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Abstract. Normalized standard intertwining operators associated to an induced represen-
tation and its dual (dual in the sense ofAubert) arise in work on a conjecture ofArthur about
R-groups. The purpose of this paper is to address the question of relating the normalizing
factors used.

1. Introduction

This paper is on certain questions related to R-groups for p-adic groups.
First, let us recall the classical situation. Suppose G is a split connected reductive

p-adic group and P = MU a parabolic subgroup. For σ an irreducible square-inte-
grable representation of M , consider IndG

P (σ) (normalized induction). Associated
to IndG

P (σ) is the R-group, a subgroup of the Weyl group which governs the reduc-
ibility of this induced representation. More precisely, the normalized standard inter-
twining operators {A(σ, r) | r ∈ R} constitute a basis for HomG(IndG

P (σ), IndG
P (σ)).

Further, the action of these standard intertwining operators on the irreducible sub-
spaces of IndG

P (σ) is by representations of R, which can be rephrased in the form

traceA(σ, r)IndG
P (σ) =

∑

ρ∈R̂

traceρ(r)traceπ(ρ),

acting on C∞
c (G). (Here, π(ρ) is the component of IndG

P (σ) associated to ρ under
the identification of components of IndG

P (σ) with representations of R.)
Classically, the construction of the R-group relies on Plancherel measures,

whence the assumption σ square-integrable. In [A1], Arthur conjectured the exis-
tence of R-groups in certain situations where the inducing representation is not
square-integrable. The papers [J],[B2],[B3] deal with aspects of this conjecture,
and serve as the starting point for this paper.

The basic idea behind [B2],[B3] is to use the duality operator of [Au],[ScSt]
to construct one of the conjectured R-groups from a classical one ([J] relies on
the Iwahori-Matsumoto involution [IM] and is more specialized). More precisely,
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the R-group for IndG
P (σ) is used to construct an R-group for IndG

P (σ̂ ) under suit-
able hypotheses, where σ̂ denotes the dual to σ (in the sense of [Au],[ScSt]). This
R-group then has the desired properties.

The intertwining operators involved are normalized standard intertwining
operators. Neither [J] nor [B2],[B3] addresses the question of normalizing factors
directly. Instead, they use the fact that normalizations may be chosen so that the
normalized intertwining operators have certain useful properties, which are enough
to obtain the results wanted. In particular, no connection is drawn between the nor-
malizing factors for the induced representation and its dual. Such a connection is
the aim of this paper.

We now give a brief description of the contents, section by section. The next sec-
tion reviews some notation and background material. The third section introduces a
generalization of Plancherel measure to nontempered representations, based on the
behavior of standard intertwining operators. In the fourth section, we show that the
duality operator behaves well with respect to restriction to the derived subgroup,
using that fact to relate (generalized) Plancherel measures for a group to those for
its derived subgroup. This is used in the fifth section, where we discuss normali-
zation of standard intertwining operators. This section has the main result of the
paper, which essentially says that one can use the same normalizing factors whether
inducing from a representation or its dual (cf. Theorem 5.3).

2. Notation and preliminaries

In this section, we introduce notation and review some results which will be needed
in the rest of this paper.

Let F be a p-adic field and G the group of F -points of a connected reductive
group which splits over F . We fix a maximal split torus A∅ of G and a minimal
parabolic subgroup P∅ which has A∅ as its split component. We let W = W(G/A∅)
denote the Weyl group of G with respect to A∅.

Let � denote the set of roots of G with respect to A∅. The choice of P∅ deter-
mines the set of positive roots (resp., negative roots, simple roots), which we denote
by �+ (resp., �−, �).

Let P = MU be the standard parabolic subgroup corresponding to � ⊂ � and
A the split component of M . Write X(M)F for the F -rational characters of M . Let

a = a� = Hom(X(A)F , R) = Hom(X(M)F , R)

be the real Lie algebra of A and

a∗ = a∗
� = X(A)F ⊗Z R = X(M)F ⊗Z R

its dual ([H-C], §7; [S2], §0.5). Each element χ ∈ X(A) corresponds to a unique
element of a∗, called the associated weight. Set a∗

C
= a∗ ⊗ C. There is a homo-

morphism ([H-C], §7) H� = HM : M → a such that

q〈χ,HM(m)〉 = |χ(m)|
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for all m ∈ M, χ ∈ X(M)F . Given ν ∈ a∗, let us write

exp ν = q〈ν,HM(·)〉

for the corresponding character.
Fix a W -invariant inner product on a∅ and use this inner product to identify a∗

∅
and a∅ ([S2], §0.5). By restriction, we obtain the inner product on a and we identify
a∗ and a. In this manner, the natural projection a∗

∅ → a∗ gives rise to the inclusion

i : a∗ ↪→ a∗
∅.

If ν ∈ a∗, we use the same letter ν to denote i(ν) ∈ a∗
∅. Then

〈ν, H∅(a)〉 = 〈ν, H�(a)〉 for all a ∈ A∅.

We use iG,M to denote the functor of normalized parabolic induction ([BeZ]):
if (σ, V ) is a smooth representation of M , then (iG,M(σ ), iG,M(V )) is the rep-
resentation of G parabolically induced from (σ, V ). Similarly, rM,G denotes the
normalized Jacquet functor. For an irreducible representation π of G, we write π̂

(or DG(π)) for the dual of π in the sense of [Au],[ScSt]. This extends to an operator
on the Grothendieck group of smooth, finite-length representations (for which we
use the same notation).

Let �P ⊂ a∗ denote the set of simple roots corresponding to the pair (P, A).
Set

a∗
− = {x ∈ a∗ | (x, α) < 0 for all α ∈ �P }.

We recall the Langlands classification for p-adic groups (cf. [S1], [BoW]). This
version is closer to that of [S1], though we work in the subrepresentation setting
rather than the quotient setting.

Theorem 2.1. (the Langlands classification)

(1) Let P = MU be a standard parabolic subgroup of G, τ an irreducible tempered
representation of M and ν ∈ a∗−. Then the induced representation iG,M(exp ν⊗
τ) has a unique irreducible subrepresentation, which we denote by L(P, ν, τ ).

(2) Let π be an irreducible admissible representation of G. Then there exists a
unique triple (P, ν, τ ) as in (1) such that π = L(P, ν, τ ).

Suppose that σ is an irreducible admissible representation of M and w ∈ W

such that w(�) ⊂ �. Set

Uw = U∅ ∩ wU−w−1,

U−
w = w−1Uww = w−1U∅w ∩ U−.

The standard intertwining operator A(ν, σ, w) is formally defined by

A(ν, σ, w)f (g) =
∫

Uw

f (w−1ug)du,
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where ν ∈ a∗
C

, f ∈ ViG,M(exp ν⊗σ) and g ∈ G (see [B2], [Sh1], [GSh] for a
more detailed discussion). It converges absolutely for the real part of ν in a certain
chamber and

ν �→ A(ν, σ, w)

has analytic continuation as meromorphic function of ν ∈ a∗
C

(cf. [A2]).
We let ρP denote half the sum of the positive roots associated to U .

Theorem 2.2. (Harish-Chandra, cf. page 182, [H-C]] Let σ be an irreducible tem-
pered representation of M . Then there is a complex number µ(ν, σ, w) so that

A(ν, σ, w)A(wν, wσ, w−1) = µ(ν, σ, w)−1γ 2
w(G/P ),

where

γw(G/P ) =
∫

U−
w

q〈2ρP ,HP (ū)〉dū.

Moreover, ν �→ µ(ν, σ, w) is meromorphic on a∗
C

and holomorphic and nonnega-
tive on the unitary axis ia∗.

µ(ν, σ, w) is called the Plancherel measure associated to ν, σ, w.
The following result will be used to deal with factorizations of intertwining

operators in section 5. It is Lemma 2.1.2 and its corollary from [Sh1] and Corollary
6.3 from [B2]. As in those papers, if � ⊂ �, we let �� be the set of roots in �

which lie in the linear span of �. Letting �(�) denote the roots of (P�, A�), we
have �(�) = {α|A� | α ∈ � − ��}. Given α ∈ �(�), we let

[α] = {β ∈ � − �� | β|A� = αA�}.
We now state the lemma:

Lemma 2.3. Suppose �, �′ ⊂ � are associate. Take w ∈ W(�, �′) = {w ∈
W | w · � = �′}. Then, there exists a family of subsets �1, . . . , �n+1 ⊂ � such
that the following are satisfied:

(1) �1 = � and �n+1 = �′.
(2) Fix 1 ≤ i ≤ n; then there exists a root αi ∈ � \ �i such that �i+1 is the

conjugate of �i in �i = �i ∪ αi .
(3) Letting wl,� denote the longest element of the Weyl group of M�, set wi =

wl,�i
wl,�i

in W(�i, �i+1) for 1 ≤ i ≤ n. Then w = wn · · · w1. (We note
that any such decomposition has n = |�r(�, �′, w)|–cf. (5) below.)

(4) A(ν, σ, w) = A(νn, σn, wn) · · · A(ν1, σ1, w1), where ν1 = ν, σ1 = σ , νi =
wi−1(νi−1) and σi = wi−1(σi−1) for 2 ≤ i ≤ n.

(5) Let �+
r (�) be the set of all reduced roots in �+(�) = �(�) ∩ �+. Let

�r(�, �′, w) = {[β] ∈ �+
r (�) | β ∈ �+ − �+

�, w(β) ∈ �−}.
Fix w = wn · · · w1 as in (3), and let α1, . . . , αn ∈ � be the corresponding
simple roots. Then

[βi] = w−1
1 · · · w−1

i−1([αi]), 1 ≤ i ≤ n,

are all distinct elements of �r(�, �′, w). Furthermore, given [β] ∈ �r(�,

�′, w), there exists an i, 1 ≤ i ≤ n, such that [β] = w−1
1 · · · w−1

i−1([αi]).
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3. Plancherel measures for nontempered representations

In this section, we extend the notion of Plancherel measure and obtain a formula like
that of Theorem 2.2, but valid more generally. We then relate these (generalized)
Plancherel measures to those of representations having the same supercuspidal
support.

We remark that Plancherel measures for nontempered representations were con-
sidered in section 3 of [Sh2] (for σ unitary and generic). While we use a different
definition, in light of Theorem 3.2 below and the corresponding result in [Sh2],
our Plancherel measure must be the same as his when both are defined. (While
Shahidi’s extension of Plancherel measure has been quite useful, we do not know
whether our extension has applications beyond those considered here.)

Let σ be an irreducible representation of M = M�. By the Langlands classifi-
cation (Theorem 2.1), there exist Langlands data (P0 ∩ M, ν0, σ0) such that

σ = L(P0 ∩ M, ν0, σ0).

Let �0 be the set of simple roots corresponding to P0. Denote a∗
�0

by a∗
0. Then

a∗ ⊆ a∗
0. We have ν0 ∈ (a∗

0)−.
Let w ∈ W satisfy w(�) ⊂ �. Then w(�0) ⊂ �. We have

U� =
∏

α∈�+−�+
�

Uα, U−
� =

∏

α∈�−−�−
�

Uα,

U�0 =
∏

α∈�+−�+
�0

Uα, U−
�0

=
∏

α∈�−−�−
�0

Uα,

where �� (resp., ��0 ) denotes the subset of roots in the linear span of � (resp.,
�0). The conditions w(�) ⊂ � and w(�0) ⊂ � imply w(�+

�) ⊂ �+ and
w(�+

�0
) ⊂ �+. It follows that

Uw = (U0)w =
∏

α∈�+
w(α)<0

Uw(−α).

Lemma 3.1. Let ν ∈ a∗
C

⊆ (a∗
0)C. Then

exp ν ⊗ iM,M0(σ0) ∼= iM,M0(exp ν ⊗ σ0).

Proof. This is just a rephrasing of Proposition 1.9 (f) of [BeZ]. ��
It follows from Lemma 3.1 that exp ν ⊗ σ is a subrepresentation of iM,M0

(exp(ν0 + ν) ⊗ σ0) and therefore the standard intertwining operator A(ν, σ, w) is
the restriction of A(ν0 + ν, σ0, w), i.e.,

A(ν, σ, w) = A(ν0 + ν, σ0, w)|iG,M(V ),

where V denotes the subspace of the space of iM,M0(exp(ν0 +ν)⊗σ0) correspond-
ing to exp ν ⊗ σ . According to Theorem 2.2, we have

A(ν0 + ν, σ0, w)A(w(ν0 + ν), wσ0, w
−1) = µ(ν0 + ν, σ0, w)−1γ 2

w(G/P0).
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We define

µ(ν, σ, w) = µ(ν0 + ν, σ0, w)

and call µ(ν, σ, w) the Plancherel measure associated to ν, σ, w. We remark that
by the same arguments in [Sh2], µ(ν, σ, w) is independent of the choice of repre-
sentative for w and the choice of measures; since the Langlands data are unique,
µ(ν, σ, w) is well-defined.

Theorem 3.2. Let σ be an irreducible admissible representation of M . Then

A(ν, σ, w)A(wν, wσ, w−1) = µ(ν, σ, w)−1γ 2
w(G/P )

and ν �→ µ(ν, σ, w) is meromorphic on a∗
C

.

Proof. Theorem 2.2 implies

A(ν, σ, w)A(wν, wσ, w−1) = µ(ν, σ, w)−1γ 2
w(G/P0).

It follows from Uw = (U0)w that γw(G/P0) = γw(G/P ). ��
Let τ be an irreducible admissible representation of M = M�. If τ0 is an irre-

ducible supercuspidal representation of a standard Levi subgroup M0 ≤ M such
that τ occurs as a subquotient of iM,M0(τ0), we say that (τ0, M0) is in the supercu-
spidal support of τ . We note that two irreducible representations of M either have
the same supercuspidal support or their supercuspidal supports are disjoint.

Let � and �0 be the sets of simple roots corresponding to M and M0, respec-
tively. Let W� = W(M/A∅) denote the Weyl group of M = M� with respect to
A∅. Set

W�(�0) = {w ∈ W� | w(�0) = �0}.
Theorem 3.3. Suppose that σ and σ ′ are irreducible admissible representations of
M with the same supercuspidal support. Let w ∈ W such that w(�) ⊂ �. Then,

µ(ν, σ ′, w) = µ(ν, σ, w),

for all ν ∈ a∗
C

.

Proof. Let σ0 be a supercuspidal representation of M0 such that σ is a subrepresen-
tation of iM,M0(exp ν0 ⊗ σ0). According to [C], Corollary 7.2.2, there exists w0 ∈
W�(�0) such that σ ′ is equivalent to a subrepresentation of iM,M0(w0(exp ν0 ⊗
σ0)).

Let w′
0 = ww0w

−1. In the same way as in the proof of Lemma 7.1 [B1], we
obtain

ww0 = w′
0w, (1)

w0w
−1 = w−1w′

0, (2)

l(ww0) = l(w) + l(w0), (3)
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l(w′
0w) = l(w′

0) + l(w), (4)

l(w0w
−1) = l(w0) + l(w−1), (5)

l(w−1w′
0) = l(w−1) + l(w′

0). (6)

The basic idea of the proof is similar to that of the proof of Lemma 7.1 [B1]. Let
ν ∈ a∗

C
. It follows from (1) that

A(ν + ν0, σ0, w
′
0w) = A(ν + ν0, σ0, ww0). (7)

Using properties of standard intertwining operators, (3) and (4) then imply

A(w(ν + ν0), wσ0, w
′
0)A(ν + ν0, σ0, w)

= A(w0(ν + ν0), w0σ0, w)A(ν + ν0, σ0, w0). (8)

Similarly, (2), (5) and (6) imply

A(ν + ν0, σ0, w0)A(w(ν + ν0), wσ0, w
−1)

= A(ww0(ν + ν0), ww0σ0, w
−1)A(w(ν + ν0), wσ0, w

′
0). (9)

According to Theorem 3.2,

A(ν, σ, w)A(wν, wσ, w−1) = µ(ν, σ, w)−1γ 2
w(G/P ). (10)

Since σ is a subrepresentation of iM,M0(exp ν0 ⊗ σ0), the standard intertwining
operator A(ν, σ, w) is the restriction of A(ν + ν0, σ0, w) and

A(ν + ν0, σ0, w)A(w(ν + ν0), wσ0, w
−1) = µ(ν + ν0, σ, w)−1γ 2

w(G/P ). (11)

Now, using (11), (8) and (9), we have

A(w(ν + ν0), wσ0, w
′
0)µ(ν, σ, w)−1γ 2

w(G/P )

= A(w(ν + ν0), wσ0, w
′
0)A(ν + ν0, σ0, w)A(w(ν + ν0), wσ0, w

−1)

= A(w0(ν + ν0), w0σ0, w)A(ν + ν0, σ0, w0)A(w(ν + ν0), wσ0, w
−1)

= A(w0(ν + ν0), w0σ0, w)A(ww0(ν + ν0), ww0σ0, w
−1)

A(w(ν + ν0), wσ0, w
′
0)

= µ(w0(ν + ν0), w0σ0, w)−1γ 2
w(G/P )A(w(ν + ν0), wσ0, w

′
0). (12)

We conclude that

µ(ν, σ, w) = µ(w0(ν + ν0), w0σ0, w) (13)

for all ν such that A(w(ν + ν0), wσ0, w
′
0) is holomorphic, and by analytic con-

tinuation, for all ν ∈ a∗
C

. Since σ ′ is a subrepresentation of iM,M0(w0(exp ν0 ⊗
σ0)), the standard intertwining operator A(ν, σ ′, w) is the restriction of A(ν +
w0ν0, w0σ0, w). Therefore,

µ(ν, σ ′, w) = µ(ν + w0ν0, w0σ0, w)
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and (13) implies

µ(w0ν, σ ′, w) = µ(ν, σ, w).

Finally, since w0 ∈ W� and ν ∈ a∗
C

, we see that w0 · ν = ν (noting that it does not
matter whether ν is viewed as an element of a∗

C
or (a0)

∗
C

as far as this equality is
concerned.) The theorem follows. ��

Remark 3.4. If σ0 is a supercuspidal representation of M0 such that σ ↪→ iM,M0σ0,
then the proof of the lemma tells us w0 can be any element of W�(�0) such that
σ ′ ↪→ iM,M0(wσ0).

4. Derived subgroups of reductive groups

The normalization of standard intertwining operators we use is based on the results
of [KnSt], who work in the setting of semisimple groups. We would like to work
in the generality of reductive groups; the results in this section allow us to do so.
Our strategy is to reduce to the semisimple case via the derived subgroup.

We begin by introducing some notation. Let G′ denote the derived group, which
is semisimple. Without loss of generality, we may take �, �+, �, W to be the same
for G′ as G. If � ⊂ � has the associated standard parabolic subgroup P = MU ,
we let

P ′ = P ∩ G′, M ′ = M ∩ G′, etc.

(n.b.: P ′ is not the derived subgroup of P , etc.). Then, P ′ = M ′U ′ is (the Levi
factorization of) the standard parabolic subgroup of G′ associated to �. Further,
one has U ′ = U . (We note that this seems to be well-known–cf. p. 385 [T], e.g. In
any case, at the Lie algebra level, it is a fairly easy consequence of g = g′ ⊕ z and
[H, X] = α(H)X ∈ g′ for H ∈ LieA and X ∈ LieU in the root space for α.)

Suppose σ is an irreducible admissible representation of M and ν ∈ a∗
C

. We let
ν′ = ν|a′ (a′ = a ∩ g′) and choose σ ′ ⊂ ResM

M ′σ irreducible (by Lemma 2.1 [T],
ResM

M ′σ decomposes as a finite direct sum). If w ∈ W such that w(�) ⊂ �, we let

c(ν, σ, w) = µ−1(ν, σ, w)γ 2
w(G/P )

and

c(ν′, σ ′, w) = µ−1(ν′, σ ′, w)γ 2
w(G′/P ′).

We have the following:

Proposition 4.1. c(ν, σ, w) = c(ν′, σ ′, w).

Proof. First, we claim

ResG
G′(IndG

P (exp ν ⊗ σ)) ∼= IndG′
P ′ (ResM

M ′(exp ν ⊗ σ)).



Duality and the normalization of standard intertwining operators 409

This is a straightforward generalization of Lemma 1.1 [T]. The left-hand side acts
on (the smooth vectors of)

V = {f : G → Vσ | f ′(pg) = δ
1
2 (p)(exp ν ⊗ σ)(p)f (g)}

by right translations. The right-hand side acts on (the smooth vectors of)

V ′ = {f ′ : G′ → Vσ | f ′(p′g′) = δ
1
2 (p′)(exp ν ⊗ σ)(p′)f (g′)}

(noting that δ = δ′ on P ′). The map

E : V −→ V ′
f �−→ f |G′

gives the equivalence of the representations.
We now claim E behaves well with respect to standard intertwining operators.

To make this precise, let π = IndG
P (exp ν ⊗σ) and π ′ = IndG′

P ′ (exp ν′ ⊗σ ′). It fol-
lows from the preceding discussion that π ′ is a subrepresentation of ResG

G′π which
may be realized on the subspace Vπ ′ ⊂ V , where Vπ ′ = {f ∈ V | image(f |G′) ⊂
Vσ ′ }. Let Eπ ′ = E ◦ projVπ ′ . Then, an easy calculation (noting U = U ′) gives

A(ν′, σ ′, w)Eπ ′ = Eπ ′
w

A(ν, σ, w),

where π ′
w = IndG′

P ′
w
(w(exp ν′ ⊗ σ ′)) and P ′

w is the standard parabolic subgroup

with Levi factor w(M) (a G′-subrepresentation of πw = IndG
Pw

(w(exp ν ⊗ σ)).
Finally, since

A(ν′, σ ′, w)A(wν′, wσ ′, w−1) = c(ν′, σ ′, w)I,

we have

A(ν′, σ ′, w)A(wν′, wσ ′, w−1)Eπ ′
w

= c(ν′, σ ′, w)Eπ ′
w
.

On the other hand,

A(ν′, σ ′, w)A(wν′, wσ ′, w−1)Eπ ′
w

= Eπ ′
w

A(ν, σ, w)A(wν, wσ, w−1)

= Eπ ′
w
c(ν, σ, w)I

= c(ν, σ, w)Eπ ′
w
.

The proposition follows. ��

Remark 4.2. It follows from the preceding proposition that c(ν′, σ ′, w) does not
depend on the particular σ ′ ⊂ ResM

M ′σ used.

Lemma 4.3. The duality operators DG, DG′ satisfy

ResG
G′ ◦ DG = DG′ ◦ ResG

G′

(where the equalities hold in the Grothendieck group).
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Proof. We begin by observing that

ResM
M ′ ◦ rM,G

∼= rM ′,G′ ◦ ResG
G′

(an easy verification, noting U ′ = U ) and

ResG
G′ ◦ iG,M

∼= iG′,M ′ ◦ ResM
M ′

(cf. proof of Proposition 4.1). We now calculate:

ResG
G′ ◦ DG =

∑

�⊂�

(−1)|�|ResG
G′ ◦ iG,M� ◦ rM�,G

=
∑

�⊂�

(−1)|�|iG′,M ′
�

◦ ResM�

M ′
�

◦ rM�,G

=
∑

�⊂�

(−1)|�|iG′,M ′
�

◦ rM ′
�,G′ ◦ ResG

G′

= DG′ ◦ ResG
G′ ,

as needed. ��
The preceding lemma tells us that (̂σ ′) is a suitable choice for (σ̂ )′. Since σ̂ and

σ have the same supercuspidal support, Theorem 3.3 implies the following:

Corollary 4.4.

c(ν, σ̂ , w) = c(ν, σ, w).

5. Normalizing factors

In this section, we relate normalizing factors for the intertwining operators under
consideration. Our approach is based on that of [KnSt], which constructs the nor-
malizing factor directly from the Plancherel measure. This has the advantage that we
can relate Plancherel measures associated to induced representations and their duals
under [Au], [ScSt]. (While it would be nice to do the normalizations via L-functions
as in [Sh2], this would require being able to track the data needed to calculate L-
functions through the duality operator–a difficult task.) We will normalize standard
intertwining operators for σ an arbitrary irreducible unitary representation. (We
remark that we want σ unitary since both parts of Lemma 5.1 below are needed to
apply the results of [KnSt]). Our normalized standard intertwining operators will
have the following properties, the first of which is crucial to the results in [B3]:

(1) A(w1ν, w1σ, w2)A(ν, σ, w1) = A(ν, σ, w2w1)

(2) A(ν, σ, w)∗ = A(−wν̄, wσ, w−1) (where ∗ denotes adjoint and σ assumed
unitary)

for suitable w, w1, w2 (cf. Theorem 5.3). We now give some properties of the func-
tions c(ν, σ, w), which are defined as in section 4:

c(ν, σ, w) = µ−1(ν, σ, w)γ 2
w(G/P ).
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Lemma 5.1. c(ν, σ, w) has the following properties:

(1) c(ν, σ, w) = c(−ν̄, σ, w)

(2) If σ is unitary, c(ν, σ, w) ≥ 0 for ν ∈ ia∗
R.

Proof. Recall that (cf. Proposition 2.4.2 [Sh1])

A(ν, σ, w)∗ = A(−wν̄, wσ, w−1) (14)

and

A(ν, σ, w)A(wν, wσ, w−1) = c(ν, σ, w)I. (15)

We now just follow the proof of Proposition 27, [KnSt], properties (iv) and (v),
page 528. From (15) and (14), we have

c(ν, σ, w)I = A(ν, σ, w)A(wν, wσ, w−1) = A(ν, σ, w)A(−ν̄, σ, w)∗,

so c(ν, σ, w) ≥ 0 for ν purely imaginary. Apply ∗ to (15) to get

c(ν, σ, w)I = A(−ν̄, σ, w)A(−wν̄, wσ, w−1) = c(−ν̄, σ, w)I.

It follows that

c(ν, σ, w) = c(−ν̄, σ, w). ��
We now turn to the construction of normalizing factors. Here, we restrict our

attention to the case where σ is unitary (and where appropriate, σ̂ unitary). First,
suppose G is semisimple and P = MU is a maximal parabolic subgroup (so
dim(AM/AG) = 1). Then, a is one-dimensional, so ν ∈ a∗

C
is effectively a complex

number. By the preceding lemma, the hypotheses of Lemma 36 [KnSt] are satisfied
for c(ν) = c(ν, σ, w). Thus we obtain a normalizing factor γ (ν) = γ (ν, σ, w) as
in Lemma 36 and Proposition 37 [KnSt]. (More precisely, it is γ −1(ν, σ, w) which
is used for normalizations–cf. Theorem 5.3.) The normalizing factors satisfy

γ (−ν̄, σ, w)γ (ν, σ, w) = c(ν, σ, w)

and

γ (wν, wσ, w−1) = γ (−ν̄, σ, w).

We note that since c(ν, σ̂ , w) = c(ν, σ, w) (an immediate consequence of Theorem
3.3), we may choose

γ (ν, σ̂ , w) = γ (ν, σ, w).

Next, suppose G is no longer assumed to be semisimple, but is allowed to be
reductive (with dim(AM/AG) = 1). In light of Proposition 4.1, we take

γ (ν, σ, w) = γ (ν′, σ ′, w).
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Corollary 4.4 then allows us to conclude that

γ (−ν̄, σ, w)γ (ν, σ, w) = c(ν, σ, w),

γ (wν, wσ, w−1) = γ (−ν̄, σ, w),

and

γ (ν, σ̂ , w) = γ (ν, σ, w).

Finally, suppose P = MU has dim(AM/AG) > 1. By Lemma 2.3, we have
the decomposition

A(ν, σ, w) = A(νn, σn, wn) . . . A(ν1, σ1, w1). (16)

We define γ (ν, σ, w) via a corresponding product of normalizing factors:

γ (ν, σ, w) = γ (νn, σn, wn) . . . γ (ν1, σ1, w1).

To define γ (νi, σi, wi), observe that the intertwining operators appearing in (16)
have the form

A(νi, σi, wi) = iG,Mi
(AMi

(νi, σi, wi)),

where Mi = M�i
as in Lemma 2.3. Since dim(Awi−1...w1(M)/AMi

) = 1, we may
define

γ (νi, σi, wi) = γMi
(νi, σi, wi) (17)

(noting that it is not difficult to show, using Theorem 3.2, that c(νi, σi, wi) =
cMi

(νi, σi, wi)). It remains to check that γ (ν, σ, w) is well-defined. We do so in
the following lemma:

Lemma 5.2. Suppose �, �′ ⊂ � are associate. Take w ∈ W(�, �′). Fix a decom-
position w = wn · · · w1 as in Lemma 2.3. Define

γ (ν, σ, w) = γ (νn, σn, wn) · · · γ (ν1, σ1, w1).

Then γ (ν, σ, w) does not depend on the particular decomposition w = wn · · · w1,

i.e., it is well-defined.

Proof. Let α1, . . . , αn ∈ � be the corresponding set of simple roots. Fix αi , 1 ≤
i ≤ n. Let [βi] be as in (5) of Lemma 2.3. Suppose w = w′

n′ · · · w′
1 is another

decomposition of w and α′
1, . . . , α

′
n′ ∈ �+ the corresponding set of simple roots.

Let α′
j be the simple root corresponding to [βi] under Lemma 2.3 (5). Set

x = wi−1 · · · w1, x′ = w′
j−1 · · · w′

1.

Then �′
j = x′x−1(�i), σ ′

j = x′σ = x′x−1σi and ν′
j = x′ν = x′x−1νi . It follows

that

γM�i
(νi, σi, wi) = γM�′

j

(ν′
j , σ

′
j , w

′
j ).

Doing this for each i, we see that n ≤ n′; working the same way from w′
n′ · · · w′

1
gives n ≥ n′. Thus n = n′, and the lemma follows. ��
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Observe that we also have

c(ν, σ, w) = c(νn, σn, wn) . . . c(ν1, σ1, w1)

(an easy consequence of Lemma 2.3 and Theorem 3.2). It then follows from the
corresponding properties in the case dim(AM/AG) = 1 that

γ (−ν̄, σ, w)γ (ν, σ, w) = c(ν, σ, w), (18)

and

γ (wν, wσ, w−1) = γ (−ν̄, σ, w). (19)

Theorem 5.3. Suppose σ, σ̂ are both unitary. The normalizing factors γ (ν, σ, w)

defined above satisfy
γ (ν, σ̂ , w) = γ (ν, σ, w).

The normalized standard intertwining operators

A(ν, σ, w) = γ −1(ν, σ, w)A(ν, σ, w)

have the following properties:

(1) A(ν, σ, w)∗ = A(−wν̄, wσ, w−1) for w ∈ W(�, �′)
(2) A(w1ν, w1σ, w2)A(ν, σ, w1) = A(ν, σ, w2w1) for w1 ∈ W(�, �′) and

w2 ∈ W(�′, �′′),

where �, �′, �′′ are associate.

Proof. We first show that γ (ν, σ, w) = γ (ν, σ̂ , w). We have

γ (ν, σ, w) = γMn(νn, σn, wn) . . . γM1(ν1, σ1, w1).

The same argument tells us

γ (ν, σ̂ , w) = γMn(νn, σ̂n, wn) . . . γM1(ν1, σ̂1, w1).

Since dim(Awi−1...w1(M)/AMi
) = 1, we know that

γMi
(νi, σi, w1) = γMi

(νi, σ̂i , wi).

From this, we see that

γ (ν, σ, w) = γ (ν, σ̂ , w).

The arguments needed for (1) and (2) are well-known (e.g., cf. [A2],[Sh2]); we
include them for completeness. We begin with (1). In the case dim(AM/AG) = 1,
(1) follows from (14) and the identity γ (wν, wσ, w−1) = γ (−ν̄, σ, w). In general,

A(ν, σ, w)∗ = [A(νn, σn, wn) . . . A(ν1, σ1, w1)]
∗

= A(ν1, σ1, w1)
∗ . . . A(νn, σn, wn)

∗

= A(−w1ν̄1, w1σ1, w
−1
1 ) . . . A(−wnν̄n, wnσn, w

−1
n ).
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Now, observe that since σn = wn−1 . . . w1σ , we have wnσn = wσ , and simi-
larly for −wnν̄n. Therefore, since w−1 = w−1

1 . . . w−1
n is a decomposition of w−1

satisfying Lemma 2.3, we have

A(ν, σ, w)∗ = A(−wν̄, wσ, w−1),

as needed.
We now turn to (2). First, suppose w = w1 ∈ W(�, �′) and u = w2 ∈

W(�′, �′′) such that u is what might be called a generalized simple reflection–i.e.,
there exists an α ∈ � − �′ with �′′ the conjugate of �′ in � = �′ ∪ {α}, conju-
gate by u = wl,�wl,�′ . If l(uw) = l(u) + l(w), the results follows immediately
from the multiplicativity property for unnormalized standard intertwining opera-
tors (Lemma 2.3 (3)) and that for the normalizing factors (an easy consequence of
Lemma 5.2). If not, we have l(u−1) + l(uw) = l(w). Then,

A(uwν, uwσ, u−1)A(ν, σ, uw) = A(ν, σ, w).

Therefore,

A(wν, wσ, u)A(uwν, uwσ, u−1)A(ν, σ, uw) = A(wν, wσ, u)A(ν, σ, w).

Now, it follows from Theorem 3.2 and (18),(19) that

A(wν, wσ, u)A(uwν, uwσ, u−1) = I.

Thus,

A(ν, σ, uw) = A(wν, wσ, u)A(ν, σ, w),

as needed. The general case follows. ��

Remarks 5.4. (1) The preceding theorem tells us the normalizations used are suit-
able for [B3]. In particular, section 6 [B3] tells us that if σ, σ̂ unitary have
normalized standard intertwining operators satisfying (2) of Theorem 5.3, then
Ind(σ ) having an R-group (in a sense made precise in [B3]) implies the same
for Ind(σ̂ ). (E.g., if σ is assumed to be square-integrable, then Ind(σ ) automat-
ically has such an R-group, hence so does Ind(σ̂ ).) Theorem 5.3 tells us that
the intertwining operators for Ind(σ ) and Ind(σ̂ ) may be normalized using the
same normalizing factor.

(2) The preceding theorem shows that our normlizations satisfy the properties con-
jectured by Langlands in [L]. These correspond to the properties in Theorem 7.9
[Sh2] and properties (R2),(R4) in [A2]. Our normalizations also stasfy (R1) and
(R3) of [A2] ((R1) is automatic; (R3) follows from equation (17) and our con-
struction of normalizing factors). Since we work only with standard parabolic
subgroups, we do not need to worry about (R5) of [A2]. (R6) is for archimedean
places; the status of (R7) and (R8) is not clear at this time.
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