(ρ
(2)) = {τ ∈

P ′(σ(2))|(τ, σ(0)) satisfies (C1)}, see Proposition 4.13 for the definition
of P ′(σ(2)).

Next we generalize Theorem 6.8 to Π(dg)(Gn). Let Φ(d)(Gn) be the
subset of Φ(Gn) consisting of all the local Langlands parameters of type

φ =
⊕

i

φi ⊗ S2mi+1,

where the φi’s are irreducible self-dual (resp. self-conjugate-dual in
the case of unitary groups) representations ofWF of dimension kφi, the
S2mi+1’s are irreducible representations of SL2(C) of dimension 2mi+1,
and they satisfy the following:
(1) for each i, φi⊗ S2mi+1 is irreducible and L(φi⊗ S2mi+1, R, s) has

a pole at s = 0;
(2) φi ⊗ S2mi+1 and φj ⊗ S2mj+1 are not equivalent if i 6= j;
(3) the image φ(WF × SL2(C)) is not contained in any proper Levi

subgroup of LGn.
The local Langlands parameters in Φ(d)(Gn) are called discrete. Let

Φ̃(d)(Gn) be the image of Φ(d)(Gn) in Φ̃(Gn). The following theorem
is analogous to [JS04, Theorem 2.2], [Liu11, Theorem 4.9], and [JL14,
Theorem 4.10].

Theorem 6.12. There is a surjective map ι (which extends the one in

Theorem 6.8) from Π(dg)(Gn) to the set Φ̃(d)(Gn) and it preserves the
local factors:

(6.30) L(σ × τ, s) = L(ι(σ)⊗ r−1(τ), s),
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(6.31) ǫ(σ × τ, s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for all σ ∈ Π(dg)(Gn) and all irreducible generic representations τ of
any Hkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible rep-
resentation of WF ×SL2(C) of dimension kτ corresponding to τ by the
local Langlands reciprocity map for Hkτ .

Proof. Given σ ∈ Π(dg)(Gn), by Theorem 6.10, l(σ) ∈ Π(dg)(HN) and
has the form (6.8). Let φ = r−1(l(σ)), then φ ∈ Φ(d)(Gn). Define

ι(σ) = φ̃, the image of φ in Φ̃(Gn). Therefore, we have constructed a

map ι from Π(g)(Gn) to Φ̃(g)(Gn), which naturally extends the one in
Theorem 6.8. Since l preserves local factors, so is ι.

To show that ι is surjective, given any φ̃ ∈ Φ̃(g)(Gn), let φ ∈ Φ(t)(Gn)
be a representative, which has the following multiplicity one decompo-
sition

(6.32) φ =
r⊕

i=1

φi ⊗ S2mi+1, 2mi ∈ Z≥0,

where each φi ⊗ S2mi+1 is irreducible and L(φi ⊗ S2mi+1, R, s) has
a pole at s = 0 for 1 ≤ i ≤ r. So, φi is self-dual (resp. self-
conjugate-dual in the case of unitary groups), and it is (conjugate)-
orthogonal ((conjugate)-symplectic, respectively) if and only if S2mi+1

is orthogonal (symplectic, respectively), i.e. if and only if mi ∈ Z>0

(mi ∈ 1
2
+ Z>0, respectively). Hence, for 1 ≤ i ≤ r,

(D1) if L(R−(φi), s) has a pole at s = 0, then mi ∈ 1
2
+ Z>0;

(D2) if L(R(φi), s) has a pole at s = 0, then mi ∈ Z>0.
In the case of unitary groups, for the definitions of conjugate-orthogonal,
conjugate-symplectic, see [GGP12, Section 3].
Let τi = r(φi) be the irreducible self-dual (resp. self-conjugate-dual

in the case of unitary groups) supercuspidal representation of Hkφi
(F ),

corresponding to φi. By Theorem 6.6, we have
(6.33)
L(R−(φi), s) has a pole at s = 0 ⇔ L(τi, R

−, s) has a pole at s = 0,

and
(6.34)
L(R(φi), s) has a pole at s = 0 ⇔ L(τi, R, s) has a pole at s = 0.

And

r(φi ⊗ S2mi+1) = δ[v−mir(φi), v
mir(φi)] = δ[v−miτi, v

miτi];

r(φ) = ×r
i=1δ[v

−miτi, v
miτi].

(6.35)

So r(φ) has the form (6.8), and by (6.33), (6.34) and the conditions
(D1), (D2), the conditions (1) and (2) in the definition of Π(dg)(HN)
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hold, i.e., r(φ) ∈ Π(dg)(HN(F )). Therefore, by Theorem 6.10, there
exists a square-integrable generic representation σ of G, such that
l(σ) = r(φ), and

L(σ × r(φ′), s) = L(r(φ)× r(φ′), s) = L(φ⊗ φ′, s)

ǫ(σ × r(φ′), s, ψ) = ǫ(r(φ)× r(φ′), s, ψ) = L(φ⊗ φ′, s, ψ)

for generic parameters φ′ for Hk(F ) with k ∈ Z>0 (i.e., r(φ′) is an

irreducible generic representations of Hk(F )). As a result, ι(σ) = φ̃.
This completes the proof of the theorem. �

Remark 6.13. Suppose σ(2) ∈ Π(dg)(Gn) is the unique generic con-
stituent of (×τ∈P ′ ×eτ

i=1 δ(Di(τ))) ⋊ σ(0) (possibly σ(0) = 1 ⊗ c) and
σ(0) ≇ cσ(0). Then, by §4.3, σ(2) ≇ cσ(2) are both in Π(dg)(Gn), and

cσ(2) is the unique generic constituent of (×τ∈P ′ ×eτ
i=1 δ(Di(τ)))⋊ cσ(0).

Note that if (τ, σ(0)) satisfies (Cβ), then so does (τ, cσ(0)).
By Remark 6.9, Theorem 6.10 and Theorem 6.12, and by the mul-

tiplicativity of local factors (see [Sha90b], [JS12] and [CKPSS04]), in
the above situation, σ(2) and cσ(2) have the same lifting image and the
same twisted local factors.

6.3. Tempered generic representations. Let Π
(tg)
ε (HN) be the set

of equivalence classes of tempered representations of HN(F ) of the
following form

(6.36) δ([ν−h1λ1, ν
h1λ1])×δ([ν−h2λ2, νh2λ2])×· · ·×δ([ν−hfλf , νhfλf ]),

with central character χ being trivial when restricting to F ∗ except
when Gn = SO∗

2n+2, in which case it is the quadratic character ηε
associated to the square class ε defining Gn. Here λ1, λ2, . . . λf are
unitary supercuspidal representations, and 2hi ∈ Z≥0, such that for
1 ≤ i ≤ f :
(1) if λi 6∼= λ̌i, then δ([ν

−hiλi, ν
hiλi]) occurs in (6.36) as many times

as δ̌([ν−hiλi, ν
hiλi]) = δ([ν−hiλ̌i, ν

hi λ̌i]) does;
(2) if L(λi, R

−, s) has a pole at s = 0, and hi ∈ Z≥0, then δ([ν
−hiλi, ν

hiλi])
occurs an even number of times in (6.36);
(3) if L(λi, R, s) has a pole at s = 0, and hi ∈ 1

2
+ Z≥0, then

δ([ν−hiλi, ν
hiλi]) occurs an even number of times in (6.36).

The following theorem is analogous to [JS04, Theorem 4.1], [Liu11,
Theorem 4.12], and [JL14, Theorem 4.12].

Theorem 6.14. There is a surjective map l (which extends the one in

Theorem 6.10) from Π(tg)(Gn) to Π
(tg)
ε (HN) and it preserves the local

factors:

(6.37) L(σ × π, s) = L(l(σ)× π, s),
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(6.38) ǫ(σ × π, s, ψ) = ǫ(l(σ)× π, s, ψ),

for any σ ∈ Π(tg)(Gn) and any irreducible generic representation π of
any Hk(F ), k ∈ Z>0.

Proof. This map has already been given by Cogdell, Kim, Piatetski-
Shapiro, and Shahidi (see [CKPSS04] and [CPSS11]), so it suffices to
prove the surjectivity. That is, given a ρ ∈ Π(tg)(HN(F )), to construct
a σρ ∈ Π(tg)(Gn) such that ρ = l(σρ) and (6.37), (6.38) hold.
Define the following sets N,W , and R from the factors of the induced

representation in (6.36):
N consists of δ([ν−hiλi, ν

hiλi])
′s with 1 ≤ i ≤ f such that λi 6∼= λ̌i;

W consists of δ([ν−hiλi, ν
hiλi])

′swith 1 ≤ i ≤ f such that L(λi, R
−, s)

has a pole at s = 0, and hi ∈ Z≥0, or L(λi, R, s) has a pole at s = 0,
and hi ∈ 1

2
+ Z≥0;

S consists of δ([ν−hiλi, ν
hiλi])

′s with 1 ≤ i ≤ f such that L(λi, R
−, s)

has a pole at s = 0, and hi ∈ 1
2
+Z≥0, or L(λi, R, s) has a pole at s = 0,

and hi ∈ Z≥0.
Note that these sets are taken with multiplicities. Denote by µi

′ the
multiplicity of δ([ν−hiλi, ν

hiλi]) in (6.36).
By the above definition, for δ([ν−hiλi, ν

hiλi]) ∈ W , µi
′ = 2µi is even.

Let

{δ([ν−hi1λi1 , νhi1λi1]), δ([ν−hi2λi2 , νhi2λi2]), · · · , δ([ν−hiuλiu , νhiuλiu ])
be the set of all different elements in W . Let

JW (ρ) = ×u
j=1 (δ([ν

−hijλij , ν
hijλij ])× · · · × δ([ν−hijλij , ν

hijλij ])︸ ︷︷ ︸
µij copies

.

By the above definition, if δ([ν−hiλi, ν
hiλi]) ∈ N , then δ̌([ν−hiλi, ν

hiλi]) =
δ([ν−hiλ̌i, ν

hi λ̌i]) ∈ N , and the multiplicities of δ([ν−hiλi, ν
hiλi]) and

δ̌([ν−hiλi, ν
hiλi]) are equal. Let {δ([ν−hz1λz1 , νhz1λz1 ]), δ̌([ν−hz1λz1, νhz1λz1]),

· · · , δ([ν−hzvλzv , νhzvλzv ]), δ̌([ν−hzvλzv , νhzvλzv ])} be the set of different
elements in N .
Let

JN(ρ) = ×v
j=1 (δ([ν

−hzjλzj , ν
hzjλzj ])× · · · × δ([ν−hzjλzj , ν

hzjλzj ])︸ ︷︷ ︸
µzj

′ copies

.

For S, we consider following two cases

S1 = {δ([ν−hiλi, νhiλi]) ∈ S, |µi′ = 2µi + 1 is odd},
S2 = {δ([ν−hiλi, νhiλi]) ∈ S, |µi′ = 2µi is even}.
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Let

{δ([ν−m1τ1, ν
m1τ1]), · · · , δ([ν−mrτr, νmrτr])}

:={δ([ν−hx1λx1, νhx1λx1]), · · · , δ([ν−hxrλxr , νhxrλxr ])}

be the set of all different elements of S1, and let

{δ([ν−ht1λt1 , νht1λt1 ]), · · · , δ([ν−htcλtc , νhtcλtc ])}

be the set of all different elements of S2. In these two cases, we define
(6.39)
JS1(ρ) = ×r

j=1 (δ([ν
−hxjλxj , ν

hxjλxj ])× · · · × δ([ν−hxjλxj , ν
hxjλxj ])︸ ︷︷ ︸

µxj copies

,

(6.40)
JS2(ρ) = ×c

j=1 (δ([ν
−htjλtj , ν

htjλtj ])× · · · × δ([ν−htjλtj , ν
htjλtj ])︸ ︷︷ ︸

µtj copies

.

Note that in (6.39), twice of the multiplicity of δ([ν−hxjλxj , ν
hxjλxj ])

is decreased by 1. The reason for doing this is that we want to use
Theorem 6.10.
Then by assumption, the induced representation

(6.41) ρ(2) := δ([ν−m1τ1, ν
m1τ1])× · · · × δ([ν−mrτr, ν

mrτr])

is in Π
(dg)
ε (Hn′′), for some n′′. Hence by Theorem 6.10, there exists

σ(2) ∈ Π(dg)(Gn′′), such that l(σ(2)) = ρ(2).
Let δ([ν−p1η1, ν

p1η1]) · · · δ([ν−pdηd, νpdηd]) be the list of all factors
(with possible repetitions) which appear in JN(ρ)× JW (ρ)× JS1(ρ)×
JS2(ρ). Define σρ to be the unique generic constituent of

δ([ν−p1η1, ν
p1η1])× · · · × δ([ν−pdηd, ν

pdηd])⋊ σ(2).(6.42)

Then by the discussion in §4.4, σρ is in Π(tg)(Gn).
Next, we show that (6.37) and (6.38) hold. First we show that

γ(σρ × π, s, ψ) = γ(ρ× π, s, ψ).

Again, by the multiplicativity of twisted gamma functions ([Sha90b]),
it is enough to show this for supercuspidal representation π, see also
[CKPSS04, Lemma 7.2].
By the multiplicativity of twisted gamma functions, and by Theo-

rems 6.3 and 6.10, for an irreducible supercuspidal representation π of
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Hk(F ), we have

γ(σρ × π, s, ψ)

= [

d∏

i=1

γ(δ([ν−piηi, ν
piηi])× π, s, ψ)γ(δ̌([ν−piηi, ν

piηi])× π, s, ψ)]

·[
r∏

i=1

γ(δ([ν−miτi, ν
miτi])× π, s, ψ)]

= [

f∏

i=1

γ(δ([ν−hiλi, ν
hiλi])× π, s, ψ)]

= γ(ρ× π, s, ψ).

Since σρ and ρ are both tempered, we can get (6.37) and (6.38) in the
same way. This completes the proof. �

Remark 6.15. By Theorem 6.14, for each σ(t) ∈ Π(tg)(Gn) as in
(4.12),

ρ(t) = l(σ(t)) = δ([ν−e1β1, ν
e1β1])× · · · × δ([ν−ecβc, ν

ecβc])× l(σ(2))

× δ([ν−ecβ̌c, ν
ecβ̌c])× · · · × δ([ν−e1β̌1, ν

e1 β̌1]),

(6.43)

which is irreducible and generic.

Next, we write down the parameters for representations in Π(tg)(Gn).
From (6.43), we can see that the local Langlands parameter of σ is

φσ(2) ⊕
c⊕

i=1

[φβi × S2ei+1 ⊕ φ̌βi × S2ei+1],

where φ̌βi is irreducible representation ofWF corresponding to (r(φβi))
∨

under the local Langlands reciprocity map r for general linear groups.
Let Φ(t)(Gn) be the subset of Φ(Gn) consisting of the local Langlands

parameters φ with the property that φ(WF ) is bounded. The parame-
ters in Φ(t)(Gn) are called tempered. Then we have the following result
that the local Langlands parameters corresponding to representations

in Π(tg)(Gn) are exactly the tempered parameters. Let Φ̃(t)(Gn) be

the image of Φ(t)(Gn) in Φ̃(Gn). The following theorem is analogous to
[JS04, Theorem 4.2], [Liu11, Theorem 4.13], and [JL14, Theorem 4.14].

Theorem 6.16. There is a surjective map ι (which extends the one in

Theorem 6.12) from Π(tg)(Gn) to the set Φ̃(t)(Gn) and it preserves the
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local factors:
L(σ × τ, s) = L(ι(σ)⊗ r−1(τ), s),

ǫ(σ × τ, s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for all σ ∈ Π(tg)(Gn) and all irreducible generic representations τ of
any Hkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible rep-
resentation of WF ×SL2(C) of dimension kτ corresponding to τ by the
local Langlands reciprocity map for Hkτ .

Proof. Let σ be an irreducible tempered generic representation ofGn(F ).
Consider l(σ) ∈ Π(tg)(HN) given in Theorem 6.14. Then φ = r−1(l(σ)) ∈
Φ(t)(Gn). So l(σ) = r(φ). Define ι(σ) = φ̃, the image of φ in Φ̃(Gn).

Therefore, we have constructed a map ι from Π(g)(Gn) to Φ̃(g)(Gn),
which naturally extends the one in Theorem 6.12. Since l preserves
local factors, so is ι.

To show ι is surjective, given any φ̃ ∈ Φ̃(g)(Gn), let φ ∈ Φ(t)(Gn) be
a representative. Composing φ with the embedding

i : LGn →֒ LHN ,

we obtain a N -dimensional representation of WF × SL2(C). Since the
image of φ preserves a non-degenerate bilinear form, so it can be de-
composed into the following form

φ = JN
′(φ)⊕ JW

′(φ)⊕ JS2

′(φ)⊕ JS1

′(φ)⊕ J2(φ),

where each summand is as follows.
JN

′(φ) is

(6.44) JN
′(φ) =

v⊕

j=1

µ′
zj (φzj ⊗ S2hzj+1 ⊕ φ̌zj ⊗ S2hzj+1),

with the properties that
(1) 2hzj ∈ Z≥0;
(2) µ′

zj ∈ Z>0 are the multiplicities;

(3) φzj 6∼= φ̌zj ;
(4) φz1, φz2, · · · , φzv are pairwise non-equivalent irreducible bounded

representations of WF .
JW

′(φ) is

(6.45) JW
′(φ) =

u⊕

j=1

2µij(φij ⊗ S2hij+1),

with the properties that
(1) 2hij ∈ Z≥0;
(2) µij ∈ Z>0 are the half of the multiplicities;
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(3) φi1, φi2, · · · , φiu are pairwise non-equivalent irreducible bounded
self-dual (resp. self-conjugate-dual in the case of unitary groups) rep-
resentations of WF , such that φij ⊗ S2hij+1

′s are of type R−. That is

for each j, either φij is of type R− and hij ∈ Z≥0, or φij is of type R

and hij ∈ 1
2
+ Z≥0.

JS2
′(φ) is

(6.46) JS2

′(φ) =

c⊕

j=1

2µtj (φtj ⊗ S2htj+1),

with the properties that
(1) 2htj ∈ Z≥0;
(2) µtj ∈ Z>0 are the half of the multiplicities;
(3) φt1 , φt2 , · · · , φtc are pairwise non-equivalent irreducible bounded

self-dual (resp. self-conjugate-dual in the case of unitary groups) rep-
resentations of WF , such that φtj ⊗S2htj+1

′s are of type R. That is for

each j, either φtj is of type R
− and htj ∈ 1

2
+ Z≥0, or φtj is of type R

and htj ∈ Z≥0.
JS1

′(φ) and J2(φ) are

(6.47) JS1

′(φ)⊕ J2(φ) =
r⊕

j=1

(2µxj + 1)(φxj ⊗ S2hxj+1),

(6.48) J2(φ) =

r⊕

j=1

(φxj ⊗ S2hxj+1),

with the properties that
(1) 2hxj ∈ Z≥0;
(2) µxj ∈ Z>0, 2µxj + 1 are the multiplicities;
(3) φx1, φx2, · · · , φxr are pairwise non-equivalent irreducible bounded

self-dual (resp. self-conjugate-dual in the case of unitary groups) rep-
resentations of WF , such that φxj ⊗ S2hxj+1

′s are of type R. We note

that some of the summations in (6.44), (6.45), (6.46) and (6.48), may
be empty.
Let σ be the unique irreducible generic constituent of the following

induced representation of Gn(F )

JN(σ)× JW (σ)× JS2(σ)× JS1(σ)⋊ σ(2),
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where

JN(σ) = ×v
j=1δ([ν

−hzj r(φzj), ν
hzj r(φzj)])

×µ′zj ,

JW (σ) = ×u
j=1δ([ν

−hij r(φij), ν
hij r(φij )])

×µij ,

JS2(σ) = ×c
j=1δ([ν

−htj r(φtj ), ν
htj r(φtj )])

×µtj ,

JS1(σ) = ×r
j=1δ([ν

−hxj r(φxj), ν
hxj r(φxj)])

×µxj ,

and σ(2) ∈ Π(dg)(Gn′′) (for some n′′) is the one given in Theorem 6.12,
such that y(σ(2)) = J2(φ). Then σ is tempered and generic, and by the
proof of Theorem 6.14, we have that l(σ) = r(φ) and

L(σ × τ, s) = L(r−1(l(σ)))⊗ r−1(τ), s) = L(ι(σ)⊗ r−1(τ), s),

ǫ(σ × τ, s, ψ) = ǫ(r−1(l(σ)))⊗ r−1(τ), s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for all irreducible generic representations τ of Hkτ (F ), with all kτ ∈
Z>0. Here r

−1(τ) is the irreducible admissible representation of WF ×
SL2(C) of dimension kτ , corresponding to τ by the local Langlands

reciprocity map for Hkτ . Therefore, φ̃ = ι(σ).
This completes the proof of the theorem. �

Remark 6.17. By §3.3, if σ(t) ∈ Π(tg)(Gn) is the unique generic con-
stituent of δ([ν−e1β1, ν

e1β1]) × · · · × δ([ν−ecβc, ν
ecβc]) ⋊ σ(2) (possibly

σ(2) = 1 ⊗ c) and σ(2) ≇ cσ(2), then σ(t) ≇ cσ(t), both are in Π(tg)(Gn),
and cσ(t) is the unique generic constituent of δ([ν−e1β1, ν

e1β1])× · · · ×
δ([ν−ecβc, ν

ecβc])⋊ cσ(2).
By Remark 6.13, Theorem 6.14, Theorem 6.16, and the multiplica-

tivity of local factors (see [Sha90b], [JS12] and [CKPSS04]), in the
above situation, σ(t) and cσ(t) have the same lifting image and the same
twisted local factors.

6.4. Generic representations. First, we make the following defini-
tion which is based on Theorem 1.2 and the classification of generic
representations in §4. Note that β = 0 for the groups considered in
this section.

Definition 6.18. Let Gn = SO2n+1, Sp2n, SO2n, SO
∗
2n+2, U2n+1, U2n,

quasi-split classical groups of rank n. Let {Σi}fi=1 and σ(t) be as in

§4.5. Then {Σi}fi=1 is called a Gn-generic sequence of segments with
respect to σ(t) if it satisfies the following conditions,
(1) the segment Σi is not linked to either Σj or Σ̌j for 1 ≤ i 6= j ≤ f .
(2) for 1 ≤ i ≤ f , Σi and Σ̌i are not linked to any segment, which

corresponds to a representation in any of the families

δ([ν−ai(τ)τ, νbi(τ)τ ]), i = 1, 2, · · · , eτ , τ ∈ P ′,
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{δ([ν−ejβj, νejβj ])}cj=1, {δ([ν−ej β̌j , νej β̌j])|βj 6∼= β̌j , 1 ≤ j ≤ c};
(3) one of the following three conditions holds,
(3a) ξi 6∼= ξ̌i; or
(3b) there exists τ ∈ X ′, such that τ ∼= ξi, qi = −1, and there is

some 1 ≤ j ≤ eτ , with aj(τ) = −1 and 1 + wi ≤ bj(τ); or
(3c) (ξi, σ

(0)) is (Cα) (α = 0, 1
2
, 1), but ±α 6∈ {−qi,−qi+1, · · · ,−qi+

wi}; (ξi, σ(0)) is (CN), but qi /∈ Z≥0.
See Definition 4.12 and Proposition 4.13 for the definitions of P ′ and

X ′.

Let Π
(g)
ε (HN) be the set of equivalence classes of irreducible represen-

tations π of HN(F ) which are Langlands quotients of representations

(6.49) δ(Σ1)× · · · × δ(Σf )× ρ(t) × δ(Σ̌f )× · · · × δ(Σ̌1),

with central character χ being trivial when restricting to F ∗ except
when Gn = SO∗

2n+2, in which case it is the quadratic character ηε
associated to the square class ε defining Gn. Here {Σj}fj=1 are of the
form (4.15), ξ1, ξ2, · · · , ξf are irreducible unitary and supercuspidal,

with possible repetitions, qi ∈ R, wi ∈ Z≥0, and ρ
(t) ∈ Π

(tg)
α (HN∗), such

that the following hold:
(1) w1

2
− q1 ≥ w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0;

(2) The segment Σi is not linked to either Σj or Σ̌j for 1 ≤ i 6= j ≤ f ;
(3) The representations δ(Σi) × ρ(t) and δ(Σ̌i) × ρ(t) are irreducible

for all 1 ≤ i ≤ f ;
(4) Assume ξi ∼= ξ̌i and 2qi ∈ Z, such that if L(ξi, R

−, s) has a pole
at s = 0, then qi ∈ 1

2
+ Z, and if L(ξi, R, s) has a pole at s = 0, then

qi ∈ Z. Then Σi is not linked to Σ̌i. Moreover, if L(ρ(0) × ξi, s) has
a pole at s = 0 and qi ∈ Z, then either (a) −qi ≥ 2 or (b) qi = −1,
ξi = τ ∈ A2(ρ

(2)) and there is some 1 ≤ j ≤ eτ such that aj(τ) = −1
and 1 + wi ≤ bj(τ). See (6.41) for ρ(2) and see (6.13) for the definition
of A2(ρ

(2)).
The following theorem is analogous to [JS04, Theorem 5.1], [Liu11,

Theorem 4.15], and [JL14, Theorem 4.16].

Theorem 6.19. There is a surjective map l (which extends the one

in Theorem 6.14) from Π(g)(Gn) to Π
(g)
ε (HN) and it preserves the local

factors:

(6.50) L(σ × π, s) = L(l(σ)× π, s),

(6.51) ǫ(σ × π, s, ψ) = ǫ(l(σ)× π, s, ψ),
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for any σ ∈ Π(g)(Gn) and any irreducible generic representation π of
any Hk(F ), k ∈ Z>0.

Proof. This map has already been given by Cogdell, Kim, Piatetski-
Shapiro, and Shahidi (see [CKPSS04] and [CPSS11]), so it suffices to

prove the surjectivity. That is, given a ρ ∈ Π
(g)
ε (HN), to construct a

σρ ∈ Π(g)(Gn) such that ρ = l(σρ) and (6.50), (6.51) hold.
Define a representation σρ of G as

σρ := π1 × π2 × · · · × πf ⋊ σ(t)

where πi = δ(Σi) and σ
(t) is the irreducible tempered generic represen-

tation of Gn∗(F ) attached to ρ(t). Now, first we want to prove that σρ
is a generic representation of Gn(F ), so we have to verify the conditions
in the Definition 6.18.
(1) From the condition (2) in the definition of ρ ∈ Π

(g)
ε (HN), we can

see that the segment Σi is not linked to either Σj or Σ̌j for 1 ≤ i 6= j ≤
f , that is condition (1) in Definition 6.18.
(2) For 1 ≤ i ≤ f , if Σi is linked to some segment corresponding to

a representation in any of the families

{δ([ν−mjτj , νmjτj ])}rj=1, {δ([ν−ejβj , νejβj ])}cj=1, {δ([ν−ej β̌j, νej β̌j])}cj=1

which completely determine ρ(t) as in (6.43) and §4.4, then by the
classification theory in [Zel80], we know that the representation δ(Σi)×
ρ(t) and δ(Σ̌i)×ρ(t) must be reducible, this contradicts to condition (3)

in the definition of ρ ∈ Π
(g)
ε (HN). So condition (2) in Definition 6.18

holds.
(3) If ξi is not self-dual (resp. self-conjugate-dual in the case of

unitary groups), then condition (3a) in Definition 6.18 holds. Oth-

erwise, the condition (4) in the definition of ρ ∈ Π
(g)
ε (HN) holds.

So if L(ρ(0) × ξi, s) has a pole at s = 0, then either −qi ≥ 2, i.
e. ±1 6∈ {−qi,−qi + 1, · · · ,−qi + wi}, that is condition (3C1), or
qi = −1 and ξi ∈ A2(ρ

(2)), that is condition (3b). If L(ξi, R, s) has
a pole at s = 0, but L(σ(0) × ξi, s) has no pole at s = 0, then
qi ∈ Z, and Σi is not linked to Σ̌i. The linkage condition means
±0 6∈ {−qi,−qi + 1, · · · ,−qi + wi} or qi /∈ Z≥0, otherwise, Σi must
link to Σ̌i. So, condition (3C0) or (3CN) holds. If L(ξi, R

−, s) has a
pole at s = 0, then qi ∈ 1

2
+Z, and Σi is not linked to Σ̌i, which means

±1
2
6∈ {−qi,−qi+1, · · · ,−qi+wi}. Otherwise, Σi also must link to Σ̌i.

So, condition (3C1
2
) also holds.

So, all conditions in Definition 6.18 are satisfied, which means σρ
is indeed generic. Next, we have to prove (6.50) and (6.51). By
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[CKPSS04, Lemma 7.2], for equalities of local factors, we only have
to consider twisting irreducible supercuspidal representations of Hk,
with all k ∈ Z>0.
First, we prove the compatibility of local gamma functions using the

multiplicity of local gamma functions ([Sha90b], [JPSS83]). First we
know that

(6.52) γ(σρ×π, s, ψ) = [

f∏

i=1

γ(πi×π, s, ψ)γ(π̌i×π, s, ψ)]γ(σ(t)×π, s, ψ).

On the other hand, by Theorem 6.14, we know that

γ(σ(t) × π, s, ψ) = γ(ρ(t) × π, s, ψ).

So from (6.52) we get that

γ(σρ × π, s, ψ)

= [

f∏

i=1

γ(πi × π, s, ψ)γ(π̌i × π, s, ψ)]γ(ρ(t) × π, s, ψ)

= γ((δ(Σ1)× · · · × δ(Σf )× ρ(t) × δ(Σ̌f )× · · · × δ(Σ̌1))× π, s, ψ)

= γ(ρ× π, s, ψ)

for ρ is the Langlands quotient of representation

δ(Σ1)× · · · × δ(Σf)× ρ(t) × δ(Σ̌f)× · · · × δ(Σ̌1).

Hence,

(6.53) γ(σρ × π, s, ψ) = γ(ρ× π, s, ψ).

Then, we want to prove the equality of local L-factors

L(σρ × π, s) = L(ρ× π, s),

using the multiplicity of local L-factors ([Sha90b], [JPSS83]). First we
have that

(6.54) L(σρ × π, s) = [

f∏

i=1

L(πi × π, s)L(π̌i × π, s)]L(σ(t) × π, s).

On the other hand, by Theorem 6.14, we know that

L(σ(t) × π, s) = L(ρ(t) × π, s).
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So from (6.54) we get that

L(σρ × π, s)

= [

f∏

i=1

L(πi × π, s)L(π̌i × π, s)]L(ρ(t) × π, s)

= L((δ(Σ1)× · · · × δ(Σf )× ρ(t) × δ(Σ̌f )× · · · × δ(Σ̌1))× π, s)

= L(ρ× π, s)

for ρ is the Langlands quotient of representation

δ(Σ1)× · · · × δ(Σf)× ρ(t) × δ(Σ̌f)× · · · × δ(Σ̌1).

Hence,

(6.55) L(σρ × π, s) = L(ρ× π, s),

this proves (6.50).
We can rewrite (6.53) as

ǫ(σρ × π, s, ψ)
L(σρ × π̌, 1− s)

L(σρ × π, s)
= ǫ(ρ× π, s, ψ)

L(ρ× π̌, 1− s)

L(ρ× π, s)
.

Then combining with (6.55), we obtain that

ǫ(σρ × π, s, ψ) = ǫ(ρ× π, s, ψ).

This proves (6.51), hence completes the proof of the theorem. �

At last, we assign the corresponding parameters for representations
in Π(g)(Gn). Let Φ

(g)(Gn) be the subset of Φ(Gn) consisting of elements
of the following form:

φ = φ(t) ⊕
f⊕

i=1

(
|·|−qi+

wi
2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−

wi
2 r−1(ξ̌i)⊗ Swi+1

)
,

where φ(t) is a representative of ι(σ(t)) for an irreducible tempered rep-
resentation σ(t) of Gn∗(F ) (n∗ ≤ n), and the sequence

{Σj = [v−qjξj, v
−qj+wjξj ]}fj=1

is a Gn-generic sequence of segments with respect to σ(t) (see Defini-
tion 6.18). Here, ι is the reciprocity map given in Theorem 6.16 for
irreducible tempered generic representations in Π(tg)(Gn), r is the reci-
procity map for H∗(F ), and |·|s is the character of WF normalized as

in [Tat79] via local class field theory. Let Φ̃(g)(Gn) be the image of

Φ(g)(Gn) in Φ̃(Gn).
The following theorem is analogous to the result in the last paragraph

of Section 5 of [JS04], [Liu11, Theorem 4.17], and [JL14, Theorem 4.17].
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Theorem 6.20. There is a surjective map ι (which extends the one

in Theorem 6.16) from Π(g)(Gn) to Φ̃(g)(Gn) and it preserves the local
factors:

L(σ × τ, s) = L(ι(σ)⊗ r−1(τ), s),

ǫ(σ × τ, s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for all σ ∈ Π(g)(Gn) and all irreducible generic representations τ of any
Hkτ (F ), kτ ∈ Z>0. Here, r

−1(τ) is the irreducible admissible represen-
tation of WF ×SL2(C) of dimension kτ corresponding to τ by the local
Langlands reciprocity map for Hkτ .

Proof. Given any σ ∈ Π(g)(Gn), by the classification of generic rep-
resentations of Gn(F ) in §4.5, there exists an irreducible tampered
generic representation σ(t) of Gn∗(F ) and a sequence of segments {Σj =
[v−qjξj, v

−qj+wjξj]}fj=1 which is a Gn-generic sequence of segments with

respect to σ(t) (see Definition 6.18), such that

σ = δ(Σ1)× δ(Σ2)× · · · × δ(Σf )⋊ σ(t).

Let φ(t) be a representative of ι(σ(t)) and let

φ = φ(t) ⊕
f⊕

i=1

(
|·|−qi+

wi
2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−

wi
2 r−1(ξ̌i)⊗ Swi+1

)
,

which is exactly r−1(l(σ)). It is easy to see that φ ∈ Φ(g)(Gn). Define

ι(σ) = φ̃, the image of φ in Φ̃(Gn). Therefore, we have constructed a

map ι from Π(g)(Gn) to Φ̃(g)(Gn), which naturally extends the one in
Theorem 6.16. Since l preserves local factors, so is ι.

To show that this map is surjective, take any φ̃ ∈ Φ̃(g)(Gn) and let

φ = φ(t) ⊕
f⊕

i=1

(
|·|−qi+

wi
2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−

wi
2 r−1(ξ̌i)⊗ Swi+1

)

be a representative, where φ(t) is a tempered parameter of Gn∗ . Let
σ(t) be an irreducible tampered generic representation of Gn∗ lifting to

φ̃(t). Then the sequence of segments

{Σj = [v−qjξj, v
−qj+wjξj ]}fj=1

is a Gn-generic sequence of segments with respect to σ(t).
Let

σ = δ(Σ1)× δ(Σ2)× · · · × δ(Σf )⋊ σ(t).

By the classification of irreducible generic representations in §4.5, we
can see that σ is irreducible and generic. Hence σ ∈ Π(g)(Gn) and
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we can also easily see that ι(σ) is actually equal to φ̃. Therefore, ι is
indeed surjective.
This completes the proof of the theorem. �

Remark 6.21. Given any σ ∈ Π(g)(Gn), let ι(σ) = φ̃ ∈ Φ̃(g)(Gn) and

let φ is a representative of φ̃. Recall the embedding i : LGn →֒ LHN in
§5 (see also Table 1). Form Theorem 6.19 and Theorem 6.20, we can
see that the composition i ◦ φ is actually the local Langlands parameter
corresponding to the lifing l(σ) of σ.
A local Langlands parameter φ ∈ Φ(Gn) is called generic if there

is a generic representation in the corresponding local L-packet. From
Theorem 6.20, we can see that Φ(g)(Gn) is actually the set of all generic
local Langlands parameters of Gn(F ).

Remark 6.22. By §4.5, if σ(g) ∈ Π(g)(Gn) is the irreducible generic
representation π1 × π2 × · · · × πf ⋊ σ(t) (possibly σ(t) = 1 ⊗ c) and
σ(t) ≇ cσ(t), then σ(g) ≇ cσ(g), both are in Π(g)(Gn), and cσ

(g) is the
irreducible generic representation π1 × π2 × · · · × πf ⋊ cσ(t).
By Remark 6.17, Theorem 6.19 and Theorem 6.20, and by the multi-

plicativity of local factors (see [Sha90b], [JS12] and [CKPSS04]), in the
above situation, σ(g) and cσ(g) have the same lifting image and the same
twisted local factors. We record this result as the following theorem.

Theorem 6.23. For any σ ∈ Π(g)(Gn), if σ ≇ cσ, then l(σ) = l(cσ),
and ι(σ) = ι(cσ). That is, they have the same lifting image and the
same twisted local factors.

7. Representations attached to parameters

In this section, as in [JS04], [Liu11], and [JL14], we associate an ir-
reducible representation of Gn(F ) to each local Langlands parameter

φ̃ ∈ Φ̃(Gn). The key idea is to analyze the structures of local Lang-
lands parameters. The following proposition is analogous to [JS04,
Proposition 6.1], [Liu11, Proposition 5.1], and [JL14, Proposition 5.1].

Proposition 7.1. Let φ ∈ Φ(Gn) be a local Langlands parameter.
Then either φ ∈ Φ(t)(Gn), or

(7.1) φ = φ(t) ⊕ φ(n),

where φ(t) ∈ Φ(t)(Gn∗) (n∗ < n) and φ(n) is of the following form

(7.2) φ(n) =

f⊕

i=1

(
|·|−qi+

wi
2 φi ⊗ Swi+1 ⊕ |·|qi−

wi
2 φ̌i ⊗ Swi+1

)
.
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Here, f ∈ Z>0, w1, w2, . . . , wf ∈ Z≥0, q1, q2, . . . , qf ∈ R, such that φi is
an irreducible bounded representation of WF for 1 ≤ i ≤ f ,

w1

2
− q1 ≥

w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0.

|·| is the character of WF normalized as in [Tat79] via local class field
theory, and φ̌i is irreducible representation of WF corresponding to
r(φi)

∨ under the local Langlands reciprocity map r for general linear
groups.

Proof. Given a parameter φ ∈ Φ(Gn), assume V = CN be the corre-
sponding non-degenerate space of dimension N , with a form<,> which
is (conjugate)-orthogonal or (conjugate)-symplectic (see [GGP12, Sec-
tion 3]).
Let V1 be the direct sum of all irreducible subspaces, which are stable

under the action of WF ×SL2(C) and in which φ(WF ) is bounded. Let
V2 be the direct sum of all irreducible subspaces, which are stable under
the action of WF × SL2(C) and in which φ(WF ) is unbounded. Then

V = V1 ⊕ V2.

First, let us show that both subspaces V1 and V2 are non-degenerate
with respect to the restriction of the non-degenerate form <,>. Let
rad(Vi) be the radical of (Vi, <,> |Vi), that is rad(Vi) = {v ∈ Vi| <
v,w >= 0, ∀w ∈ Vi}. Then rad(Vi) is stable under the action of WF ×
SL2(C), since φ(g) preserves the form.
For any v1 ∈ rad(V1), assume that φ1 ⊗ Sw1+1 corresponds to an

arbitrary irreducible summand V2
′ of V2, where φ1 is an irreducible

unbounded representation of WF . Write

φ1 = | · |tφ1
′,

where φ1
′(WF ) is bounded and 0 6= t ∈ R. Then, for any v2 ∈ V2

′,
w ∈ WF ,we have

< v2, φ1(w
−1)(v1) >=< φ1(w)(v2), v1 >= |w|t < (φ1

′(w)⊗id)(v2), v1 > .

Since < v2, φ1(v1) > is bounded, but |w|t < (φ1
′(w) ⊗ id)(v2), v1 > is

unbounded, so

< φ2(w)(v2), v1 >= 0, ∀v2 ∈ V2
′.

Since v2 is arbitrary, we have

< v2, v1 >= 0, ∀v2 ∈ V2
′.

Since V2
′ is arbitrary, we get

< v2, v1 >= 0, ∀v2 ∈ V2.
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Since v1 ∈ rad(V1), we have

< v, v1 >= 0, ∀v ∈ V.

Since V is non-degenerate, v1 must be zero. So, rad(V1) = 0, that is
V1 is non-degenerate. Similarly, we can show that is V2 is also non-
degenerate.
Denote by φ(t) the sub-representation of WF × SL2(C) on V1, and

by φ(n) the sub-representation of WF × SL2(C) on V2. Then following
similar arguments as in [Liu11, Proposition 5.1], φ(t) ∈ Φ(t)(Gn−n∗) and
φ(n) of the form as in (7.2). This completes the proof of the proposition.

�

Let Π′(Gn) be the set of equivalence classes of irreducible represen-
tations σ of Gn(F ) which are Langlands quotients

L(νx1δ1 ⊗ · · · ⊗ νxkδk ⊗ σ(t)),

with central character χα being trivial when restricting to F ∗ except
when Gn = SO∗

2n+2, in which case it is the quadratic character ηε
associated to the square class ε defining Gn. Here σ

(t) is an irreducible
tempered generic representation of Gn∗(F ) (possibly σ(t) = 1 ⊗ c–for
the definition, see Remark 3.2), x1 ≥ x2 ≥ · · · ≥ xk > 0, and δi is a
square-integrable representation of Hni(F ), for i = 1, 2, . . . , k. Then,
we have the following result which is analogous to [JS04, Theorem 6.1],
[Liu11, Theorem 5.2], and [JL14, Theorem 5.2]:

Theorem 7.2. There is a surjective map ι (which extends the one in

Theorem 6.16) from Π′(Gn) to the set Φ̃(Gn) and it preserves the local
factors:

L(σ × τ, s) = L(ι(σ)⊗ r−1(τ), s),

ǫ(σ × τ, s, ψ) = ǫ(ι(σ)⊗ r−1(τ), s, ψ),

for all σ ∈ Π′(Gn) and all irreducible admissible representations τ of
any Hkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible rep-
resentation of WF ×SL2(C) of dimension kτ corresponding to τ by the
local Langlands reciprocity map for Hkτ .

Proof. Given any σ ∈ Π′(Gn) which is the Langlands quotient L(νx1δ1⊗
· · · ⊗ νxkδk ⊗ σ(t)), where σ(t) is an irreducible tempered generic repre-
sentation of Gn∗(F ) (possibly σ(t) = 1⊗c), x1 ≥ x2 ≥ · · · ≥ xk > 0, and
δi is a square-integrable representation of Hni(F ), for i = 1, 2, . . . , k.
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Using the surjective map ι in Theorem 6.16, let φ̃(t) = ι(σ(t)) ∈
Φ̃t(Gn) and let φ(t) be a representative. Assume that φi is the corre-
sponding Langlands parameter for δi under the local Langlands raciproc-
ity map for Hni(F ), for i = 1, 2, . . . , k. Then let

φ =

k⊕

i=1

(|·|xiφi ⊕ |·|−xiφ̌i)
⊕

φ(t).

Define ι(σ) = φ̃, the image of φ in Φ̃(Gn). Then using multiplicativity
of local factors, it is easy to see that the local factors are preserved.
In this way, we construct a map ι from Π′(Gn) to the set Φ̃(Gn) which
preserves local factors and naturally extends the one in Theorem 6.16.

To prove that this map ι is surjective, given any φ̃ ∈ Φ̃(Gn), let
φ ∈ Φ(Gn) be a representative. By Proposition 7.1, it can be written
as

φ = φ(t) ⊕ φ(n),

where φ(t) ∈ Φ(t)(Gn∗) (n∗ < n) and φ(n) is of the following form

φ(n) =

f⊕

i=1

(
|·|−qi+

wi
2 φi ⊗ Swi+1 ⊕ |·|qi−

wi
2 φ̌i ⊗ Swi+1

)
.

Here, f ∈ Z>0, w1, w2, . . . , wf ∈ Z≥0, q1, q2, . . . , qf ∈ R, such that φi is
an irreducible bounded representation of WF for 1 ≤ i ≤ f , and

w1

2
− q1 ≥

w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0.

By Theorem 6.16, there exists σ(t) ∈ Π(tg)(Gn∗) such that

(7.3) ι(σ(t)) = φ̃(t) ∈ Φ̃(t)(Gn∗).

Using the local Langlands reciprocity map r for Hk(F ), define

(7.4) Σi = [v−qir(φi), v
−qi+wir(φi)], 1 ≤ i ≤ f.

Let σ be the Langlands quotient of the induced representation

δ(Σ1)× δ(Σ2)× . . . δ(Σf )⋊ σ(t),

(possibly σ(t) = 1 ⊗ c). Then, it is easy to see that σ ∈ Π′(Gn) and

ι(σ) is equal to φ̃. Therefore ι is surjective.
This completes the proof of the theorem. �

Remark 7.3. When φ̃ ∈ Φ̃(g)(Gn), let φ ∈ Φ(g)(Gn) be a representa-
tive, which is a generic local Langlands parameter. Then, by definition,
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φ is of the form

φ(t) ⊕
f⊕

i=1

(
|·|−qi+

wi
2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−

wi
2 r−1(ξ̌i)⊗ Swi+1

)
,

where φ(t) is a representative of ι(σ(t)) for an irreducible tempered rep-
resentation σ(t) of Gn∗(F ) (n∗ ≤ n) and the sequence of segments

{Σj = [v−qjξj, v
−qj+wjξj ]}fj=1

is a Gn-generic sequence of segments with respect to σ(t).
Then by the classification of generic representations in §4.5,

δ(Σ1)× δ(Σ2)× . . . δ(Σf )⋊ σ(t)

is irreducible and generic. The σ constructed in Theorem 7.2 is actually
equal to δ(Σ1) × δ(Σ2) × . . . δ(Σf ) ⋊ σ(t), hence generic. From the
construction in Theorem 6.20, we can see that this σ indeed matches
the one constructed in Theorem 6.20 for this generic local Langlands
parameter φ. Hence, the map ι constructed in Theorem 7.2 is a natural
extension of the one constructed in Theorem 6.20.
Therefore, we can conclude that φ ∈ Φ(Gn) is a generic local Lang-

lands parameter if and only if the representation σ attached to φ in
Theorem 7.2 is generic.

Remark 7.4. When Gn = SO2n, SO
∗
2n+2, if σ ∈ Π′(Gn) is the Lang-

lands quotient of the induced representation

δ(Σ1)× δ(Σ2)× · · · × δ(Σf )⋊ σ(t),

possibly σ(t) = 1 ⊗ c and σ(t) ≇ cσ(t), then σ ≇ cσ and cσ is the
Langlands quotient of the induced representation

δ(Σ1)× δ(Σ2)× · · · × δ(Σf )⋊ cσ(t).

This matches the local Langlands classification for Gn(F ) – see [BJ03,
Proposition 6.3 and Section 2].
By Remark 6.17, Theorem 7.2, and the multiplicativity of local fac-

tors (see [Sha90b], [JS12] and [CKPSS04]), in the above situation, σ
and cσ have the same twisted local factors.

Appendix A. F -roots

In this appendix, we identify the simple F -roots and coroots for the
similitude groups. In all cases, we take X = {e1, e2, . . . , en, e0} and
X̌ = {ě1, ě2, . . . , ěn, ě0} and indicate the simple roots and coroots. The
data for the corresponding classical groups are obtained by removing
e0 and ě0.
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• Gn = GSp2n

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en − e0}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, ěn}

• Gn = GSO2n

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en − e0}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, ěn−1 + ěn}

• Gn = GSO∗
2n+2

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en − e0}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, 2ěn}

• Gn = GSpin2n+1

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, 2ěn − ě0}

• Gn = GSpin2n

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, ěn−1 + ěn − ě0}

• Gn = GSpin∗
2n+2

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, 2ěn − ě0}

• Gn = GU2n+1

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en − e0}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, 2ěn}

• Gn = GU2n

Π = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en − e0}
Π̌ = {ě1 − ě2, ě2 − ě3, . . . , ěn−1 − ěn, ěn}
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[Tad98b] M. Tadić, On regular square integrable representations of p-adic groups,
Amer. J. Math., 120(1998), no. 1, 159-210. 29, 85
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