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Abstract. In this paper the authors study irreducible subquotients of the cer-
tain class of induced representations of classical p -adic groups SO(2n+1, F ) and
Sp(2n, F ). The induced representations in question are the ones which contain,
as subquotients, generalized Steinberg and generalized trivial representation. We
prove that the only unitarizable irreducible subquotients of the induced repre-
sentations in question are precisely generalized Steinberg and generalized trivial
representation, thus continuing the previous work of the first author and M.
Tadić. This is, in a certain sense, a generalization of Casselman’s results in the
case of classical p -adic groups.
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1. Introduction

This paper continues the work begun in [H-T].

Let F be a p-adic field and G the F -points of a connected reductive
group defined over F . Let B denote a minimal parabolic subgroup of G and δ
the corresponding modular function. The induced representation IndGB(δ

1
2 ) has

the trivial representation as a quotient and the Steinberg representation as a
subrepresentation ([Ca1]). In [Ca2], Casselman showed that none of the remaining

irreducible subquotients of IndGB(δ
1
2 ) is unitary. The aim of [H-T] and the present

paper is to show the corresponding result for the inducing representation which
gives rise to the generalized Steinberg representation (in the sense of [T5]) of

Sp(2n, F ) and SO(2n+ 1, F ).

Let ρ be an irreducible unitary supercuspidal representation of some GL(n1, F )
and σ an irreducible supercuspidal representation of Sp(2n0, F ) or SO(2n0+1, F ).
If ρ 6∼= ρ̃ , then the parabolically induced representation (see section 2 for more de-
tails) |det|xρ o σ is irreducible for all x ∈ R ; if ρ ∼= ρ̃ , there is a unique α ≥ 0
such that ναρo σ is reducible ([Sil2]). Based on certain conjectures, one expects
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α ∈ 1
2
Z ; see [Mœ],[Zh] and [Sh1],[Sh2] for more on expected and known values of

α . For α > 0, the representation |det|α+mρ× |det|α+m−1ρ× · · · × |det|αρo σ has
a unique irreducible subrepresentation, which is square-integrable. This subrep-
resentation is analogous to the Steinberg representation in a number of respects;
we refer to it as a generalized Steinberg representation ([T5]). The analogue to
Casselman’s result is that the unique irreducible subrepresentation (generalized
Steinberg representation) and unique irreducible quotient (which might be called
a generalized trivial representation) are unitary; the remaining subquotients are
not. The generalized Steinberg is square-integrable, hence unitary; the generalized
trivial is dual to the generalized Steinberg (in the sense of [Aub], [S-S]) so unitary
by [H]. The nonunitarity of approximately half the remaining subquotients was
proved in [H-T]; this paper deals with the remaining cases.

The basic strategy for proving the non-unitarizability of a representation
π remains the same as in [H-T]. We choose a suitable ζ , an irreducible unitary
representation of a general linear group and consider the induced representation
IndGP (ζ ⊗ π). We then identify an irreducible subquotient π1 of IndGP (ζ ⊗ π).
Were π unitary, IndGP (ζ ⊗ π) would decompose as a direct sum, so π1 would be
a subrepresentation. In particular, the Jacquet module rM,G(π1) would have to
contain ζ⊗π as a composition factor. However, by identifying π1 as a subquotient
of a different induced representation IndGQ(τ ⊗ θ), we can show that this is not the
case. In particular, we use the µ∗ structure of [T4] to show that rM,G(τ o θ) does
not contain a copy of ζ ⊗ π . Thus rM,G(π1) cannot contain a copy of ζ ⊗ π , so
π1 cannot appear as a subrepresentation of IndGP (ζ ⊗ π). Therefore, π could not
have been unitary.

We now give a brief overview of the paper. The next section reviews
notation and background material needed in the remainder of the paper. It also
contains a statement of the main result–Theorem 2.2. In the third section, we
prove the non-unitarizability of L(δ(∆1), . . . , δ(∆k); δ(∆k+1;σ)) (notation for the
Langlands classification–cf. section 2) in the case where |∆k+1| > 1 following the
strategy discussed above. In the fourth section, we prove non-unitarizability in
the case where |∆k+1| = 0 and |∆k| = 1 using the same basic strategy. However,
to expedite matters, we show that this case is dual (in the sense of [Aub], [S-S])
to that of |∆k+1| > 1. This allows us to transfer the results needed using duality
rather than reproving them from scratch.

We would like to take this opportunity to thank the Erwin Schrödinger
Institute for their hospitality during the authors’ visits, where work on this paper
began.

2. Notation and preliminaries

In this section, we review some notation and background material needed in the
remainder of this paper. We largely retain the notation of [H-T].

As in [H-T], we have F a p-adic field with char(F ) 6= 2 and Sn(F ) =
Sp(2n, F ) or SO(2n+ 1, F ). Recall that for G = Sn(F ) (resp., G = GL(n, F )), a
standard parabolic subgroup of G has the form P = MU with M ∼= GL(n1, F )×
· · ·×GL(nk, F )×Sn0(F ) (resp., M ∼= GL(n1, F )×· · ·×GL(nk, F ) for GL(n, F )).
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As in [B-Z], if P = MU is a standard parabolic subgroup of G , we write iG,M and
rM,G for the normalized induction and Jacquet functors. We interpret these as both
induced representations, as well as their images in the corresponding Grothendieck
group setting (i.e., their semisimplifications). Similarly, we interpret π1 ≥ π2 in
the Grothendieck group setting–the multiplicity of any irreducible θ in π1 is at
least that of θ in π2 .

We now recall some structure theory from [Z] and [T4]. First, let

R =
⊕
n≥0

R(GL(n, F )) and R[S] =
⊕
n≥0

R(Sn(F )),

where R(G) denotes the Grothendieck group of the category of smooth finite-
length representations of G . We define multiplication on R as follows: suppose
ρ1, ρ2 are representations of GL(n1, F ), GL(n2, F ), respectively. We have M =
GL(n1, F ) × GL(n2, F ) is the Levi factor of a standard parabolic subgroup of
G = GL(n, F ), where n = n1 + n2 , and set τ1 × τ2 = iG,M(τ1 ⊗ τ2). This
extends (after semisimplification) to give the multiplication × : R×R −→ R . To
describe the comultiplication on R , let M(i) denote the standard Levi factor for
G = GL(n, F ) having M(i) = GL(i, F )×GL(n− i, F ). For a representation τ of
GL(n, F ), we define

m∗(τ) =
n∑
i=0

rM(i),Gτ,

the sum of semisimplified Jacquet modules (lying in R⊗R). This extends to a map
m∗ : R −→ R ⊗ R . We note that with this multiplication and comultiplication
(and antipode map given by the Zelevinsky involution, a special case of the general
duality operator of [Aub],[S-S]), R is a Hopf algebra. Similarly, if one extends o
from above to a map o : R ⊗ R[S] −→ R[S] , we have R[S] as a module over R .
Now, let M(i) = GL(i, F ) ⊗ Sn−i(F ), a standard Levi factor for G = Sn(F ). For
a representation π of Sn(F ), we define

µ∗(π) =
n∑
i=0

rM(i),Gπ,

the sum of semisimplified Jacquet modules (lying in R ⊗ R[S]). This extends to
a map µ∗ : R[S] −→ R ⊗ R[S] . This gives R[S] the structure of an M∗ -module
over R ([T4]):

Theorem 2.1. Define M∗ : R −→ R⊗R by

M∗ = (m⊗ 1) ◦ (̃ ⊗m∗) ◦ s ◦m∗,

where m denotes the multiplication × : R ⊗ R −→ R , ˜ denotes contragredient,
and s : R ⊗ R −→ R ⊗ R the extension of the map defined on representations by
s : τ1 ⊗ τ2 7−→ τ2 ⊗ τ1 . Then

µ∗(τ o π) = M∗(τ) o µ∗(π),

where o on the right hand side is determined by (τ1 ⊗ τ2) o (τ ⊗ θ) = (τ1 × τ)⊗
(τ2 o θ).
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We now review the Langlands classification for general linear groups and
the classical groups under consideration (see [B-W], [Sil], [K]; also [T3]). As in
[H-T], we favor the quotient setting. However, in certain places we use the sub-
representation setting, as well as certain Jacquet module observations which fol-
low directly from the subrepresentation setting, so review both. We start with
general linear groups. Suppose τ1, . . . , τk are irreducible tempered representa-
tions of general linear groups and τ an irreducible tempered representation of a
symplectic or special odd-orthogonal group. If x1 > x2 > · · · > xk > 0 (resp.,
x1 > · · · > xk , then νx1τ1×νx2τ2×· · ·×νxkτkoτ (resp., νx1τ1×νx2τ2×· · ·×νxkτk )
has a unique irreducible quotient which we denote L(νx1τ1, . . . , ν

xkτk; τ) (resp.,
L(νx1τ1, . . . , ν

xkτk)). Note that the switch from L to L to distinguish the case
of general linear groups from that of classical groups represents a minor nota-
tional change from [H-T]. The Langlands classification for general linear groups
is used more frequently in this paper; the change was made for added clar-
ity. Every irreducible admissible representation of a symplectic or special odd-
orthogonal group (resp., general linear group) may be written in this way, and
the data νx1τ1 ⊗ νx2τ2 ⊗ · · · ⊗ νxkτk ⊗ τ (resp., νx1τ1 ⊗ νx2τ2 ⊗ · · · ⊗ νxkτk ⊗ τ )
are unique. Similarly, if y1 < y2 < · · · < yk < 0 (resp., y1 < · · · < yk ),
then νy1τ1 × νy2τ2 × · · · × νykτk o τ (resp., νy1τ1 × νy2τ2 × · · · × νykτk ) has
a unique irreducible subrepresentation which we denote Lsub(ν

y1τ1, . . . , ν
ykτk; τ)

(resp., Lsub(νy1τ1, . . . , νykτk)). Again, every irreducible admissible representa-
tion of a symplectic or special odd-orthogonal group (resp., general linear group)
may be written in this way, and the data νy1τ1 ⊗ νy2τ2 ⊗ · · · ⊗ νykτk ⊗ τ (resp.,
νy1τ1 ⊗ νy2τ2 ⊗ · · · ⊗ νykτk ) are unique. These are related by

L(νx1τ1, . . . , ν
xkτk; τ) ∼= Lsub(ν

−x1 τ̃1, . . . , ν
−xk τ̃k; τ).

and
L(νx1τ1, . . . , ν

xkτk) ∼= Lsub(νxkτk, . . . , νx1τ1).

Note that it follows immediately that for the appropriate standard Levi factor M ,
one has

rM,GL(νx1τ1, . . . , ν
xkτk; τ) ≥ ν−x1 τ̃1 ⊗ · · · ⊗ ν−xk τ̃k ⊗ τ,

and that ν−x1 τ̃1 ⊗ · · · ⊗ ν−xk τ̃k ⊗ τ is the unique irreducible subquotient of
rM,G(νx1τ1×· · ·× νxk o τ) having its central character (see Proposition 5.3 [B-J]).
The corresponding claim also holds for general linear groups.

As in [Z], we let ν = |det| . For ρ an irreducible supercuspidal representation
of GL(r, F ), we let [νaρ, νρ] denote the segment {νaρ, νa+1ρ, . . . , νbρ} (a ≤ b with
b−a ∈ Z). The representation νbρ×νb−1ρ×· · ·×νaρ has a unique irreducible sub-
representation δ([νaρ, νbρ]) (which is essentially square-integrable) and a unique ir-
reducible quotient s([νaρ, νbρ]). Note that s([νaρ, νbρ]) = L(νbρ, νb−1ρ, . . . , νaρ) =

̂δ([νaρ, νbρ]), where ˆ denotes the dual in the sense of [Aub], [S-S].

Suppose ρ is an irreducible unitary supercuspidal representation of GL(r, F ) with
ρ ∼= ρ̃ . If σ is an irreducible supercuspidal representation of some St(F ), there
is a unique α ≥ 0 such that ναρ o σ is reducible (if ρ 6∼= ρ̃ , then νxρ o σ is
irreducible for all x ∈ R). For this α , the representation να+nρ× να+n−1ρ× · · · ×
ναρo σ has a unique irreducible subrepresentation–denoted δ([ναρ, να+nρ];σ). It
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is regular and square-integrable ([T5]). The remaining irreducible subquotients of
να+nρ × να+n−1ρ × · · · × ναρ o σ have the form L(δ(∆1), . . . , δ(∆k); δ(∆k+1;σ)),
where the ∆i are disjoint segments with ∪i∆i = {ναρ, να+1ρ, . . . , να+nρ} and the
exponents appearing in ∆i are greater than those appearing in ∆i+1 . The result
we are after is the following:

Theorem 2.2. With notation as above, an irreducible subquotient
π of να+nρ× να+n−1ρ× · · · × ναρo σ

is unitary if and only if
π = δ([ναρ, να+nρ];σ) or π = L(να+nρ, να+n−1ρ, . . . , ναρ;σ).

Proof. That π = δ([ναρ, να+nρ];σ) is unitary follows from the fact that it is
square-integrable ([T5]). Next we note that L(να+nρ, να+n−1ρ, . . . , ναρ;σ) is dual
to δ([ναρ, να+nρ];σ), hence unitary by [H]. If π is any other irreducible subquo-
tient of να+nρ×να+n−1ρ×· · ·×ναρoσ , write π = L(δ(∆1), . . . , δ(∆k); δ(∆k+1;σ))
with k > 0 and |∆i| > 1 for at least one i . Nonunitarity when either (1) ∆k+1 = ∅
and |∆k| > 1, or (2) |∆k+1| = 1 is proven in [H-T]. Nonunitarity when |∆k+1| > 1
(resp.,∆k+1 = ∅ and |∆k| = 1) is Theorem 3.7 (resp., Theorem 4.2) of the present
paper.

3. The case |∆k+1| > 1

In this section, we prove non-unitarizability in the case |∆k+1| > 1.

Write

π = L(δ(∆1), . . . , δ(∆k); δ(∆k+1;σ)) = L(a, δ([ναρ, να+mρ];σ)).

If α ≡ 0 mod 1, ρ o δ([ναρ, να+mρ];σ) is irreducible if α > 1 and has two
components if α = 1 (e.g., see [Mu]). Write

ρo δ([ναρ, να+mρ];σ) =


Tm(ρ;σ) if α > 1,

Tm(ρ;σ) + T ′m(ρ;σ),

with Tm(ρ;σ) having the smaller Jacquet module when α = 1. Now, set

π1 =

 L(a, να+mρ× να+mρ, . . . , ν 1
2ρ× ν 1

2ρ; δ(ναρ, να+mρ;σ)) if α ≡ 1
2

mod 1,

L(a, να+mρ× να+mρ, . . . , νρ× νρ;Tm(ρ;σ)) if α ≡ 0 mod 1.

Lemma 3.1. π1 ≤ s([ν−α−mρ, να+mρ]) o π .

Proof. First, it follows directly from the Langlands classification that µ∗(π) ≥
L(−a) ⊗ δ([ναρ, να+mρ];σ), where −a is the corresponding data in the subrep-
resentation setting of the Langlands classification (i.e., L(a; τ) = Lsub(−a; τ)).
Further, since the supercuspidal support of L(−a) lies in {ν−α−m−1ρ, ν−α−m−2ρ,
. . . ν−α−nρ} , it follows that L(−a) ⊗ δ([ναρ, να+mρ];σ) is the only term in µ∗(π)
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having its central character (since, e.g., any term in M∗(L(−a)) other than
L(−a)⊗ 1 involves sign changes). It then follows that

µ∗(s([ν−α−mρ, να+mρ]) o π) ≥ L(−a)⊗ s([ν−α−mρ, να+mρ]) o δ([ναρ, να+mρ];σ),

and this is the only term in µ∗(s([ν−α−mρ, να+mρ])oπ) having its central character.

Next, a straightforward µ∗ argument tells us that if α ≡ 1
2

mod 1,

µ∗(s([ν−α−mρ, να+mρ]) o δ([ναρ, να+mρ];σ))

≥ L(ν−
1
2ρ× ν−

1
2ρ, . . . , ν−α−mρ× ν−α−mρ)⊗ δ([ναρ, να+mρ];σ),

and this is the only term in µ∗(s([ν−α−mρ, να+mρ]) o δ([ναρ, να+mρ];σ)) with its
central character. Then, for a suitable standard Levi factor M , we have

rM,G((s([ν−α−mρ, να+mρ]) o π) ≥

L(−a)⊗ L(ν−
1
2ρ× ν−

1
2ρ, . . . , ν−α−mρ× ν−α−mρ)⊗ δ([ναρ, να+mρ];σ),

which implies (by central character considerations)

π′1 ↪→ L(−a)× L(ν−
1
2ρ× ν−

1
2ρ, . . . , ν−α−mρ× ν−α−mρ) o δ([ναρ, να+mρ];σ),

where π′1 is the irreducible subquotient of s([ν−α−mρ, να+mρ]) o π containing

L(−a)⊗L(ν−
1
2ρ×ν− 1

2ρ, . . . , ν−α−mρ×ν−α−mρ)⊗δ([ναρ, να+mρ];σ) in its Jacquet
module. However, by the Langlands classification,

π1 ↪→ L(−a)× L(ν−
1
2ρ× ν−

1
2ρ, . . . , ν−α−mρ× ν−α−mρ) o δ([ναρ, να+mρ];σ)

as unique irreducible subrepresentation. Thus π′1
∼= π1 , as needed. This finishes

the case α ≡ 1
2

mod 1.

The argument when α ≡ 0 mod 1 is similar, but with a few minor changes.
Again, we have

µ∗(s([ν−α−mρ, να+mρ]) o L(a, δ([ναρ, να+mρ];σ))) ≥
L(−a)× L(ν−1ρ× ν−1ρ, . . . , ν−α−mρ× ν−α−mρ)⊗ (ρo δ([ναρ, να+mρ];σ)),

and this is the only term in µ∗(s([ν−α−mρ, να+mρ]) o δ([ναρ, να+mρ];σ)) with
its central character. If α 6= 1, we have ρ o δ([ναρ, να+mρ];σ) = Tm(ρ;σ)
(irreducible) and the same basic argument as above applies. If α = 1, we have
ρ o δ([ναρ, να+mρ];σ) ∼= Tm(ρ;σ) ⊕ T ′m(ρ;σ). Then, we let π′1 be the irreducible
subquotient of (s([ν−α−mρ, να+mρ]) o L(a, δ([ναρ, να+mρ];σ)) containing

L(−a)⊗ L(ν−1ρ× ν−1ρ, . . . , ν−α−mρ× ν−α−mρ)⊗ Tm(ρ;σ)

in its Jacquet module. An argument similar to that above then shows π′1 = π1 , as
needed.

Lemma 3.2. Let

α0 =


1
2

if α ≡ 1
2

mod 1,

1 if α ≡ 0 mod 1.
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Then
L(ν−α0ρ, . . . , ν−α−mρ,−a)× s([ν−α−m, ν−α0ρ]) =
L(ν−α0ρ× ν−α0ρ, . . . , ν−α−mρ× ν−α−mρ,−a),

in particular, is irreducible.

Proof. First, we show L(ν−α0ρ, . . . , ν−α−mρ,−a) × s([ν−α−m, ν−α0ρ]) is irre-
ducible, then address the Langlands data. By duality, it suffices to show the
irreducibility of

L(ν−α0ρ, . . . , ν−α−mρ,−a)̂ × δ([ν−α−m, ν−α0ρ]).

By section 3.3 [J3], L(ν−α0ρ, . . . , ν−α−mρ,−a)̂ ∼= L(δ([ν−j+1−α0ρ, ν−α0ρ]), a∗)
with j ≥ m and suitable a∗ . Irreducibility now follows from Lemma 1.3.3 [J3]
(noting that

L(δ([ν−j+1−α0ρ, ν−α0ρ]), a∗) = Lsub(−a∗, (δ([ν−j+1−α0ρ, ν−α0ρ]),

and every δ([νdρ, νcρ]) appearing in −a∗ has c < −m − 1 so δ([νdρ, νcρ]) ×
δ([ν−j+1−α0ρ, ν−α0ρ]) is irreducible).

Let τ = L(ν−α0ρ, . . . , ν−α−mρ,−a)× s([ν−α−m, ν−α0ρ]). Since

s([ν−α−m, ν−α0ρ]) = L(ν−α0ρ, . . . , ν−α0−mρ)

we have a surjection

L(ν−α0ρ, . . . , ν−α0−mρ)× L(ν−α0ρ, . . . , ν−α0−mρ)× L(−a) −→ τ.

By [Z], L(ν−α0ρ, . . . , ν−α0−mρ)×L(ν−α0ρ, . . . , ν−α0−mρ) is irreducible, hence is iso-
morphic to L(ν−α0ρ× ν−α0ρ, . . . , ν−α0−mρ× ν−α0−mρ). Now, we have a surjection

(ν−α0ρ× ν−α0ρ)× · · · × (ν−α0−mρ× ν−α0−mρ))× I(−a)

−→ L(ν−α0ρ, . . . , ν−α0−mρ)× L(ν−α0ρ, . . . , ν−α0−mρ)× L(−a)

−→ τ,

where I(−a) denotes the corresponding standard module (the induced representa-
tion having L(−a) as unique irreducible quotient). By the Langlands classification,
ν−α0ρ× ν−α0ρ× · · · × ν−α0−mρ× ν−α0−mρ× I(−a) has

L(ν−α0ρ× ν−α0ρ, . . . , ν−α−mρ× ν−α−mρ,−a)

as unique irreducible quotient so
τ = L(ν−α0ρ× ν−α0ρ, . . . , ν−α−mρ× ν−α−mρ,−a),

as needed.

With α0 as above, let

π0 =

 L(a, να+mρ, . . . , ν
1
2ρ; δ(ναρ, να+mρ;σ)) if α ≡ 1

2
mod 1,

L(a, να+mρ, . . . , νρ;Tm(ρ;σ)) if α ≡ 0 mod 1.

Lemma 3.3.
π1 ≤ s([ν−α−mρ, ν−α0ρ]) o π0.
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Proof. We actually show more: π1 ↪→ s([ν−α−mρ, ν−α0ρ]) o π0 . We do the
case α ≡ 0 mod 1; the case α ≡ 1

2
mod 1 is similar but slightly easier. Here, we

work in the subrepresentation setting of the Langlands classification for much of
the proof. First, observe that from Lemma 3.2,

π1 ↪→ Lsub(−a, ν−α−mρ× ν−α−mρ, . . . , ν−1ρ× ν−1ρ) o Tm(ρ;σ)

∼= Lsub(ν−α−mρ, . . . , ν−1ρ)× Lsub(−a, ν−α−mρ, . . . , ν−1ρ) o Tm(ρ;σ),

so, by Lemma 5.5 of [J2], it follows that

π1 ↪→ Lsub(ν−α−mρ, . . . , ν−1ρ) o θ

for some irreducible θ ≤ Lsub(−a, ν−α−mρ, . . . , ν−1ρ) o Tm(ρ;σ). Next, write
µ∗(θ) =

∑
i τi ⊗ θi . Then a straightforward calculation using Theorem 2.1 gives

µ∗(π1) ≤M∗(Lsub(ν−α−mρ, . . . , ν−1ρ)) o µ∗(θ)

=
∑
i

−1∑
j=−α−m−1

j∑
`=−α−m−1

Lsub(νρ, . . . , ν−j−1ρ)× Lsub(ν−α−mρ, . . . , ν`ρ)× τi

⊗ Lsub(ν`+1ρ, . . . , νjρ) o θi.

By Frobenius reciprocity, µ∗(π1) ≥ Lsub(ν−α−mρ, . . . , ν−1ρ) ⊗ θ . To have a term
of this form above, we must have j = −1. Further, since

τi ⊗ θi ≤ µ∗(θ) ≤ µ∗(Lsub(−a, ν−α−mρ, . . . , ν−1ρ) o Tm(ρ;σ)),

we see that any term of the form νxρ⊗ λ ≤ rM(r),G(τi) must have

x 6∈ {−α−m,−α−m+ 1, . . . ,−1}.

In particular, it follows that we must have τi = 1. Therefore, the only term of the
form Lsub(ν−α−mρ, . . . , ν−1ρ)⊗ θ′ in µ∗(π1) is Lsub(ν−α−mρ, . . . , ν−1ρ)⊗ θ . Now,
by Frobenius reciprocity, this implies (for a suitable standard Levi factor M )

π1 ↪→ Lsub(ν−α−mρ, . . . , ν−1ρ)× Lsub(−a, ν−α−mρ . . . , ν−1ρ) o Tm(ρ;σ),

so that

rM,G(π1) ≥ Lsub(ν−α−mρ, . . . , ν−1ρ)⊗ Lsub(−a, ν−α−mρ . . . , ν−1ρ)⊗ Tm(ρ;σ),

and, consequently,

µ∗(θ) ≥ Lsub(−a, ν−α−mρ . . . , ν−1ρ)⊗ Tm(ρ;σ).

Since the only component of Lsub(−a, ν−α−mρ . . . , ν−1ρ) o Tm(ρ;σ) having

Lsub(−a, ν−α−mρ . . . , ν−1ρ)⊗ Tm(ρ;σ)

in its Jacquet module is Lsub(−a, ν−α−mρ, . . . , ν−1ρ;Tm(ρ;σ)) (a property of the
Langlands classification–see [B-J]), it follows that

θ = Lsub(−a, ν−α−mρ . . . , ν−1ρ;Tm(ρ;σ)),

as needed.
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Lemma 3.4. Suppose νxρ ⊗ θ ≤ rM(r),G(π0) with x ∈ {−α − m,−α − m +
1, . . . , α +m}.

1. Suppose α ∼= 1
2

mod 1.

(a) If α = 1
2

, then x = α +m.

(b) If α > 1
2

, then x ∈ {1
2
, α +m}.

2. If α ∼= 0 mod 1, then x ∈ {0, α +m}.

Proof. For 1, observe that any νxρ ⊗ τ ≤ m∗(L(ν−
1
2ρ, . . . , ν−α−mρ,−a)) has

x < −α−m (by Proposition 2.1.4 [J3]). Also, any

τ ⊗ νxρ ≤ m∗(L(ν−
1
2ρ, . . . , ν−α−mρ,−a))

has x = −1
2

or x < −α−m (by Proposition 2.4.3 [J3]). It then follows that any

νxρ⊗ τ ≤M∗(L(ν−
1
2ρ, . . . , ν−α−mρ,−a))

has x = 1
2

or |x| > α + m . Also, any νxρ ⊗ λ ≤ µ∗(δ([ναρ, να+mρ];σ)) has
x = α +m . Since

π0 ≤ L(ν−
1
2ρ, . . . , ν−α−mρ,−a) o δ([ναρ, να+mρ];σ),

it then follows from Theorem 2.1 that the only possible νxρ⊗ θ ≤ rM(r),G(π0) with

|x| ≤ α+m have x = 1
2

or α+m . This finishes 1(b). For 1(a), we must still rule
out the possibility x = 1

2
. For this, observe that

π0 ↪→ Lsub(a)× s([ν−
1
2
−mρ, . . . ν−

3
2ρ]) o (L(ν

1
2ρ, δ([ν

1
2ρ, ν

1
2
+mρ];σ)).

It then suffices to show there are no terms of the form ν
1
2ρ⊗ λ in

rM(r),G(L(ν
1
2ρ, δ([ν

1
2ρ, ν

1
2
+mρ];σ))).

To see that this is the case, observe that

L(ν
1
2ρ; δ([ν

1
2ρ, ν

1
2
+mρ];σ)) ≤ ν

1
2ρo δ([ν

1
2ρ, ν

1
2
+mρ];σ).

Therefore, its dual is a subquotient of the generalized degenerate principal se-
ries ν−

1
2ρ o L(νm+ 1

2ρ, . . . , ν
1
2ρ;σ), analyzed in [J1]. It has two irreducible sub-

quotients; only the one labeled π2 in Theorem 6.1 of that paper contains a
term of the form ν

1
2ρ ⊗ . . . in its Jacquet module, hence must be the dual

of L(ν
1
2ρ; δ([ν

1
2ρ, ν

1
2
+mρ];σ)). Since rM(r),G(π2) contains no term of the form

ν−
1
2ρ ⊗ . . . , it follows that rM(r),GL(ν

1
2ρ; δ([ν

1
2ρ, ν

1
2
+mρ];σ)) contains no term of

the form ν
1
2ρ⊗ . . . , as claimed. The argument for 2 is similar–observe that

π0 ↪→ L(ν−1ρ, . . . , ν−α−mρ,−a) o Tm(ρ;σ)

tells us the only possible values of x from the set are x = 0, 1, α+ k . To see that
x 6= 1, observe that

π0 ≤ L(−a)× s([ν−α−mρ, ρ]) o δ([ναρ, να+mρ];σ),

finishing 2.
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Lemma 3.5. If α ∼= 0 mod 1, then

L(να+mρ, . . . , νρ;Tm(ρ;σ)) ≤ ρo L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ).

Proof. Observe that

sν−α−mρ⊗···⊗ν−1ρ(ρo L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ)) =

ν−α−mρ⊗ · · · ⊗ ν−1ρ⊗ (ρo δ([ναρ, να+mρ];σ)),

where sν−α−mρ⊗···⊗ν−1ρ denotes the sum of everything in the (appropriate) Jacquet
module of the form ν−α−mρ ⊗ · · · ⊗ ν−1ρ ⊗ θ for some θ . Let π′0 denote the
irreducible subquotient of ρo L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ)) containing

ν−α−mρ⊗ · · · ⊗ ν−1ρ⊗ Tm(ρ;σ)

in its Jacquet module. If α > 1, then ρ o δ([ναρ, να+mρ];σ) ∼= Tm(ρ;σ) is irre-
ducible and it follows from central character considerations that π′0 ↪→ ν−α−mρ×
· · · × ν−1ρo Tm(ρ;σ). It then follows immediately from the Langlands classifica-
tion that π′0

∼= L(να+mρ, . . . , νρ;Tm(ρ;σ)), as needed. The argument when α = 1
is the same if sν−α−mρ⊗···⊗ν−1ρ(π

′
0) = ν−α−mρ ⊗ · · · ⊗ ν−1ρ ⊗ Tm(ρ;σ). Were it to

also contain ν−α−mρ⊗ · · · ⊗ ν−1ρ⊗ T ′m(ρ;σ), one might have
π′0 ↪→ ν−α−mρ× · · · × ν−1ρo T ′m(ρ;σ)

instead. However, this would give π′0
∼= L(να+mρ, . . . , νρ;T ′m(ρ;σ)), which does not

contain ν−α−mρ⊗ · · ·⊗ ν−1ρ⊗Tm(ρ;σ) in its Jacquet module (by Proposition 5.3
[B-J]), a contradiction. Thus we must have π′0 ↪→ ν−α−mρ×· · ·× ν−1ρoTm(ρ;σ),
hence π′0

∼= L(να+mρ, . . . , νρ;Tm(ρ;σ)), as needed.

Lemma 3.6. 1. Suppose α ∼= 1
2

mod 1. Then µ∗(π0) contains no terms of

the form s([ν
1
2ρ, να+mρ])⊗ θ .

2. Suppose α ∼= 0 mod 1. Then µ∗(π0) contains no terms of the form

s([ρ, να+mρ])⊗ θ.

Proof. We first address the case α ≡ 1
2

mod 1. If α = 1
2
, the result follows

immediately from Lemma 3.4. If α > 1
2
, observe that it follows easily from the

Langlands classification that

π0 ≤ L(a)× s([ν−α−mρ, ν−αρ]) o L(να−1ρ, . . . ν
1
2ρ; δ([ναρ, να+mρ];σ)).

Next, we claim that

L(να−1ρ, . . . ν
1
2ρ; δ([ναρ, να+mρ];σ)) ≤

s([ν−α+2ρ, ν−
1
2ρ]) o L(να−1ρ; δ([ναρ, να+mρ];σ)).

To see this, observe that s([ν−α+2ρ, ν−
1
2ρ])oL(να−1ρ; δ([ναρ, να+mρ];σ)) contains

ν−α+1ρ ⊗ · · · ⊗ ν−
1
2ρ ⊗ δ([ναρ, να+mρ];σ) in its Jacquet module, and it is the
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unique term in the Jacquet module having this central character. The irreducible
subquotient containing this term then embeds in

ν−α+1ρ⊗ · · · ⊗ ν− 1
2ρo δ([ναρ, να+mρ];σ)

by central character considerations, hence must be
L(να−1ρ, . . . ν

1
2ρ; δ([ναρ, να+mρ];σ)),

as claimed. Combining these observations,

π0 ≤ L(a)× s([ν−α−mρ, ν−αρ])× s([ν−α+2ρ, ν−
1
2ρ]) o L(να−1ρ; δ([ναρ, να+mρ];σ)).

By supercuspidal support considerations, in order for

µ∗(π0) ≥ s([ν
1
2ρ, να+mρ])⊗ θ

to hold we would have to have

να−1ρ⊗ θ′ ≤ µ∗(L(να−1ρ; δ([ναρ, να+mρ];σ))

for some θ′. Now, it follows from [Mu] that

L(να−1ρ; δ([ναρ, να+mρ;σ)) ≤ δ([να−1ρ, να+mρ]) o σ

(Proposition 3.1(i) if α > 3/2; Theorem 5.1(ii) if α = 3/2). From this, it follows
immediately that µ∗(L(να−1ρ; δ([ναρ, να+mρ];σ))) contains no terms of the form
να−1ρ⊗ θ′ .

We now consider the case α ≡ 0 mod 1. By Lemma 3.5, it suffices to show

µ∗(L(a)× ρo L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ))

contains no such terms. For µ∗(L(a)× ρoL(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ)) to
contain such a term, we would have to have either

µ∗(L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ)) ≥ s([ρ, να+mρ])⊗ θ′

for some θ′–which cannot happen by supercuspidal support considerations–or

µ∗(L(να+mρ, . . . , νρ; δ([ναρ, να+mρ];σ)) ≥ s([νρ, να+mρ])⊗ θ′

–which cannot happen by Lemma 3.4. The result follows.

Theorem 3.7. Suppose |∆k+1| > 1. Then π = L(δ(∆1), . . . , δ(∆k); δ(∆k+1;σ))
is not unitary.

Proof. By Lemma 3.1,

π1 ≤ s([ν−α−mρ, να+mρ]) o π.

Were π unitary, we would have to have π1 appearing as a subrepresentation. It
therefore suffices to show π1 is not a subrepresentation of s([ν−α−mρ, να+mρ])oπ ,
or by Frobenius reciprocity, that µ∗(π1) 6≥ s([ν−α−mρ, να+mρ]) ⊗ π . Now, by
Lemma 3.3,

π1 ≤ s([ν−α−mρ, ν−α0ρ]) o π0.
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It therefore suffices to show µ∗(s([ν−α−mρ, ν−α0ρ])oπ0) 6≥ s([ν−α−mρ, να+mρ])⊗π .
Write µ∗(π0) =

∑
τi ⊗ θi . A straightforward calculation using Theorem 2.1 gives

µ∗(s([ν−α−mρ, ν−α0ρ]) o π0) =
∑
i

−α0∑
j=−α−m−1

j∑
`=−α−m−1

s([να0ρ, ν−j−1ρ])×

s([ν−α−mρ, ν`ρ])× τi ⊗ s([ν`+1ρ, νjρ]) o θi.

First, suppose α ≡ 1
2

mod 1. If ` = −1
2
, then j = −1

2
; in order to pick up

s([ν−α−mρ, να+mρ])⊗π we would then need τi⊗θi = s([ν
1
2ρ, να+mρ])⊗π . However,

by Lemma 3.6 this is not the case. If ` < −1
2
, then s(1)τi–hence s(1)π0–must

contain a term of the form ν`+1ρ ⊗ λ . However, by Lemma 3.4 this is not the
case. Thus µ∗(s([ν−α−mρ, ν−

1
2ρ]) o π0) 6≥ s([ν−α−mρ, να+mρ]) ⊗ π , and non-

unitarizability follows. Now, suppose α ≡ 0 mod 1. If ` = −1, then j =
−1 and we need τi ⊗ θi = s([ρ, να+mρ]) ⊗ π′ for a suitable π′ . However, by
Lemma 3.6, this does not happen. If ` < −1, then s(1)τi–hence s(1)π0–must
contain a term of the form ν`+1ρ⊗ λ . Again, by Lemma 3.4 this is not the case.
Thus µ∗(s([ν−α−mρ, ν−1ρ])oπ0) 6≥ s([ν−α−mρ, να+mρ])⊗π , and non-unitarizability
follows.

4. The case ∆k+1 = ∅ and |∆k| = 1

In this section, we address the case ∆k+1 = ∅ and |∆k| = 1. In particular, we
show that this case is dual to that covered in section 3; the results needed to prove
non-unitarity are then obtained by duality from those in section 3.

Proposition 4.1. Suppose π has the form π = L(∆1, . . . ,∆k;σ) with |∆k| =
· · · = |∆k−`+1| = 1 and |∆k−`| > 1 for some ` ≥ 1. Then, π̂ has the form

π̂ = L(∆′1, . . . ,∆
′
k′ ; δ(∆

′
k′+1;σ))

with |∆k′+1| = `+1. Conversely, if π has the form π = L(∆′1, . . . ,∆
′
k′ ; δ(∆

′
k′+1;σ))

with |∆′k′+1| > 1, then π̂ has the form π̂ = L(∆1, . . . ,∆k;σ) with |∆k| = · · · =
|∆k−`+1| = 1 and |∆k−`| > 1 for ` = |∆′k′+1| − 1.

Proof. Write

π = L(δ([νbsρ, νasρ]), . . . , δ([νbm+1ρ, νam+1ρ]), να+mρ, να+m−1ρ, . . . , ναρ;σ)

with m ≥ 0. Note that bm+1 = α + m + 1 and for ` > m + 1, b` = a`−1 + 1.
Observe that for the appropriate standard Levi factor M , we have

δ([ν−asρ, ν−bsρ])⊗ · · ·⊗ ν−am+1ρ, ν−bm+1ρ])⊗ ν−α−mρ⊗ ν−α−m+1ρ⊗ · · ·⊗ ν−αρ⊗σ

in rM,G(π), and this is the unique irreducible subquotient of rM,G(π) having its
central character (see Proposition 5.3 [B-J]). By duality,

s([νbsρ, νasρ])⊗ · · · ⊗ s([νbm+1ρ, νam+1ρ])⊗ να+mρ⊗ · · · ⊗ ναρ⊗ σ
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is the unique irreducible subquotient of rM,G(π̂) with its central character. There-
fore, by central character considerations,

π̂ ↪→ s([νbsρ, νasρ])× · · · × s([νbm+1ρ, νam+1ρ])× να+mρ× · · · × ναρo σ

↪→ s([νbsρ, νasρ])×· · ·× (να+m+1ρ×s([νbm+1+1ρ, νam+1ρ]))×να+mρ×· · ·×ναρoσ
∼= να+m+1ρ× να+mρ× · · · × ναρ× s([νbsρ, νasρ])× · · · × s([νbm+2ρ, νam+2ρ])×

s([νbm+1+1ρ, νam+1ρ]) o σ

using the observation that δ([νcρ, νdρ])× νxρ ∼= νxρ× δ([νcρ, νdρ]) (irreducible if
x < c− 1) to “commute” να+m−1ρ, . . . , ναρ to the front. Next, using the fact that

s([νcρ, νdρ]) o σ ∼= s([ν−dρ, ν−cρ]) o σ

for c > α (again irreducible), we get π̂ ↪→

να+m+1ρ× να+mρ× · · · × ναρ× s([ν−am+1ρ, ν−bm+1−1ρ])× s([ν−am+2ρ, ν−bm+2ρ])

× · · · × s([ν−asρ, ν−bsρ]) o σ

∼= s([ν−am+1ρ, ν−bm+1−1ρ])× s([ν−am+2ρ, ν−bm+2ρ])× · · · × s([ν−asρ, ν−bsρ])×
να+m+1ρ× να+mρ× · · · × ναρo σ

so, by Lemma 5.5 of [J2], π̂ ↪→ L(b) o θ for some irreducible

L(b) ≤ s([ν−am+1ρ, ν−bm+1−1ρ])× s([ν−am+2ρ, ν−bm+2ρ])× · · · × s([ν−asρ, ν−bsρ])

and θ ≤ να+m+1ρ × να+mρ × · · · × ναρ o σ . Since smin(π̂) contains terms of
the form · · · ⊗ να+m+1ρ ⊗ να+mρ ⊗ · · · ⊗ ναρ ⊗ σ , it follows that µ∗(π̂) ≥ L′ ⊗
δ([ναρ, να+m+1ρ];σ) for some L′ . Since µ∗(π̂) ≤M∗(L(b)) o µ∗(θ), supercuspidal
support considerations tell us θ ∼= δ([ναρ, να+m+1ρ];σ). It then follows from
the Langlands classification that π̂ = Lsub(b; δ([ν

αρ, να+m+1ρ];σ). Note that this
corresponds to |∆′k+1| = m+ 2 = `+ 1, as needed.

In the other direction, suppose π′ has the form

π′ = L(δ([νbsρ, νasρ]), . . . , δ([νbm+1ρ, νam+1ρ]); δ([ναρ, να+mρ];σ)).

Again, for a suitable Levi factor M , we have

δ([ν−asρ, ν−bsρ])⊗ · · · ⊗ δ([ν−am+1ρ, ν−bm+1ρ])⊗ δ([ναρ, να+mρ];σ)

unique in rM,G(π′) having its central character. Again, by duality we have

π̂′ ↪→ s([νbsρ, νasρ])× · · · × s([νbm+1ρ, νam+1ρ]) o L(να+mρ, να+m−1ρ, . . . , ναρ;σ)

↪→ s([νbsρ, νasρ])× · · · × s([νbm+1ρ, νam+1ρ])× ν−α−mρo L(να+m−1ρ, . . . , ναρ;σ)

∼= ν−α−mρ× s([νbsρ, νasρ])× · · · × s([νbm+1ρ, νam+1ρ]) o L(να+m−1ρ, . . . , ναρ;σ)

∼= ν−α−mρ×s([ν−am+1ρ, ν−bm+1ρ])× . . .×s([ν−asρ, ν−bsρ])oL(να+m−1ρ, . . . , ναρ;σ)

using

s([νcρ, νdρ]) o L(να+m−1ρ, . . . , ναρ;σ) ∼= s([ν−dρ, ν−cρ]) o L(να+m−1ρ, . . . , ναρ;σ)
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for c > α + m by irreducibility (cf. [Mu]) and a “commuting” argument. It now
follows from Lemma 5.5 [J2] that

π̂′ ↪→ L(b) o L(να+m−1ρ, . . . , ναρ;σ)

for some irreducible L(b) ≤ ν−α−mρ×s([ν−am+1ρ, ν−bm+1ρ])×· · ·×s([ν−asρ, ν−bsρ]).
Further, since rM(r),G(π̂′) contains a term of the form ν−α−mρ⊗ . . . , we must have

rM(r),G(L(b)) = rM(r),G(Lsub(δ([ν−c1ρ, ν−d1ρ]), . . . , δ([ν−cuρ, ν−duρ])) ≥ ν−α−mρ⊗. . .

By Proposition 2.4.3 [J3], we have δ([ν−cuρ, ν−duρ]) 6∼= ν−α−mρ . In particular, by
the Langlands classification,

π̂ ∼= L(δ([νd1ρ, νc1ρ]), . . . , δ([νduρ, νcuρ]), να+m−1ρ, να+m−2ρ, . . . , ναρ;σ)

with δ([νduρ, νcuρ]) 6∼= να+mρ . The result follows.

Theorem 4.2. Let π′ = L(∆1, . . . ,∆k;σ) with |∆k| = · · · = |∆k−`+1| = 1 and
|∆k−`| > 1 for some ` ≥ 1. Then π′ is non-unitary.

Proof. We argue using duality and the results of section 3. By Proposition 4.1,
let

π = π̂′ ∼= L(a, δ([ναρ, να+mρ];σ))

as in section 3. We then let π0 and π1 be as in section 3.

First, observe that by duality and Lemma 3.1, we have

π̂1 ≤ δ([ν−α−mρ, να+mρ]) o π̂.

Further, by duality and Lemma 3.3,

π̂1 ≤ δ([να0ρ, να+mρ]) o π̂0.

Now, by duality and Lemma 3.6, we have µ∗(π̂0) contains no terms of the form

δ([ν−α−mρ, ν−
1
2ρ])⊗ θ

if α ≡ 1
2

mod 1, and no terms of the form δ([ν−α−mρ, ρ])⊗ θ if α ≡ 0 mod 1.

At this point, the same basic argument as in the proof of Theorem 3.7 may
be used to show that π̂ = π′ is nonunitary, as needed.
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