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A B S T R A C T  

We give the Langlands classification for a non-connected reductive quasi- 
split p-adic group G, under the assumption that G/G ° is abelian (here, G o 
denotes the connected component of the identity of G). The Langlands 
classification for non-connected groups is an extension of the Langlands 
classification from the connected case. 

1. I n t r o d u c t i o n  

Suppose  G is the  F - p o i n t s  of a connected,  reduct ive  group defined over a nonar-  

ch imedean  local field F .  The  Langlands  classif icat ion (cf. [S], [B-W]) gives a 

bi ject ive cor respondence  
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between irreducible, admissible representations of G and triples of Langlands 

data. In this paper, we extend the Langlands classification to cover the case 

where G is the F-points  of a non-connected, quasi-split, reductive group over F,  

subject to the condition G/G ° is finite and abelian (finiteness being automatic,  

cf. 7.3 [Hu]). The result is given as Theorem 4.2. 

The Langlands classification was originally done in the context of connected 

real groups (cf. [L]). This has been extended to non-connected real groups in 

[M]. In [M], the Langlands classification is essentially reproven under weaker 

hypotheses. Our approach is different--our results do not contain the connected 

case as a special case, but rather they use the connected case as a starting point. 

In particular, following the lead of [Go], [Go-H], we use a lemma of [G-K] to move 

from the connected case to the non-connected case. 

Let us now give a rough idea of how the proof goes. For simplicity, let us 

assume G/G ° has prime order and G = G O >~ C, C the component group. We 

take representatives for C which stabilize the Borel subgroup of G °. Let 7r be 

an irreducible admissible representation of G and 7r0 an irreducible (admissible) 

representation of G o with 7to C Res~o(~r). We shall describe how to use the 

Langlands data  for 7r0 to obtain Langlands data  for 7r. Write 7r0 = L(P, v, T), 
where (P, v, T) is the Langlands data  for 7r0. We note that  P = MU is a parabolic 

subgroup of G, v E a*_ (a = Lie(A), where A is maximal split torus in the center 

of M),  and T is an irreducible, tempered representation of M. It  is worth noting 

that  we work in the subrepresentation setting of the Langlands classification, 

hence the presence of a*_ rather than a* (See Remark 4.2 for a discussion of the + .  

Langlands classification in the quotient setting.) For this discussion, let us write 

M ° instead of M, thereby freeing us to use M for its (possibly non-connected) 

counterpart  in G. 

At this point, there are two possibilities: either Res~o(zr) is reducible or 

irreducible. First, let us suppose it is reducible. By a corollary of a lemma 

from [G-K], given as Lemma 2.1 in this paper, we have 

Res~o(~-) = ~ c - 1 t o  
cEC 

and 
~ ) 7 1 " = I n  o C'71" 0 

for all c ~ C. Further, we note that  

c-lro = L(c. P,c.  v,c.  r) 
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for all c 6 C (cf. Proposition 4.5). Now, suppose c.  P ¢ P when c # 1. In this 

case, our definition of Langlands data  - -  and, more precisely, our definition of 

standard parabolic subgroups - -  singles out one parabolic subgroup from {c. P} 

(these are non-conjugate in G o but conjugate in G); call it c0" P.  The Langlands 

data for 7r is then co- (P, u, r) .  Next, suppose c. P = P for all c 6 C, but c. u ¢ u 

when c # 1. In this case, C acts on a*, subdividing a*_ into subchambers. Our 

definition of Langlands data  singles out one of these as negative. Then, there is 

a co 6 C such that  co • u lies in this subchamber. The Langlands data  for 7r is 

then co- (P, u, r) .  Finally, suppose c. P = P,  c. u = u for all c 6 C, but c. T ~ 7. 

In this case, it follows from the Lemma 2.1 that  

d M (  ) ~ T ' ,  In o 7 = 

with T' an irreducible representation of M = M ° ~ C. In this case, our Lang- 

lands data for zr is (P  ~ C, u, r ' ) .  We note that  it follows from Lemma 2.1 and 

Proposition 4.5 that  these three possibilities are the only possibilities which have 

Resgo (Tr) reducible. 

Now, we consider the case where Resaao (Tr) is irreducible. In this case, 

and 

Res~0(~) = u0 

IndGGo(Tr0) = ( ~  X'Tr 

~6G/G ° 

A 

where G/G ° consists of characters of G which are trivial on G °. For this to be 

the case, we must have c. P = P,  c. ~ = u, and c. r ~ 7- for all c 6 C (by Lemma 

2.1 and Proposition 4.5). In this case, it follows that  

IndMo(T) = ~ X ' T ' ,  

~ E M / M  ° 

where r '  is an irreducible component of IndMo (T). The Langlands data  for 7r is 

then (P  >~ C, u, X7') for an appropriately chosen Xr' .  

To deal with the case when G/G ° has order which is not prime, we take a 

filtration 

G °=G1 cG2c...CGk=G 

where Gi/Gi-1 has prime order. We can then use the above argument in an 

inductive fashion. Not surprisingly, the start ing point for this inductive argument 

is the Langlands classification in the case of connected groups. 
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We now discuss the results section by section. In the next section, we give 

notation and preliminaries. The third section discusses the parabolic subgroups 

needed. In the fourth section, we give the statement and proof of the Langlands 

classification for the non-connected groups under consideration. 

We make one additional remark. Part  of our interest in this project is its 

applications to O(2n, F). Because of certain structural similarities to Sp(2n, F) 
and SO(2n + 1, F)  (e.g., compare [T1] and [B]), many results which hold for 

these latter two families of classical groups should also hold for O(2n, F).  But, 

in order to capitalize on these similarities, some of the machinery which holds 

for connected groups must be extended to the non-connected case. One such 

piece of machinery is the Langlands classification, the subject of this paper. We 

note that  in order to make it as easy as possible to extend results such as IT2], 

[J1], etc., from Sp(2n, F), SO(2n + 1, F) to O(2n, F), it is advantageous to have 

the Langlands classification for O(2n, F)  in a form similar to that for Sp(2n, F),  

SO(2n + 1, F).  Therefore, at certain points in this paper where we need to make 

arbitrary choices (e.g., Xc and a*_(C) in section 3), we make the choice which 

makes it easiest to get this similar form. 

A brief discussion of the hypotheses is in order. Our results are based largely 

on the Langlands classification in the connected case ([B-W], IS]; our point-of- 

view is closer to [S]) and the results in section 2 [G-K]. Thus, since [B-W], [S] 

work in the context of reductive groups over nonarchimedean local fields and 

section 2 [G-K] works in the context of totally disconnected groups, we can allow 

chaff # O. On the other hand, while neither of these requires the group to be 

quasi-split, it is a convenient assumption for us: we then have a Borel subgroup 

and can choose representatives for GIG ° which fix the Borel subgroup (under 

conjugation), act on the simple roots, etc. 

ACKNOWLEDGEMENT: The authors would like to take this opportunity to thank 

Guy Henniart and the referee for valuable comments and corrections. 

2. Notat ion and preliminaries 

In this section, we introduce notation and give some background results. In 

particular, the main technical lemma (Lemma 2.1, a consequence of [G-K]) and 

the definition of tempered we need (Definition 2.5) are given in this section. 

Let F be a p-adic field and G the group of F-points of a quasi-split reductive 

algebraic group defined over F.  Let G o denote the connected component of the 
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identity in G. We shall assume that 

C = G / G  ° 

is a finite abelian group. 

In the group G °, fix a Borel subgroup P0 C G O and a maximal split torus 

A0 C PO. We let II denote the corresponding set of simple roots. For 4) C II, we 

let Po = Mo U~ denote the standard parabolic subgroup determined by 4). 

Let P = M U  C G o be a standard parabolic subgroup of G °, A the split 

component of the center of M, X ( M ) F  the group of F-rational characters of M. 

Let 

a = H o m ( X ( M ) F ,  ~) = Uom(X(A)F ,  ]~) 

be the real Lie algebra of A and 

a* = X ( M ) F  ®z ]~ = X ( A ) F  ®z ]~ 

its dual. There is a homomorphism (cf. [HI) HM: M ~ a such that 

= I x ( m ) l  

for all m • M,  X • X ( M ) F .  Given u • a*, let us write 

expl] : q@,HM(.)} 

for the corresponding character. 

Before we go into notation and basic definitions for G, we need to do a couple 

of things. First, we fix a choice of representatives for G / G  ° which stabilize the 

Borel subgroup, hence act on the simple roots. By abuse of notation, we use C 

for both the component group G/G ° and this set of representatives. Also, we 

want the inner product on a~ to be C-invariant. If the standard inner product 

(,)0: a~ x a~ ~ IR is not, we can replace it with ~c e C  c. {, )o, where c. (x,y)o = 

( c . x , c . y ) o  for x , y  • a~. 

Suppose that G1, G2 are subgroups of G, G o <_ G1 < G2 <_ G. We will use 

the notation iG2,a~ and rcl ,v2 for induction and restriction of representations: If 

(a, V) is an admissible representation of G1, then ic2,e~ (a) is the representation 

of G2 given by right translations on the space 

v '  = {1:G2 VI f (g lg)  = g e a.% gl • 

For an admissible representation 7r of G2, ral,c2(lr) = t r i g  I . 
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Set D = G2/G1. If 7rl is an irreducible representation of G1 and d E D, we 

define d. 7ra by 

d . 7c1(g) = ~rl ( (d')-] gd'), 

for all g E G1, where d' C G2 is a representative of d. The equivalence class of 

d.  7q does not depend on the choice of a representative d'. 

Le t /9  denote the set of all characters of D. If X C/9, then we can think of X 

as a character of G2 which is trivial on G1. According to [G-K] and [Go-H], we 

have the following properties of re ,  ,G2 (7r2). 

LEMMA 2.1: Suppose that D = Gz/G1 is of prime order. Then for any irre- 

ducible admissible representation 7r2 of G2, the representation rG1,G2 (7r2) is of 

multiplicity one. I f  Tq is an irreducible component of ral,G2(Tr2), then 7r is an 

admissible representation of G1 and either 

1. 

xEb 

with {X ® 7r2}~cD pairwise inequivalent, or 

2. 

rG1,G2(Tr2 ) = ( ~  d.  Trl, iG2,Gl (d" Trl ) ~- ~r2, Vd E D, 
dED 

where { d.  7rl }dED are pairwise inequivalent. 

Proo£" These claims follow from the results in section 2 [G-K] in essentially the 

same way that Lemmas 2.12 and 2.13 [Go-HI do. (The main difference here is 

that we are not assuming G1 = GO.) II 

To define supercuspidality (square-integrability, temperedness) of an 

irreducible representation lr of G, we will look at the components of rco aQr). In 

order for our definitions to make sense, we first need to establish certain proper- 

ties about Haar measure. 

Let # denote a Haar measure on G °. For c E C, we define 

(~toc)(S) : ~ t ( c S c - 1 ) ,  

for S C G O a measurable set. 

LEMMA 2.2: # o c = #. 

Proof: First, since # o c is invariant under left translations, it is a Haar measure 

on G °. Therefore, there exists a positive real number A such that # o c = A#. To 
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see that  )~ = 1, let K be a compact open subgroup of G °. Then 

El : N (dgd-1) 
dEC 

is an open compact subgroup of G °, and (p o c)(K1) -- #(K1). It follows that  

) ~ = 1 .  I 

Let Z denote the center of G o , c C C. For z C Z, an easy check tells us 

czc -1 C Z. Hence, cZc -1 = Z. If # denotes the quotient measure on G°/Z,  we 

may now define # o c as above. 

COROLLARY 2 .3 : /2  o c =/~. 

PROPOSITION 2.4: Let ~r be an irreducible representation of G °, c E C. Then 
7;, is square-integrable (resp., tempered) if and only if c .  7c is square-integrable 
(resp., tempered). 

Proof: Let V be the space of representation 7c, v E V, ~ E V. Let fv,~ denote 

the matrix coefficient of 7r associated to v and ~: 

fv, (a) = <.(a)v,  

for all g E a ° (cf. [C]). Then c. fv,~,, defined by c. f,,,o(g) = fv,~(c-lgc) for all 

g E G °, is a matrix coefficient of c .  7r. By the preceding corollary, 

/ao/z  lc" fv,~,12dP = fao/z  lfV,~,12d(p ° c) = fao/z  lf,,,~12dP. 

Thus c. f~,~ E L2(G°/Z) if and only if fv,~ E L2(G°/Z).  For temperedness, we 
just replace L 2 by L 2+e. I 

The following is now well-defined: 

Definition 2.5: Let ~r be an irreducible admissible representation of G. Let us 

call ~r s u p e r c u s p i d a l  (resp., s q u a r e - i n t e g r a b l e ,  t e m p e r e d )  if the components 

of rGo,G(rr) are supercuspidal (resp., square-integrable, tempered). 

Remark  2.1: In terms of matrix coefficients, we have essentially defined 7r to be 

supercuspidal (resp., square-integrable, tempered) if its matrix coefficients are 

compactly supported in G / Z  (resp., lie in L2(G/Z),  L~+~(G/Z)), where Z is the 

center of G °. This avoids certain problems which arise if the centers of G and 

G O are different (cf. [Go-H]). 
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3. P a r a b o l i c  s u b g r o u p s  

In this section, we introduce the standard parabolic subgroups of G which will 

be needed later (Definition 3.1). We also introduce the subchamber a*_(C) in 

the dual of the Lie algebra of A, which plays the same rote in the Langlands 

classification for G that a* plays in the Langlands classification for G °. 

Let P~ = M~U~ C G O be the standard parabolic subgroup of G O corresponding 

to • C H. Let 

C ( ~ ) = { c • C  F c . ~ = ~ } .  

We let 

M~,c(~) = (M~, C(~)), 

noting that our earlier abuse of notation allows us to interpret C(~) as a subset 

of the representatives for C. More generally, if D C C(~),  we let 

M,~,D = (M,~, D) 

(note that M~,I = M~). Suppose that M satisfies 

M~ _< M <_ M~,c(~) 

(such an M has the form M~,D). We will consider subgroups of the form P = 

MU -= M~,DU¢. We write P~,D = M~,DU~. Since M normalizes U, we can 

define functors iG,M and rM,G as in [B-Z]. If (a, W) is a smooth representation 

of M, we define the induced representation iG,M(a) as follows: The group G acts 

o n  

{f: G -+ W I f (umg) = 51/2(m)a(m)f(g), u e U, m • M, g • G} 

by the right translations 

(ng f ) (x )  : f (~g) ,  x ,g  • G; 

the smooth part of this representation is ia,M(a). If (~r, V) is a smooth repre- 

sentation of G, the representation rM,G(Tr) acts on the space 

where 

Vv=V/V(U), 

v ( u )  = spanc{~(u)v  - vl u e u, v e v } .  

The action of m E M on Vu is given by 

rM,c(~)(m)[v + v(u)] = ~;~l/2(m)[~(m)v + V(U)]. 
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The standard properties of the functors iG,M and rM,G are described in 

Proposition 1.9 [B-Z]. 

In G o , the standard parabolic subgroups are non-conjugate. We would like to 

arrange this for G as well. Observe that  for any c E C, we have 

c M ~ c  -1 ~ Mc.,~, , 

cC(O)c -1 = C(c. ~), 

so the groups M¢,c(¢) and Mc.¢,C(c.¢) are conjugate. Similarly, if Me _< M 

M~,c(¢), then M = Me,D, where D <_ C(0), and 

cMc -I  = Mc.~,~Dc-, <_ Mc.¢,c(~.¢). 

To arrange standard parabolic subgroups for G to be non-conjugate, we need 

to choose one group from among {Mc.~}cec, i.e., a representative of the set 

{c. O}c~C. 
Choose an ordering on the elements of II. Then, one has a lexicographic order 

on the subsets of II. (To be precise, if 01 = { i l l , . . .  ,ilk} and 02 = {71,. . .  ,?t} 

with ]31 > " ' "  > ! k  and 71 > "'" > 7t, we write 0 1 ~ 0 2 if ill > 71 or /~1  ~- 71 

and il2 > 72, etc. The absence of a root is lower than a root, so q} is minimal.) 

We define 

X c  = {0 C HI (I) is maximal among {c. O}ceC}. 

In particular, any • C II is conjugate in G to an element of Xc.  

Definition 3.1: Let P~ = McU¢ C G O be the standard parabolic subgroup of 

G O corresponding to (I) C II. We call P = MU~, where 

Me _~ M _< M¢,c(e  } 

and • E X c ,  a s t a n d a r d  parabol ic  s u b g r o u p  of G. 

Let P = MU be a standard parabolic subgroup of G. Write p0 = p n G O = 

M~U¢ and M = M¢,D. We denote the split component of Me by A. Let a be 

the real Lie algebra of A, and a* its dual. Let II(P°,A) C a* denote the set of 

simple roots corresponding to the pair (p0, A); these are the nonzero projections 

to a* of elements of II. 

If we identify a* with a subspace of a n, we get a C((I))-invariant inner product 

(, }: a* x a* --+ ~. As in [S], we set 

a* = {x E a*[ (x ,a)  < O, Va E II(P° ,A)} .  
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While elements of a* are not conjugate in G °, they may be conjugate in G. 

Therefore, we choose a subchamber of a*: 

a*_(c) = {x • a*l x ~_ c . x ,  Vc • c ( ~ ) } .  

Here -< is the lexicographic order inherited from the order on H: Write I I ( P  °, A) 

= {(~1,...,  c~j}, where a l  > "'" > oLj with respect to the order on H. Then x, x ~ • 

a* has x ~ x'  if (x,c~l/ < (x ' ,~ l )  or (x,(~l) = (x ' , a l )  and (x,~2/ < (x ' , (~) ,  etc. 

(If x and x ~ are equal with respect to -~, then x - x ~ is perpendicular to all the 

roots in H ( P  °, A).) We note that  a*(C) is convex. 

4. Langlands classification 

In this section, we give the statement and proof of the Langlands classification 

for G (Theorem 4.2). Also of some potential interest is Proposition 4.5, which 

essentially deals with the effects of the action of C on the Langlands da ta  of 

representations G O . 

Let 

Irr(G)  

denote the set of equivalence classes of all admissible irreducible representations 

of G. If ~ is an irreducible admissible representation of G, we write 7r C Irr(G),  

identifying 7r with its equivalence class. 

Definition 4.1: A se t  o f  L a n g l a n d s  d a t a  for G is a triple (P,v,T)  with the 

following properties: 

1. P = M U  is a standard parabolic subgroup of G. 

2. v E a * ( C ) .  

3. M = M¢,c(~,~), where C((I), u) = (c E C((~)] e- u = ,} .  

4. T • I r r ( M )  is tempered. 

The Langlands classification will be a subrepresentation form of [S] (extended 

to non-connected groups). In particular, we are taking v to be real rather  than 

complex. (This subrepresentation variation of the Langlands classification for 

connected p-adic groups is described in [J2], e.g.) 

For v • a*_(C), let exp, ,  be the character of M~ defined in Section 2. For 

M = M~,c(~,~), we extend e x p v  to M by setting 

exp ~(mc) = exp v(m),  
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m E M~, c E C(O, u). Since 

exp u(ml clm2c~) = exp u(mlclm2c71clc2) 

= exp (.  )exp(cl • 

-~ exp /2(ml Cl )exp P ( m 2 c 2 )  ' 

expu  is a character of M. Here we use Condition 3 from the definition of 

Langlands data. This condition may be seen in Definition 5.6 [M], and it en- 

sures that  exp u is a character of M. 

If ~- is a representation of M,  then exp u ® r is the representation of M defined 

by 

( xp. ® = 

THEOREM 4.2 (Langlands classification): There is a bijective correspondence 

L a n a ( a )  < I r r ( a ) ,  

where Lang(G) denotes the set of ali triples of Langlands data. b-hrther, i f  

(P, u, 7-) ~ 7r under this correspondence, then 7r is the unique irreducible subrep- 

resentation of iG,M (exp u ® T). 

If (P, u, 7-) ++ 7r, then we write 7r = L(P, u, T). 

The basic idea of the proof is as follows: suppose 

G O = Go C G1 C . . .  C Gk = G 

has IGi/Gi_ll prime for i = 1 , . . . , k .  We argue inductively, assuming the 

Langlands classification holds for Gi-1 and showing that  it holds for Gi. Starting 

the induction, of course, is the Langlands classification for connected groups. 

For convenience, let G1 C G2 be two consecutive groups in the filtration 

above (not necessarily the first two). Then G1/G ° = C1 and G2/G ° = C2 with 

C1 C C2 C C and IC2/Cll prime. 

LEMMA 4.3: Let (Pl,vl,7-1) E Lang(G1). Write pO = P¢'1. Fori  = 1,2, let 

Ci((]~l)  : (C • Vii C" ff~l ~--- ¢ 1 } ,  

Ci(01,ul)  = {c • C i l  c. ¢1 = 01 and c .u l  = Ul}, 

Ci(~?l, y l ,  7-1) - -  {c • Cil c .  (1)1 --  d21, c . / J l  -~ 121 a n d  c .  7-1 = T1 }. 

We have either 

1. = 

or 
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2. C2( . ) /C1(-)  ~ 6 2 / 6 1 ,  

where (.) denotes any of these (i.e., (~1), ((l}t,ut) or  ((I)I,Pl,T1)). 

Proof: Observe that C1(.) = C2(.) NCt.  If C2(-) C CI, then C2(.)/C1(.) = 1. 
Suppose C2(.) ~ C1. Then, C2(')/C1 (-) ¢ 1. Choose representatives c~1),..., c~ k) 

~(J)r, for C2(')/C1('). We claim that for i ~ j ,  c(i)C1 ¢ ~2 ,-1. If this were the case, 
(J)--1 ~(i) c~J)- 1 c~i) we would have c 2 ~2 • C1. Since • C2(-), we get c (j)-lAi) 2 c2 • 

C1 n C2(-) : Cl ( . ) ,  a contradiction. I I  

LEMMA 4.4: Let P1 = M1Ut be a standard parabolic subgroup of G1, 71 a 

representation of M1. For c • C2, 

C" iG1,M, (T1) -~ iGI,c.MI (C" 7-1), 

where the parabolic induction in the right-hand side is with respect to c.  P1 = 

CPl C -1 . 

Proof: Straightforward. Note that c. P1 is not necessarily standard. | 

Suppose (P1, ~1, rl)  is a set of Langlands data  for G1. Write po = p~ = p.  

For d E C2/C1, we shall choose a representative d(¢, ul) E dC1. Let 

[d(ff)] = {d' E dCll d' .  • is maximal among {dc l -O}c lcc , } .  

If d' is an element of [d(O)], then [d(~5)] = d'C1 (~). Set 

Note that this does not depend on the choice of d I in [d(O)]. We have a I* = d ~ -a*, 
d' • II(P, A) = II(P',  A'). Since (, } is C-invariant, it follows that d' • a*__ = a'*_. 

Now, let 

[d(O, Ul)] = {d' • [d(O)] I d' .Ul ~- d" .Ul ,  Vd" • [d(O)]}. 

If d" is an element of [d(~,Ul)], then [d(~,ut)] = d"Cl(~ ,u l ) .  We choose an 

element of [d(~, Ul)] and denote it by 

d(O, ul). 

The element d(@, Ux) is our representative for d • C~/CI; it is defined up to 

CI (@, Ul). In particular, 

[d(O, ul)] = d(~, ul) .  Cl(q ~, ul). 

Note that d(~, ul) .ul • a'*_(C1). 
With the d(O, ul) chosen, we are now ready to prove the following: 
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PROPOSITION 4.5: Let  7r 1 be an irreducible admissible representation o f  G1, 
(PI,Vl,T1) Langlands data for G1 such that  7rl = LI(PI,ul ,T1).  I f  d 6 C2/C1, 

then (d(e,  Ux) • P1, d(~, ux) • ul,d(O, vl)  . T1) is Langlands data for GI, and we 

have 

d - ~ l  = Ll(d(¢,/21)- gl ,d(~,/21) ' /21,d(e, /21).  ~1). 

R e m a r k  4.1: The triple (d(~,/21)" P1, d(~,/21) "ul, d(e,/21)" T1) does not depend 

on the choice of d(e,/21) because M1 = Me,c~(e, ,~),  /21 and Vl are Cl(e,/21)- 
invariant. 

Proof: First, we have to show that (d(e,/21) • P1,d(e,/21) •/21, d(e,/21) •-rl) is 
Langlands data for GI. Our choice of d(e ,  ul ) ensures that conditions 1 and 2 in 
the definition of Langlands data are satisfied. For 3, write e '  = d(e,/21) • • and 

t t t (P~,/21, Ti) = d(e,/21)" (P1,/21, rl). Now d(e,/21). Me = Me,. By the abelianness 
of C, 

d((I),/21)" C l (  e,/21) -- C1 ((I),/21) 

and 

c1(e! , /2~)  -~{c e Cll  c .  • ! -- • !, c . /2 ;  ---/2;} 

- -{c  e C1] c d ( e , / 2 1 ) .  • -- d (e , /21) ,  e ,  c a ( e , / 2 1 ) . / 2 1  --- d((I),/21)./21} 

={c e C11 d (e , /21)c .  • = d (e , /21) ,  e ,  d(e , /21)c  •/21 -- d (e , / 21 ) . / J l }  

--C1 (e,/21). 

Thus, d(e,/21). C1 (e,/21) = C1 (e,/21) = c1 (e  !,/2~). Therefore, 

d(e,/21) • Me,el(e,, ,1) = Me,,cl(e,, . i) ,  

as needed. Finally, that 4 holds follows from Proposition 2.3. 
By the preceding lemma, 

d '  71" 1 ---- d(e,/21) " 71"1 

d((I),/21)" iG1,M1 ( exp  /21 ® T1) 
~- ia~ ,d( e,,~ ). M, ( exp  d( (L ul ) . ul ® d( ~ , /21) " el). 

Since (d(e,/21)- P1, d((I),/21)./21, d(e,/21 )- T1 ) is Langlands data for G1, the Lang- 

lands classification for G1 tells us that Ll(d(~,/21) • Pt ,  d ( e ,  Ul) -/21, d(e,  a t ) .  Tt) 
is the unique irreducible subrepresentation of 

ic~,d(e,,~).M~ (exp d ( e ,  I21 )"  /21 ® d ( e , / 2 1 )  " 7"1 ). 

Thus, 

d .  7r I : Ll(d(e , /21)"  P1, d(e,  ul)-  ul, d(e,/21)" T1), 
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as needed. | 

We now proceed to the proof of the Langlands classification. Let 

Lang(G1) ~ Irr(G1) 

r  (Vx) 

be the maps corresponding to the Langlands classification for G1, which holds 

by inductive hypothesis ("T" for "triple"). Our first step is to construct 

T2: Irr(G2) --+ Lang(G2). 

Let 7r2 E Irr(G2). Take 1rl E Irr(G1) such that ~rl appears in rG1,c2(~2)- 

Write ~rl = LI(PI,Ul,T1). We define T2(~r2) in four cases. We also show that 

if T2(~r2) = (P2,u2,T2), then 7r2 is the unique irreducible subrepresentation of 

iG2,M2(expu2 ® T2). Write po __ p¢. 

CASE 1: C2(0) ---- CI(O) .  
In this case, it follows from the preceding proposition and Lemma 2.1 that, 

writing D = C2/C1, 

rG~ ,G2 (7r2) = ( ~  L1 (d(O, 121)- gl ,  d(O,/21 )" /21, d(O, Pl )" 7-1). 
dED 

(Note that Ca(O) = CI(O) implies the d(O, u l ) .  P, are all different, so the 

representations in the right-hand side are inequivalent.) Fhrther, for any d E D, 

7r2 -~ iG2,G1 (El (d(O, Pl)" 5 ,  d((I),/21 ) .  Pl, d(O,/21)" 7-1)). 

We claim there is a unique d C D having d(O, ul) .  • E Xc2. First, since 

C2"0 = U d( O, u, )Cl " O 
dcD 

and the fact that d(O,/21) " 0 is maximal in dC1 • • (by construction of d(O, ul)), 

such a d E D exists. For uniqueness, observe that if d(O, ul) • • = d'(O, ul) • ~, 

then d(O, ul)- ld ' (O,  Ul) E C2(¢) = C1(~), contradicting d ~ d' in D. Write d2 

for this particular element of D. Set 

T2(Tr2) = (d2(O, P1)" P1, d2(O, 121)- 121, d2(O, Vl) .  T1) = (P2, I]2, T2). 

Of course, we have to check that (P2, u2, T2) E Lang(G2). 
First, d2 was chosen so that d2 (0, ul). • E Xc2, so condition 1 in the definition 

of Langlands data holds. By the preceding proposition, (P2, u2, T2) C Lang(G1). 
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Since C2(~) = C1 (~),  condit ion 2 in the definition of Langlands da ta  is the same 

whether  we want to view (P2,u2,T2) E Lang(G1) or Lang(G2). Thus 2 holds. 

For 3, observe tha t  C2(d2(~, ul) • (I)) = C2((I)) = CI((I)). Therefore,  

C2(d2(¢,  u l )"  (I), d2 ((I),/Sl)./21) 

= {c E C2 (d2((I), ul)" (~)1 cd2(O., ul) "ul = d2((I ), u l )" / /1} 

= {c E C2(~)l d2(O,/~l)C •/]1 ~--- d2 ((I), u l )"  Ul} 

= {e e C1(~)] e "pl ~-~ /21} 

---- C1 (~,  121). 

Hence, 

: Md2(~,Vl).~,C2(d2(~,Ul).~,d2(~,Vl).Vl), 

as needed. Thus  3 holds. Finally, tha t  condition 4 holds follows from an argument  

like tha t  for Proposi t ion 2.4 (since M~ ~ Md(~,~).~, Proposi t ion 2.4 is not quite 

enough). Therefore,  we have (P2, u2,72) E Lang(G2). 
We now argue tha t  Ir2 is the unique irreducible subrepresentat ion of 

iG2,M 2 (expu2 ® T2). Suppose 7r~ is an irreducible representat ion which appears  

as a subrepresentat ion in iv2,M2(expu2 ® T2). Then,  

0 ~ HOmG2(~r~,iG2,M2(exp,2 ® T2)) 

--- HomG1 (rG,,G2 ( ~ ) ,  iG1,M2 (exp/]2 ® T2)). 

• ~ In either case, the Langlands classification for Now, rG~,G2(Tr~) = n I or ( ~ d  ~r 1. 

G1 tells tha t  we must  have d. 7r~ = L1 (P2, u2, T2) for some d. Therefore,  ~r~ ---- 7r2. 

In part icular,  only 7r2 can appear  as a subrepresentat ion.  Further ,  the Langlands 

classification for G1 also implies tha t  

dim HomG~ ( r G~ ,c~ (7r2), iGI,M2 ( exp u2 ® ~'2)) = 1, 

so r2 can appear  only once as a subrepresentat ion.  Thus,  7r2 is the unique 

irreducible subrepresentat ion of iG2,M2 (exp u2 ® 72). 

CASE 2: C2(¢)  ~ Cl((I )) but  C2(~,ul) = Cl((I) ,pl) .  

As in Case 1, we also have 

and 

rvl ,a2 (7r2) = ( ~  L1 (d((I), ul )" P1, d((I), u l ) .  ul, d((I),/Jl )" T1) 
dCD 

7r2 TM iG2,G1 L1 (d(~, Ul )" P1, d((~, ul )" Vl, d(O, ul )" T1), 
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for any d E D. (Note that C2(~,ul)  = C1((I~,/21) ensures that the d(O, ul) • 

(P1, Ul, T1) are distinct, so ral,a2 (7r2) decomposes into inequivalent representa- 

tions as indicated.) 

Observe that by Lemma 4.3, C2(~)/C1(~)  -~ C2/C1. An easy check tells us if 

d l , . . . ,  d r are representatives for C2 (q~)/C1 (0), they are also representatives for 

C2/C1. Now, 
diC1 • q~ = Cldi • • = C1 • if2. 

Since • is maximal in C1 - ~ (by condition 1 in the definition of Langlands data), 

we see that • is maximal in diC1 "~. Consequently, • is maximal in d(~, ul)C1-~, 

so we must have d(q~,ul) • • = q~ for any d C D. Therefore, d(O, Ul) • P1 = P1 

for any d C D. Now, choose d2 C D such that d2(~,ul) "ul is maximal among 

{ d ( ( I ) ,  5'1)"/21 } d e  D ,  noting that C2 (q~, v~) = C1 (~, ul) tells us these will be distinct. 

We set 

T2 (7r2) = (P1, d2((I),/21)"/21, d2((I),/21)" T1) ---- (P2,//2,7-2). 

We need to check (P2, v2, ~-2) ~ Lang(G2). 
First, from above, we know that (I) is maximal in dC1 • iI~ for all d ~ D. 

Therefore, (I) is maximal in C2-(I), i.e., (~ E Xc: .  Thus condition 1 in the definition 

of Langlands data  is satisfied. The choice of d2 and construction of d2(~, t~l) 

ensures that condition 2 is satisfied. Condition 3 is just the fact C2(~, u2) = 

C2(~, u~) = C~((I), u~) (since P~ = P1). Condition 4 is (again) a consequence of 

Proposition 2.4. Thus, (P2, v2, ~-2) e Lang(G2). 
The argument that 7r~ is the unique irreducible subrepresentation of 

iG~,M:(expv2 ® T~) is essentially the same as in Case 1. 

CASE 3: C2(~) ~ C I ( ~ ) ,  C2 (~ ,p l )  # CI(O,  p l ) b u t  C2(02, vt,T~) = 

C1 ((I3, l/1, T1). 

Again, we have 

rG1,G2 (7r2) = ( ~  L1 (d((I), ul) " P1, d(O, vl) " ul, d(~, pl) " T1) 
d E D  

and 

7r2 -~ iG2,G1LI(d(~,Ul)" P I ,d (¢ ,u l ) "  u l , d ( ~ , u l ) .  T1). 

However, T2(Tr2) will not be just a conjugate of (P1, vl, T1) in this case. 

First, we observe that, as in Case 2, C2(~I') ~ C1(~) implies d(~, Ul). • = 

for all d C D. Similarly, since C2(0, ul) ¢ CI(O, ul), we may also deduce that 

d(O,//1) • Vl -- Vt for all d E D. However, since C2(0, pl,71) = CI(O, Vl,T1), we 

get that {d((I), Vl) • "rl}deD are inequivalent. (Note that  this tells us rcl,a2(Tr2) 

decomposes into inequivalent representations as indicated above.) 
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Let P2 = P(Ia,C2((I),iZl ) and u2 =//1- Since {d((I),/]1)" T1}dcD are inequivalent, we 

get 

7"2 = i M2,M1 (7"1) 

is irreducible. We take 

Again, we must show that  we actually have (P2, u2,7"2) E Lang(G2). 
First, as in Case 2, the fact that C2((I~) ¢ C~(O) gives (I) C Xc2, so condition 1 

in the definition of Langlands data is satisfied. An argument very similar to the 

argument that C2 ((I)) ¢ C1 (0) ~ (I) C Xc2 tells us 6'2 ((I), ul) ¢ C1 (0, ul) ~ ul C 

a*_(C2). Therefore, condition 2 is satisfied. Our choice of P2 ensures 3 holds; 4 

follows from the definition of tempered representations we are using• Therefore, 

(/)2, u2, 7"2) E Lang(G2). 
We now need to show that r2 is the unique irreducible subrepresentation of 

iG2,M2 (exp v2 ® 7"2). Since i M2,M~ (71) is irreducible, we have 

iC2,M:(expl.'2 ® 7"2) ~- ia2,M~ (expu2 ® 7"1). 

Therefore, if 7r~ is an irreducible subrepresentation of iC2,M2 (exp u2 ® 7"2), we have 

0 ¢ H o m a 2  (Tr;, iG2,M2 (exp/]2 ® 7"2)) 
! . 

Home;1 ( r a~ ,a~ (7@, za,,M1 ( exp ul ® n ) ) . 

Now, either ra~,c2 7r~ = 7r[ or t~ d. 7r[. In either case, the Langlands classification 

• ' = Ll(Pl ,P1,7"1)  for some d. Therefore, for G1 tells us we must have d 7r 1 

7r~ --- 7r2, so only 7r2 can appear as a subrepresentation. Further, the Langlands 

classification for G1 also tells us that 

dim Homal (ral ,a2 (rr2), ia~,M~ (exp ~'1 ® 71) ) = 1, 

so 7r2 can appear only once as a subrepresentation. Thus, ~r2 is the unique 

irreducible subrepresentation of ic2,U2 (exp v2 ® 72), as needed. 

CASE 4: C~.(~) ¢ C1((I)), C2((I), / /1)• C1((I),/11), C2((I),121,T1) ¢ Cl((~,Vl,T1).  

As in Case 2, C2(~) ¢ CI((I )) implies d(O, ul) • (I) = ~ for all d E D. As in 

Case 3, C2(~,ul)  ¢ CI(~ ,u l )  implies d ( ~ , u l ) . u l  = ul for all d E D. We claim 

that C2(~,Ul,T1) ¢ CI(~,Ul,T1) implies d ( ~ , u l ) . n  ~ 71 for all d E D. Let 

P2 = P¢,c2(¢,~1}. Then 

M2/M, ~ C2(~,ul)/CI(~,ul) -~ C2(O, ul,rl)/Cl(~,ul,rl) 
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(all three ~ D). Note that since CI((I ),/]1) acts trivially on Irr(M1), we get an 

action of C2(~b,/]1)/C1((I ),/]1) on Irr(M1). Further, since C2(~,/]1)/C1((I),/]1) ~-- 
C2 (~,/]1, rl)/C1 (~, vl, rl ), it is easy to check that we may choose representatives 

for C2(~,/]1)/C1(~,/]1) from C2(~, /]1, 71). Therefore, we see that the action of 

C2(~,/]1)/C1(~,/]1) on 7-1 is trivial. The claim follows. 

Observe that  we now know d(O,/]l)- (PI,Vl,T1) = (P1,/]1,T1) for all d E D. 

Thus, from Lemma 2.1 and Proposition 4.5, we get 

( ) "~ L (P1 7"1) rG~,G2 7r2 ---- 1 ,111, -~ 7rl 

and 

iG~,G, LI ( P1, /]I , 7"1) ~- ~ X ® ~2. 
xED 

First, let P2 = P~,c2(~,~1) and/]2 ---/]1. Since d(¢I),/]1) "7"1 ~- 7"1 for all d E D, 

it follows from Lemma 2.1 that  

iM2,M1(7"1) ~- ~ X ® T2, 
xED 

for a fixed irreducible T2 appearing in iM2,M1 (7"1). Observe that 

HomG2 (7r2, iG2,M1 (exp Vl ® T1)) -~ Homo1 (Trl, iG1,M1 (exp Vl @ T1)) 

is one-dimensional by the Langlands classification for G1. On the other hand, by 

Frobenius reciprocity, 

Home2 (r2, iG2,M1 (exp vl ® T1)) 

------ HOmM~ (rM2,G~ (Ir2), exp Yl ® iM..,M1 (T1)) 

~-- HOmM~(rM2,G2(Tr2),exp/]l ® ( ~  X ® T2) ) 

(using induction in stages). Without loss of generality, we may choose T2 to be 

the component of iM2,M1 (T1) which has 

HOmM2(rM2,G2(Tr2), expvl ® ~-2) ~t O. 

Then, we set 

T2(Tr2) = (P2, v2, 7-2)- 

Again, we need to check that (P2,v2,T2) E Lang(G2). 
First, as in Case 3, C2(¢) # C1({), C2(iI), vl) ~t C1(¢, vl) ensure that ¢ E X02 

and v2 = vl E a*_(C2). Thus, conditions 1 and 2 in the definition of Langlands 
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da ta  hold. Condition 3 follows immediately from u2 = Ul and our choice of P2- 

Condition 4 follows from Definition 2.5. 

We now need to show that  7r~ is the unique irreducible subrepresentation of 

iG2,M2 (exp u2 ® T2). Suppose 7r~ E Irr(G). From the Langlands classification for 

G1 and 

Soma2 (~r~, ia2,u 1 ( exp ul ® T1 )) = Homa,  ( r al ,G2 ( 7d2 ) , ial ,Ul ( exp Ul ® "rl )), 

we see that  ~r~ is not a subrepresentation of 

ia2,U2 (exp u2 ® 72) ¢-~ ia2 ,M1 (exp Vl ® T1 ) 

! 
unless 7r 2 = X ® zr2. For such a 7r~, we have 

Homo2(~r~, ia2,M:(expu2 ® v2)) = ' v2) "" HomM2 (rM2,a2 (7r2), exp u2 ® 

is nonzero only when 7r~ ~ 7r2. Further, when 7r~ - 7r2 these are one-dimensional 

spaces, so 7r2 appears only once as a subrepresentation. Thus, 7r2 is the unique 

irreducible subrepresentation of iG2,M2 (exp u2 ® T2), as needed. 

At this point, we have constructed a map T2: Irr(G2) --~ Lang(G2). Further, 

we have shown that  if T2(Tr2) = (P2, u2,72), then rr2 is the unique irreducible 

subrepresentation of ivy,M2 (exp u2 ®T~). Note that  this implies T2 is injective. To 

finish the proof of the theorem, it suffices to prove the following: if (P2, u2, ~-2) • 
Lang(G2), then iG2,Me (expu2 ® ~-2) has a unique irreducible subrepresentation. 

We can then define L2(P2, u2, v2) to be that  irreducible subrepresentation and it 

will follow easily that  T2 o L2 = idLang(G2) and L 2  o T.  2 - -  idxrr(a2). 
Let (P2,u.2,'r2) • Lang(G2). Write P1 = P2 CI G1. The argument that  

ia2,M2(expu2 ® ~)  has a unique irreducible subrepresentation may be done in 

three cases: 

1. P2 = P1. 

2. P2 ~ P1 and rM2,M~ (T2) reducible. 

3. P2 ~ P1 and rM2,M~('r2) irreducible. 

We remark that  the arguments used below are, in some cases, quite similar to 

arguments used earlier. 

CASE 1: P'2 = P1. 

In this case, we also have (P2, u2, T2) • Lang(G1). Write 

(PI,Ul,T1) = (P2,u2,T2) 

when considering it this way. By condition 3 in the definition of Langlands data 

and M2 = M1, we see that  C2(¢,u~) = C~((I,,v~). As in Cases 1 and 2 above 
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(depending on whether C2(0) -- C1 (4)), this tells us that d(4,/21)" (P1, Pl, 7"1) 
(PI,-1,*I)  for all d E D with d # 1. By Lemma 2.1 and Proposition 4.5, this 
implies 

~r2 = ic2,el  (LI(P1, -1 ,  r l ) )  

is irreducible. Now, for 7r~ C Irr(G2),  

Home2 (Try, iG2,M2 ( exp /22 ® T2 ) ) 
! • 

-- HomG2 (7r2, ze2,G, o iVy,M1 ( exp "1 ® T1) ) 
! 

= Home,  (ral,c.~ (Ir2), zO,,M1 (exp,1  ® "0)) 

is one-dimensional if L1 (P1, -1, T1 ) ~ rG1 ,G2 (Try) and zero-dimensional otherwise 
(by the Langlands classification and the fact that ra~,G2(~r~) decomposes as a 
direct sum of inequivalent irreducible subrepresentations (possibly one)). That 

is, it is one-dimensional for ~r 2 = ~r2 and zero-dimensional otherwise. Thus, 

iG2,M2 (exp/22 ® T2) has a unique irreducible subrepresentation. 

CASE 2: P2 # P1 and rM2,M1 (7"2) reducible. 
Write 

r M 2 , M 1  ( 7 - 2 )  = @ d" T 1 ,  

d E D  

where zl is an irreducible representation of M1. If "1 = "2, then (P1, "1,7-1) E 
Lang(G1).  We note that P'2 # P1 and condition 3 in the definition of Langlands 
data tells us C2(0,/21) # C1(4,-1).  This implies C2(4) # C1(4) (the represen- 
tatives for C2 (4, "1)/C1 (4,  "1 )) also serve as represento~tives for C2 (4)/C1 (4)).  
Therefore, 

d(4,/21)' (P1, "1, T,) = (P1, "1, d(4, "1)" 7"1) # (Pl,/21, T1) 

for d E D with d ~ 1. By Lemma 2.1 and Proposition 4.5, this implies 

~ = iG~,c, (L1 (P1, .1, ~1)) 

is irreducible. 
In this case, T2 = iM2,MI (T1). Therefore, for 7r~ irreducible, 

Homa2 (zr~, ia2,M2 ( exp "2 ® T2 ) ) 
! - 

Homv~ (7r2, zc.2,M~ (exp/21 ® T1)) 

--~ HomG1 (rGm ' " (exp,1  ® 7-1)). ,a2 (7r2), zG~,M~ 

By the Langlands classification for G1 (and the possibilities for rG1,G~(~r~) 
implied by Lemma 2.1), this is one-dimensional in the case when L1 (P1, -1, T1) 
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ral,G2(77~) and zero-dimensional otherwise. In particular, it is one-dimensional 

for 772 = 7r2 and zero-dimensional otherwise. Thus, ia2,M2(expv2 ® T2) has a 
unique irreducible subrepresentation. 

CASE 3: P2 # P1 and rM2,M1 (T2) irreducible. 

Write 

rM2,M1 (72) ---- T1, 

with Vl irreducible. If vl = v2, then (Pl,vl,7-1) C Lang(G1). As in Case 2, 

P'2 # P1 implies C2((I),vl) # Cl(~,v l ) ,  and therefore C2((I)) # C1((~)- Yhrther, 
the irreducibility of rM=,M1 (72) then implies 

d ( ~ ,  121)" (Pi , /11 ,  rl) ---- (P1, "1,  T1) 

for all d C D. (We note that we may also conclude Cu (~, vl, rl) = C1 (~, vl, rl ).) 
In particular, by Lemma 2.1 and Proposition 4.5, 

iG2'G1LI(PI'tq'T1) = 0 X ® r~2, 
~ED 

where r~2 is any fixed component of iG:,GILI(P1, vl, rl) = iG2,al (771)- Observe 
that for 7r~ E Irr(G~) 

Homc2 (74, iG'2,MI (exp vl ® rl )) ~ HomG, (rG~ ,c,: (Try), ic.~ ,M, (exp vl ® 7-1 )) 

is one-dimensional if rGi,o:(7~) = Ul and zero-dimensional otherwise (by the 
Langlands classification for G1). That is, it is one-dimensional if 7r~ C 

{X®7~2 }xcD and zero-dimensional otherwise. On the other hand, since iM~,M~ (7-1) 
"~ (~ (D M2/M " G /G ) we have - -  X E D X ® T 2  "~ 1 = 2 1 , 

HomG= (77~, iG2,M1 ( exp l] 1 ® 7"1 ) )  

I . 
-~ Home= (~,~, zG2,M2 ( exp v2 ® i M2,M 1 (7-1))) 

, 
~-- HomG2(772,ZG~,M2(exp'2 ® X ® 7-2)). 

xcD 

Take u~ E {X ® u2}xcb. By one-dimensionality, there is a unique r~ E 

{X ® 7-2}xcD such that Homc,2(u~, ic,2,M2(expv2 ® g) )  is nonzero; by 

cardinality considerations, 77~ ~ 7-~ is bijective. We choose u~_ to be 

the component of iO~,G~(rl) corresponding to r~. This implies that 

Homo2(7(2,iG:,M=(expv2 ® 7-2)) is one-dimensional if ~r~ ~ ~r2 and zero- 

dimensional otherwise. Therefore, iG~,M: (exp v2 ® re) has a unique irreducible 
subrepresentation (namely 772). 

This finishes the proof of the theorenl. | 
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Remark 4.2: The Langlands classification may also be formulated in the 

quotient setting. We close by doing this. 

First, for P = MU a standard parabolic subgroup of G, let 

a*+ = {x e a* I <x,a I > O, Va e H(P° ,A)} ,  

a ; ( c )  = {x • a;I x c .x ,  Ve • 

* = - a*  and a~_(C) = -a*_(C). A triple (P, 1],T) is a set of We note that  a+ 

Langlands data for the quotient setting of the Langlands classification if the 

following hold: 

1. P = MU is a standard parabolic subgroup of G, 

2. • a ; ( c ) ,  

3. M = M~,c(¢,v), 
4. 7 • I r r (M)  is tempered. 

In this case, we have a bijective correspondence 

Irr(G) ( ~ Langquot(G). 

If 7r E Irr(G) has Langlands quotient data (P,g,T), then 7r is the unique 

irreducible quotient of IndGp(exp v ® T). 

It is not difficult to obtain the quotient version of the Langlands classification 

from the subrepresentation version. Let 7r E Irr(G). Write # = L(P ,v , r )  

(subrepresentation setting), where # denotes the contragredient of ~r. By the 

contravariance o f - ,  the fact that # is the unique irreducible subrepresentation 

of IndGp(expv ® T) tells us that ~ ~ 7r is the unique irreducible quotient of 

(IndVp(expv ® r))- "~ IndGp(exp(-v) ® ~). It is easy to check that ( P , - v , ~ )  E 

Langquot(G). This argument may be reversed to establish the equivalence of the 

two formulations. 
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