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In this paper, we study the R-group Rψ,σ conjectured by Arthur, associated to the rep-

resentation parabolically induced from a representation σ. We address the question of

which properties of the classical Knapp-Stein R-groups carry over to Arthur’s setting,

with somewhat surprising results. Some of the basic properties fail: the normalized

standard intertwining operators A(r,σ), r ∈ Rψ,σ in general do not form a basis of the

commuting algebra and the components of the induced representation are not in a bijec-

tive correspondence with the irreducible representations of Rψ,σ. However, the action of

standard intertwining operators on the induced space has a natural description in terms

of representations of a finite group and the corresponding trace formulation holds.

1 Introductory material

1.1 Introduction

This paper focuses on closely related questions about R-groups and the action of

(normalized) standard intertwining operators. To set matters up, let F be a p-adic field
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and G the F-points of a connected quasi-split group defined over F (though we note the

results in the third chapter also apply to real groups). Recall that if P = MN is a standard

parabolic subgroup of G and σ is a representation of M, we may consider the induced

representation I = IndG
P σ (normalized parabolic induction). Of particular interest to us

in this paper is the case where σ is an irreducible unitary representation, in which case

π is also unitary and decomposes as a direct sum.

It is perhaps easiest to start the discussion by reviewing the properties of Knapp-

Stein R-groups (cf. [36], [37]; [25] for the real case). Suppose σ is in the discrete series. If

W is the Weyl group of G, let W(σ) = {w ∈ W | wσ ∼= σ} (implicit is w · M = M). The

R-group Rσ is a subgroup of W(σ) which determines the intertwining algebra HomG(I, I),

among other things. The R-group is defined in terms of Plancherel measures, whence the

assumption σ is in the discrete series (see [36], [37] for more details).

For w ∈ W(σ), let A(σ,w) ∈ HomG(I, I) denote the normalized standard in-

tertwining operator (cf. [33],[2]). For purposes of this introduction, we assume trivial

cocycle, so the normalized standard intertwining operators satisfy A(σ,w2)A(σ,w1) =

A(σ,w2w1) for all w1,w2 ∈ W(σ). This is known to hold in a number of important situa-

tions (e.g. if σ is generic [22] or F = R [24], [2]). In this case, the R-group has the following

properties (cf. [22] or [6]):

Properties 1.1. With notation as above,

(1) The equivalence classes of components of I are parameterized by the ir-

reducible representations R̂σ of Rσ. Further, if Iρ is a component of

I corresponding to ρ ∈ R̂σ, then Iρ appears with multiplicity dim ρ.

That is,

I ∼=
⊕

(dim ρ)Iρ. (1.1)

(2) HomG(I, I) ∼= C[Rσ] (with the isomorphism generated by r �−→ A(σ, r) in one

direction).

(3) The operators A(σ, r) act on and permute the dim ρ irreducible subspaces of

the Iρ-isotypic component as the representation ρ. This may be expressed

in the following manner: for π ∼= Iρ an equivalence class of components

of I, let

〈r,π〉 = trace ρ(r). (1.2)

Then, for r ∈ Rσ, f ∈ C∞c (G),
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trace (A(σ, r)I(f )) =
∑

π

〈r,π〉 trace(π(f )), (1.3)

where the sum runs over the equivalence classes of components of I. �

We note that if the cocycle is not trivial, the first statement still applies, along with

modified versions of the second and third. In what follows, we also use the above

numbering for the corresponding properties when the cocycle is nontrivial.

The theory of the R-group has important applications both locally and globally.

Locally, the R-group governs the reducibility of induced discrete series, hence plays a

key role in the classification of irreducible tempered representations for real and p-adic

groups. Globally, the actions of normalized standard intertwining operators—especially

as formulated in (3)—arise (as part of a corresponding global formulation) in the trace

formula, and hence are of interest in automorphic forms.

On the basis of global considerations, Arthur conjectured a characterization of

the R-group in terms of Arthur parameters (A-parameters), which we refer to as the

Arthur R-group (cf. [1]). The Arthur R-group is conjectured to exist for more general

unitary inducing representations, not just discrete series. Whereas the Knapp-Stein

R-group requires the inducing representation to be in the discrete series in order to

work with Plancherel measures, A-parameters do not require such a constraint. We

note that when the inducing representation is in the discrete series, the Arthur R-

group is known to correspond to the Knapp-Stein R-group (with properties (1)–(3)

holding) in a number of situations. If F = R, they correspond (cf. [34]). For F p-adic,

the Arthur R-group is known to match the Knapp-Stein R-group when G is split and the

inducing representation is a character (cf. [22]) or for classical groups when the inducing

representation is generic (cf. [9]). We note, however, that the Arthur R-group is formally

defined as a subquotient of W(σ), not a subgroup, and so does not necessarily give rise to

an action of intertwining operators. Thus, when dealing with (3), we work in the context

of subgroups of W(σ) where we have such actions (and in fact, Arthur’s conjecture is for

the subgroup Wψ,σ of W(σ); the Arthur R-group is a quotient of Wψ,σ).

A number of results on the Arthur R-group concern certain special nontempered

representations (cf. [18],[5],[6],[8]). The basic strategy in these results is to use a duality

operator (either the Iwahori-Matsumoto involution [16] or the duality of [4], [31]) to relate

IndG
P σ to its dual ̂IndG

P σ = IndG
P σ̂ when IndG

P σ admits a Knapp-Stein R-group. The proper-

ties of the classical Knapp-Stein R-groups are then transferred to the nontempered rep-

resentation. In fact, this approach produces more refined results—the R-groups are iso-

morphic and the action of normalized standard intertwining operators closely related.
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This is not so surprising given that it is expected that duality admits a nice description

in terms of A-parameters.

All the results mentioned above rely on relating Arthur R-groups to Knapp-Stein

R-groups. The representations considered are induced from either discrete series or

duals of discrete series. Arthur’s definition, however, applies to a much wider class

of inducing representations, and in the present paper we study the general case. We

address the question of which of the properties (1)–(3) carry over to this more general

setting.

The results are somewhat surprising. The short answer is that properties (1)–(2)

fail to hold in general, while (3) does carry over. We note that it is actually property (3)

which is singled out by Arthur.

To show that (1)–(2) do not hold in general, we construct an example where they

fail. The representation we consider is

π = IndG
P (StGL(2) ⊗ trivGL(2)),

where G = SO(9, F), P = MN is the standard parabolic subgroup with Levi factor

M ∼= GL(2, F) × GL(2, F), StGL(2) is the Steinberg representation of GL(2, F), and trivGL(2)

is the trivial representation of GL(2, F). Using Jacquet module methods (cf. [40],[19],[7],

[29], etc.), we show π has three components. On the other hand, from [21], we know the

A-parameter ψ of the inducing representation σ = StGL(2) ⊗ trivGL(2), and hence may

calculate the Arthur R-group Rψ,σ for π. We find that

Rψ,σ
∼= Z/2Z × Z/2Z

(not a surprising result in the light of [14]). Since π has three components but its Arthur

R-group has four elements, we see that properties (1)–(2) fail to hold in general.

On the other hand, property (3) holds for any subgroup R of W(σ). Even though

properties (1)–(3) have often been discussed together in the context of R-groups, (3) is

somehow more basic—just a property of normalized standard intertwining operators.

In particular, (1)–(2) are not needed in proving (3).

We now discuss the results section by section. In the next section, we review

some background material on A-parameters, Arthur R-groups, etc. Section 2 deals with

the example of π = IndG
P (StGL(2) ⊗ trivGL(2)) mentioned above. Section 2.1 contains a

review of the classical groups SO(2n+1, F) and their Jacquet modules. In Section 2.2, we

use Jacquet module methods to decompose π, showing that it has three components. In
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Section 2.3, we calculate its Arthur R-group, showing Rψ,σ
∼= Z/2Z×Z/2Z. These combine

to show that properties (1)–(2) fail to hold for Arthur R-groups in general. In Section

Section 3.1, we give an argument for a general version of property (3) based on known

R-group arguments (cf. [22],[23],[6]). In Section 3.2, we apply the results of Section 3.1

to a central extension of Rψ,σ, introduced in [3] to deal with problems introduced by the

nontrivial cocyle. In 3.3, we discuss conditions under which these results may be applied

to the Arthur R-group, as well as revisiting the example from sections 2.1–2.3.

1.2 Notation and preliminaries

In this section, we introduce notation and recall some results that will be needed in the

rest of the paper. Let F be a p-adic field with char F=0. Let G be a connected reductive

algebraic group defined over F, G its F-points. The group G is said to be quasi-split if it

contains a Borel subgroup which is defined over F ([38], Section 3.2). We shall assume

that G is quasi-split over F. Fix a Borel subgroup B ⊂ G and a maximal split torus A0 ⊂ B.

Let P be a standard parabolic subgroup, i.e. a parabolic subgroup containing B. There

exists a unique Levi subgroup in P containing A0; denote it by M. Then M is a connected

reductive F-group. We denote by iG,M the functor of normalized parabolic induction ([10],

Section 2.3). Let A be the split component of M. Denote by X(M)F and X(A)F the groups of

all F-rational characters of M and A, respectively. Let

a
∗

= X(M)F ⊗Z R = X(A)F ⊗Z R

and a∗
C

= a∗ ⊗R C.

We now give a brief discussion of Langlands parameters and Arthur parameters.

The reader is referred to [11],[1] for a more detailed discussion.

Let Ĝ denote the dual of G-the complex connected reductive group whose root

datum is dual to that of G. The L-group is then

LG = Ĝ � WF ,

where WF denotes the Weil group of F. Here, the action of WF on Ĝ is induced from the

action of Gal(F̄/F) on G, where F̄ is the algebraic closure of F (cf. [11]).

Let

φ : WF × SL(2,C) −→ LG
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be a homomorphism. If φ commutes with projections to WF and satisfies the conditions

(1)–(5) of [28], we call φ a Langlands parameter (L-parameter). We let Φ(G) denote the

set of all equivalence classes of L-parameters of G. If Π(G) denotes the set of equivalence

classes of irreducible admissible representations of G, the Langlands correspondence

predicts that Π(G) may be partitioned into disjoint subsets (L-packets) which are in bi-

jective correspondence with Φ(G). For φ ∈ Φ(G), we let Πφ(G) denote the corresponding

L-packet. This bijection is expected to have certain number-theoretic properties charac-

terized in terms of L-functions (cf. [11]).

Let W ′
F = WF × SL(2,C) and let

ψ : W ′
F × SL(2,C) −→ LG

be a homomorphism. If ψ|W ′
F

is an L-parameter and ψ satisfies

(1) ψ|W ′
F

is tempered (i.e., the projection of ψ(WF) to Ĝ is bounded)

(2) ψ is algebraic on the second SL(2,C),

we call ψ an Arthur parameter (A-parameter). Let Ψ(G) denote the set of equivalence

classes of A-parameters. It is expected that Π(G) has subsets (A-packets) which are in

bijective correspondence with Ψ(G). Unlike the Langlands correspondence, A-packets

need not be disjoint. If ψ ∈ Ψ(G), we let Πψ(G) denote the corresponding A-packet. This

correspondence also has certain number-theoretic properties (cf. [1]).

We now turn to a discussion of Arthur R-groups. Suppose ψ is an A-parameter of

G which factors through LM = M̂ � WF ⊂ LG,

ψ : W ′
F × SL(2,C) −→ LM ⊂ LG.

The group LM is the L-group of M. It is a Levi subgroup of LG (see [11], See Section 3 for

definition of parabolic subgroups and Levi subgroups of LG). Then we can regard ψ as an

A-parameter of M. Suppose in addition that the image of ψ is not contained in a smaller

Levi subgroup (i.e. ψ is an elliptic parameter of M).

Let Sψ be the centralizer in Ĝ of the image of ψ and S0
ψ its identity component. If

Tψ is a maximal torus of S0
ψ, define

Wψ = NSψ
(Tψ)/ZSψ

(Tψ),

W0
ψ = NS0

ψ
(Tψ)/ZS0

ψ
(Tψ).

Lemma 2.3 of [9] and the discussion on page 326 of [9] imply that Wψ can be identified

with a subgroup of W(G,A).
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Let σ be an irreducible unitary representation of M. Assume σ belongs to the

A-packet Πψ(M). If W(σ) = {w ∈ W(G,A) | wσ ∼= σ}, we let

Wψ,σ = Wψ ∩ W(σ)

W0
ψ,σ = W0

ψ ∩ W(σ)

and take

Rψ,σ = Wψ,σ/W0
ψ,σ

as the Arthur R-group.

2 An example

In this section, we give an example which shows that not all properties of classical

R-groups carry over to the nontempered setting. In particular, we consider the repre-

sentation StGL(2) × trivGL(2) � 1 (See Section 2.1 for notation) of SO(9, F). Using Jacquet

module methods, we show that this representation has 3 components (cf. Theorem 2.5).

A calculation of the Arthur R-group shows that for σ = StGL(2) ⊗ trivGL(2), we have

Rψ,σ
∼= Z/2Z × Z/2Z (cf. Section 2.3). In particular, |Rψ,σ | does not give the number of

components; see Section 2.1; so Properties (1)–(2) from the introduction fail.

2.1 Classical groups

In this section, we review the background on special odd-orthogonal groups which will

be needed in the rest of this paper.

We define × on general linear groups as in [10]: if ρ1, . . . , ρk are representations of

GL(n1, F), . . . ,GL(nk, F), let ρ1 × · · · × ρk denote the representation of GL(n1 + · · · + nk, F)

obtained by inducing ρ1 ⊗ · · · ⊗ ρk from the standard parabolic subgroup of GL(n1 + · · ·+
nk, F) with Levi factor GL(n1, F) × · · · × GL(nk, F).

In much of Section 2.2, we work in the Grothendieck group setting. That is,

we work with the semisimplified representation. So, for any representation π and ir-

reducible representation ρ, let m(ρ,π) denote the multiplicity of ρ in π. We write

π = π1 + · · · + πk if m(ρ,π) = m(ρ,π1) + · · · + m(ρ,πk) for every irreducible ρ. Similarly,

we write π ≥ π0 if m(ρ,π) ≥ m(ρ,π0) for every such ρ. For clarity, in Section 2 (but only
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Section 2), we use = when defining something or working in the Grothendieck group; ∼= is

used to denote an actual equivalence.

We now turn to odd orthogonal groups. Let

Jn =




1

1.
.

.1

1




denote the n × n antidiagonal matrix above. Then,

SO(2n + 1, F) = {X ∈ SL(2n + 1, F)|TX J2n+1 X = J2n+1}.

Note that the Weyl group is W ={permutations and sign changes on n letters}.

We take as minimal parabolic subgroup in SO(2n + 1, F) the subgroup P∅ consist-

ing of upper triangular matrices. Let α = (n1, . . . ,nk) be an ordered partition of a non-

negative integer m ≤ n into positive integers. Let Mα ⊂ SO(2n + 1, F) be the subgroup

Mα =







X1

. . .

Xk

X
τXk

. . .
τX1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Xi ∈ GL(ni, F), X ∈ SO(2(n − m) + 1, F)




,

where τX = JTX−1J. Then Pα = MαP∅ is a parabolic subgroup of SO(2n + 1, F) and every

parabolic subgroup is of this form (up to conjugation). For α = (n1, . . . ,nk), let ρ1, . . . , ρk

be representations of GL(n1, F), . . . ,GL(nk, F), respectively, and σ a representation of

SO(2(n−m)+1, F). Let ρ1×· · ·×ρk �σ denote the representation of SO(2n+1, F) obtained

by inducing the representation ρ1 ⊗ · · · ⊗ ρk ⊗ σ of Mα (extended trivially to Pα). If m = n,

we write ρ1 × · · · × ρk � 1, where 1 denotes the trivial representation of SO(1, F) (trivial

group).

We recall some structures which will be useful later (cf. Section 1 of [42] and

section 4 of [39]). Let R(GL(n, F)) (resp., R(SO(2n + 1, F))) denote the Grothendieck
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group of the category of all smooth finite-length GL(n, F)-modules (resp., SO(2n + 1, F)-

modules). Set R = ⊕n≥0R(GLn(F)) and R[S] = ⊕n≥0R(SO(2n + 1, F)). The operators × and

� lift naturally to

× : R ⊗ R −→ R and � : R ⊗ R[S] −→ R[S].

With these multiplications, R becomes an algebra and R[S] a module over R.

Next, we introduce some convenient shorthand for Jacquet modules (cf. [39]). If

π is a representation of some SO(2n + 1, F) and α is a partition of m ≤ n, let sα(π)

denote the Jacquet module with respect to Mα. Note that, by abuse of notation, we also

allow sα to be applied to representations Mβ when Mβ > Mα (cf. Section 2.1, [10]). We

will occasionally use similar notation for representations of GL(n, F): if α = (n1, . . . ,nk)

is a partition of m ≤ n, GL(n, F) has a standard parabolic subgroup with Levi factor

Lα
∼= GL(n1, F) × · · · × GL(nk, F) × GL(n − m, F) (Lα consists of block-diagonal matrices;

the corresponding parabolic subgroup of block upper triangular matrices). If π is a

representation of GL(n, F), we let rα(π) denote the Jacquet module of π with respect

to Lα.

We now give the Langlands classification for GL(n, F) and SO(2n + 1, F) (cf. [12],

[35],[26]; for real groups, see [27]). As in [42], let ν = |det| on GL(n, F) (with the value

of n clear from context). Suppose that δ is an irreducible essentially square integrable

representation of GL(n, F). Then, there is an ε(δ) ∈ R such that ν−ε(δ)δ is unitarizable.

For GL(n, F), let δ1, . . . , δk be irreducible, essentially square, integrable representations

satisfying ε(δ1) ≤ · · · ≤ ε(δk). Then, δ1×· · ·×δk has a unique irreducible subrepresentation

(Langlands subrepresentation) which we denote by L(δ1, . . . , δk). For SO(2n + 1, F), let

δ1, . . . , δk be irreducible essentially square integrable representations satisfying ε(δ1) ≤
· · · ≤ ε(δk) < 0 and τ a tempered representation of SO(2(n − m) + 1, F) where m =

n1 + · · · + nk. Then, δ1 × · · · × δk � τ has a unique irreducible subrepresentation which

we denote by L(δ1, . . . , δk; τ ). If m = n, we write L(δ1, . . . , δk; 1) simply as L(δ1, . . . , δk).

Every irreducible admissible representation of GL(n, F) or SO(2n + 1, F) appears as such

a Langlands subrepresentation; the data δ1 ⊗ · · · ⊗ δk (resp., δ1 ⊗ · · · ⊗ δk ⊗ τ ) is unique

up to the order in which δi’s having the same value of ε(δi) appear. More precisely, if

L(δ1, . . . , δk; τ ) ∼= L(δ ′
1, . . . , δ

′
�; τ

′), then k = �, τ ∼= τ ′ and there exists a permutation p of

{1, . . . , k} such that δp(i)
∼= δ ′

i and ε(δi) = ε(δp(i)), ∀i. Note that we use the Langlands

classification in the subrepresentation setting rather than the quotient setting for the

following reason: in the subrepresentation setting, δ1 ⊗ · · · ⊗ δk ⊗ τ will lie in the

appropriate Jacquet module of L(δ1, . . . , δk; τ ) (by Frobenius reciprocity).
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We now recall some structure theory related to Jacquet modules. We discuss only

the calculational aspects which are needed in what follows; the reader is referred to [42]

and [39] for structure-theoretic interpretations.

Definition 2.1. (1) If τ is a representation of GL(n, F), set

m∗τ =

n∑
i=0

r(i)τ

(2) If π is a representation of SO(2n + 1, F), set

µ∗π =

n∑
i=0

s(i)π.

If τ1 and τ2 are representations of GL(n1, F),GL(n2, F), respectively, let

s(τ1 ⊗ τ2) = τ2 ⊗ τ1 and m(τ1 ⊗ τ2) = τ1 × τ2. If τ is a representation of GL(n, F) and ϑ

is a representation of SO(2m+1, F), define � on (R⊗R)⊗ (R⊗R[S]) by (τ1 ⊗ τ2)� (τ ⊗ϑ) =

(τ1 × τ ) ⊗ (τ2 � ϑ). Set M∗
S = (m ⊗ 1) ◦ ( ˜ ⊗ m∗) ◦ s ◦ m∗ ( ˜ denotes contragredient).

Theorem 2.2 (Tadić). If τ is a representation of GL(n1F) and ϑ a representation of

SO(2m + 11F), then

µ∗(τ � ϑ) = M∗
S(τ ) � µ∗(ϑ). �

Proof. See [39]. �

We mention the counterpart for general linear groups: if we define × on R ⊗ R by

(τ1 ⊗ τ2) × (τ ′
1 ⊗ τ ′

2) = (τ1 × τ ′
1)⊗ (τ2 × τ ′

2), then m∗(π1 × π2) = m∗(π1)× m∗(π2). See section

1.7 of [42].

2.2 Decomposition of StGL(2) × trivGL(2) � 1

We analyze the induced representation StGL(2) × trivGL(2) � 1 using Jacquet module meth-

ods (cf. [40],[19],[7],[29], etc., for similar arguments). Before getting into the analysis, we

first introduce a couple of representations which will occur.

By Theorem 4.5 [17] or Lemma 4.2 [19], the degenerate principal series trivGL(2) �

trivSO(3) is irreducible. Therefore, by duality (cf. [4],[31]) or the Iwahori-Matusmoto invo-

lution, we see that

S = StGL(2) � StSO(3)
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is an irreducible tempered representation of SO(7, F). Similarly, the degenerate principal

series trivGL(2) � 1 decomposes as L(ν−
1
2 , ν−

1
2 ) + L(ν−

1
2 ; StSO(3)) (cf. Theorem 4.1 [17] or

Proposition 3.6 [19]). Taking duals,

StGL(2) � 1 = T1 + T2,

where T1,T2 are tempered representations of SO(5, F) with s(1)T1 = ν
1
2 ⊗ L(ν−

1
2 ) and

s(1)T2 = ν
1
2 ⊗ L(ν−

1
2 ) + 2ν

1
2 ⊗ StSO(3). We summarize:

Lemma 2.3. We have the following:

(1) ν−
1
2 � trivSO(3) = L(ν−

1
2 , ν−

1
2 ) + T1

(2) trivGL(2) � 1 = L(ν− 1
2 , ν− 1

2 ) + L(ν− 1
2 ; StSO(3))

(3) ν− 1
2 � StSO(3) = L(ν− 1

2 ; StSO(3)) + T2

(4) StGL(2) � 1 = T1 + T2.

The Jacquet modules for the irreducible representations appearing above are given in

the table at the end of this section. �

Lemma 2.4. We have the following:

(1) ν−
1
2 � L(ν−

1
2 ; StSO(3)) = L(ν−

1
2 , ν−

1
2 ; StSO(3))

(2) ν−
1
2 � L(ν−

1
2 , ν−

1
2 ) = L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) + L(ν−

1
2 ; T2)

(3) StGL(2) � L(ν−
1
2 ) = L(ν−

1
2 ;T1) + L(ν−

1
2 ;T2)

(4) ν−
1
2 � T1 = L(ν−

1
2 ; T1)

(5) ν−
1
2 � T2 = L(ν−

1
2 ; T2) + S.

The Jacquet modules for the irreducible representations appearing above are given in

the table at the end of this section. �

Proof. For (1), observe that since s(1)L(ν−
1
2 ; StSO(3)) = ν−

1
2 ⊗ StSO(3), by Theorem 2.2,

s(1)ν
− 1

2 � L(ν− 1
2 ; StSO(3)) = ν− 1

2 ⊗ L(ν− 1
2 ; StSO(3)) + ν

1
2 ⊗ L(ν− 1

2 ; StSO(3))

+ ν− 1
2 ⊗ ν− 1

2 � StSO(3)

= 2ν−
1
2 ⊗ L(ν−

1
2 ; StSO(3)) + ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 ; StSO(3))

(cf. Lemma 2.3). Now,

s(1,1,1)ν
−

1
2 ⊗ L(ν−

1
2 ; StSO(3)) = ν−

1
2 ⊗ ν−

1
2 ⊗ ν

1
2

s(1,1,1)T2 = ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 + 2ν−

1
2 ⊗ ν

1
2 ⊗ ν

1
2

s(1,1,1)ν
1
2 ⊗ L(ν−

1
2 ; StSO(3)) = ν

1
2 ⊗ ν−

1
2 ⊗ ν

1
2 .
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Let π1 be an irreducible subquotient of ν−
1
2 � L(ν−

1
2 ; StSO(3)) such that s(1)π1 ≥ ν−

1
2 ⊗

L(ν−
1
2 ; StSO(3)). Observe that the only irreducible representation of GL(3, F) having ν−

1
2 ⊗

ν−
1
2 ⊗ ν

1
2 in its Jacquet module is L(ν−

1
2 , ν−

1
2 , ν

1
2 ) = ν−

1
2 × L(ν−

1
2 , ν

1
2 ). Since r(1,1)

L(ν− 1
2 , ν− 1

2 , ν
1
2 ) = 2ν− 1

2 ⊗ ν− 1
2 ⊗ ν

1
2 + ν− 1

2 ⊗ ν
1
2 ⊗ ν− 1

2 , we have s(1,1,1)π1 ≥ 2ν− 1
2 ⊗ ν− 1

2 ⊗
ν

1
2 + ν− 1

2 ⊗ ν
1
2 ⊗ ν− 1

2 . Therefore, s(1)π1 ≥ 2ν− 1
2 ⊗ L(ν− 1

2 ; StSO(3)) + ν− 1
2 ⊗ T2. However,

this then tells us s(1,1,1)π1 ≥ ν−
1
2 ⊗ ν

1
2 ⊗ ν

1
2 (consider s(1,1,1)ν

−
1
2 ⊗ T2). Now, the only

irreducible representation of GL(3, F) having ν−
1
2 ⊗ ν

1
2 ⊗ ν

1
2 in its Jacquet module is

L(ν−
1
2 , ν

1
2 , ν

1
2 ) = L(ν−

1
2 , ν

1
2 )×ν

1
2 . Since r(1,1)L(ν−

1
2 , ν

1
2 , ν

1
2 ) = 2ν−

1
2 ⊗ν

1
2 ⊗ν

1
2 +ν

1
2 ⊗ν−

1
2 ⊗ν

1
2 ,

we have s(1,1,1)π1 ≥ ν
1
2 ⊗ ν−

1
2 ⊗ ν

1
2 . Therefore, s(1)π1 also contains ν

1
2 ⊗ L(ν−

1
2 ; StSO(3)). As

s(1)π1 accounts for all of s(1)ν
−

1
2 � L(ν−

1
2 ; StSO(3)), we see that π1 is the only component, i.e.

ν−
1
2 � L(ν−

1
2 ; StSO(3)) is irreducible. Further, since

ν−
1
2 � L(ν−

1
2 ; StSO(3)) ↪→ ν−

1
2 × ν−

1
2 � StSO(3)

has L(ν−
1
2 , ν−

1
2 ; StSO(3)) as unique irreducible subrepresentation (by the Langlands clas-

sification), we must have

ν−
1
2 � L(ν−

1
2 ; StSO(3)) = L(ν−

1
2 , ν−

1
2 ; StSO(3)),

as claimed.

For (2), since s(1)L(ν− 1
2 , ν− 1

2 ) = 2ν− 1
2 ⊗ L(ν− 1

2 ) + ν− 1
2 ⊗ StSO(3), Theorem 2.2 tells us

s(1)ν
−

1
2 � L(ν−

1
2 , ν−

1
2 ) = ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν−

1
2 ⊗ ν−

1
2 � L(ν−

1
2 )

+ ν−
1
2 ⊗ ν−

1
2 � StSO(3)

= 3ν−
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ; StSO(3)) + 2ν−

1
2 ⊗ T1

+ ν−
1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ),

by Lemma 2.3. Let π1 be an irreducible subquotient of ν−
1
2 �L(ν−

1
2 , ν−

1
2 ) such that s(1)π1 ≥

ν−
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ). Then, s(1,1,1)π1 ≥ ν−

1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 . By Frobenius reciprocity,

HomG(π1, ν
−

1
2 × ν−

1
2 × ν−

1
2 � 1) ∼= HomA(s(1,1,1)π1, ν

−
1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 ),

which is nonzero by a central character argument (cf. Lemma 8.2 [15] or section 1.3 [41]).

Therefore,

π1 ↪→ ν−
1
2 × ν−

1
2 × ν−

1
2 � 1.
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Since ν−
1
2 × ν−

1
2 × ν−

1
2 � 1 has unique irreducible subrepresentation L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) (by

the Langlands classification), we see that π1 = L(ν−
1
2 , ν−

1
2 , ν−

1
2 ). Now, L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) =

trivGL(2) � trivSO(3) and has

s(1)L(ν−
1
2 , ν−

1
2 , ν−

1
2 ) = 3ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ; StSO(3)) + 2ν−

1
2 ⊗ T1

(which follows from Theorem 2.2 and Lemma 2.3). We have not yet accounted for ν−
1
2 ⊗T2

and ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ). An s(1,1,1) argument like that used for part (1) shows that if π2

is the irreducible subquotient with s(1)π2 ≥ ν−
1
2 ⊗ T2, then s(1)π2 must also contain

ν
1
2 ⊗ L(ν− 1

2 , ν− 1
2 ). Further, by central character considerations like those used above,

0 �= HomM(1) (rM(1),Gπ2, ν
−

1
2 ⊗ T2) ∼= HomG(π2, ν

−
1
2 � T2),

so π2 ↪→ ν−
1
2 � T2. Thus, the Langlands classification tells us π2 = L(ν−

1
2 ; T2), as claimed.

We now turn to (3). By Theorem 2.2, we have

s(1)StGL(2) � L(ν−
1
2 ) = 2ν

1
2 ⊗ ν−

1
2 � L(ν−

1
2 ) + ν−

1
2 ⊗ StGL(2) � 1

= 2ν
1
2 ⊗ L(ν− 1

2 , ν− 1
2 ) + 2ν

1
2 ⊗ T1 + ν− 1

2 ⊗ T1 + ν− 1
2 ⊗ T2

by Lemma 2.3. Observe that L(ν−
1
2 ; T1) is the unique irreducible subrepresentation of

ν−
1
2 � T1 (by the Langlands classification) and s(1)L(ν−

1
2 ;T1) does not contain ν−

1
2 ⊗ T2

(since s(1)ν
−

1
2 �T1 does not–an easy calculation, or cf. Lemma 3.4 [20]). The corresponding

statement holds for L(ν−
1
2 ; T2). Let π1 be the component of StGL(2) � L(ν−

1
2 ) such that

s(1)π1 ≥ ν− 1
2 ⊗ T1. Then, s(1)π �≥ ν− 1

2 ⊗ T2. Therefore, by the same central character

considerations used in (2), we have π1 ↪→ ν− 1
2 � T1, hence π1 = L(ν− 1

2 ;T1). Similarly,

we see π2 = L(ν−
1
2 ; T2) is also a component of StGL(2) � L(ν−

1
2 ). Further, since s(1)π2 =

ν−
1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) (cf. (2) above), we have

s(1)π1 ≤ ν−
1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1.

Again, an s(1,1,1) argument like that used in part (1) tells us

s(1)π1 = ν−
1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1.

Thus, π1 and π2 are the only components, and so

StGL(2) � L(ν−
1
2 ) = L(ν−

1
2 ; T1) + L(ν−

1
2 ;T2),

as claimed.
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For (4) and (5), note that the duals (in the sense of [4],[31]) to ν−
1
2 �T1 and ν−

1
2 �T2

are ν
1
2 �L(ν−

1
2 ; StSO(3)) and ν

1
2 �L(ν−

1
2 , ν−

1
2 ), respectively, which have been analyzed in (1)

and (2). As ν
1
2 � L(ν−

1
2 ; StSO(3)) is irreducible, so is ν−

1
2 � T1. Therefore,

ν−
1
2 � T1 = L(ν−

1
2 ;T1).

Similarly, as ν
1
2 � L(ν−

1
2 , ν−

1
2 ) has two irreducible subquotients, so does ν−

1
2 � T2. One of

them must be L(ν−
1
2 ;T2). Since trivGL(2) � trivSO(3) is the other irreducible subquotient of

ν
1
2 � L(ν−

1
2 , ν−

1
2 ), its dual—i.e. StGL(2) � StSO(3) = S-is the other irreducible subquotient of

ν−
1
2 � T2. This finishes the proof of the lemma. �

Theorem 2.5.

StGL(2) × trivGL(2) � 1 = L(ν− 1
2 , ν− 1

2 ; T1) + L(ν− 1
2 , ν− 1

2 ; T2) + L(ν− 1
2 ; S)

The Jacquet modules of the components are given in the table at the end of this section.

�

Proof. By Lemma 2.3,

StGL(2) × trivGL(2) � 1 = StGL(2) � L(ν− 1
2 , ν− 1

2 ) + StGL(2) � L(ν− 1
2 ; StSO(3)).

Thus, it suffices to analyze these two induced representations.

Let us start with StGL(2) � L(ν−
1
2 ; StSO(3)). By Theorem 2.2,

s(1)StGL(2) � L(ν−
1
2 ; StSO(3)) = 2ν

1
2 ⊗ ν−

1
2 � L(ν−

1
2 ; StSO(3)) + ν−

1
2 ⊗ StGL(2) � StSO(3)

= 2ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ; StSO(3)) + ν−

1
2 ⊗ S

by Lemma 2.4. Now, let π1 be a component of StGL(2) � L(ν− 1
2 ; StSO(3)) such that s(1)π1 ≥

ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 ; StSO(3)). Then,

s(1,1,1)π1 ≥ ν
1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 ⊗ StSO(3)

⇓

s(3)π1 ≥ L(ν− 1
2 , St(GL(2)) ⊗ StSO(3),

since L(ν− 1
2 , StGL(2)) = ν− 1

2 × StGL(2) is the only irreducible representation of GL(3, F) con-

taining ν
1
2 ⊗ ν−

1
2 ⊗ ν−

1
2 in its Jacquet module. Now, the Jacquet module of L(ν−

1
2 , StGL(2))
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also contains ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 . Therefore,

s(1,1,1)π1 ≥ ν−
1
2 ⊗ ν

1
2 ⊗ ν−

1
2 ⊗ StSO(3)

⇓

s(1)π1 ≥ ν−
1
2 ⊗ S.

Thus, there is only the single component π1, i.e. StGL(2) � L(ν−
1
2 ; StSO(3)) is irreducible.

By the now usual central character considerations, π1 ↪→ ν−
1
2 � S. Therefore, by the

Langlands classification,

StGL(2) � L(ν−
1
2 ; StSO(3)) = π1 = L(ν−

1
2 ; S).

We now turn to π = StGL(2) � L(ν−
1
2 , ν−

1
2 ). By Theorem 2.2,

s(1)StGL(2) � L(ν−
1
2 , ν−

1
2 ) = 2ν

1
2 ⊗ ν−

1
2 � L(ν−

1
2 , ν−

1
2 ) + 2ν−

1
2 ⊗ StGL(2) � L(ν−

1
2 )

+ ν−
1
2 ⊗ StGL(2) � StSO(3)

= 2ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ L(ν−

1
2 ; T2)

+ 2ν− 1
2 ⊗ L(ν− 1

2 ;T1) + 2ν− 1
2 ⊗ L(ν− 1

2 ; T2) + ν− 1
2 ⊗ S

by Lemma 2.4. We observe that the only terms of the form ν−
1
2 ⊗ ν−

1
2 ⊗ τ (τ irreducible)

in s(1,1)π are 2ν− 1
2 ⊗ ν− 1

2 ⊗ T1 and 2ν− 1
2 ⊗ ν− 1

2 ⊗ T2. Therefore, by central character

considerations,

0 �= HomM(1,1) (rM(1,1),Gπ, ν−
1
2 ⊗ ν−

1
2 ⊗ Ti) ∼= HomG(π, ν−

1
2 × ν−

1
2 � Ti)

for some i. That is, there is component π1 of π such that π1 ↪→ ν−
1
2 × ν−

1
2 � Ti; by the

Langlands classification, π1 = L(ν− 1
2 , ν− 1

2 ; Ti). This shows L(ν− 1
2 , ν− 1

2 ; Ti) is a component

of StGL(2) � L(ν− 1
2 , ν− 1

2 ) for some i. We next show that this actually holds for both i = 1, 2.

Observe that

ν−
1
2 � L(ν−

1
2 ; Ti) ↪→ ν−

1
2 × ν−

1
2 � Ti.

As L(ν− 1
2 , ν− 1

2 ; Ti) is the unique irreducible subrepresentation of ν− 1
2 × ν− 1

2 � Ti, we must

have

L(ν−
1
2 , ν−

1
2 ;Ti) ↪→ ν−

1
2 � L(ν−

1
2 ; Ti).
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Therefore, s(1)L(ν−
1
2 , ν−

1
2 ; Ti) ≤ s(1)ν

−
1
2 � L(ν−

1
2 ; Ti). Now, by Theorem 2.2 and Lemma 2.4,

s(1)ν
−

1
2 � L(ν−

1
2 ; T1) = ν−

1
2 ⊗ L(ν−

1
2 ;T1) + ν

1
2 ⊗ L(ν−

1
2 ; T1) + ν−

1
2 ⊗ ν−

1
2 � T1

+ 2ν
1
2 ⊗ ν−

1
2 � T1 + ν−

1
2 � L(ν−

1
2 , ν−

1
2 )

= 2ν−
1
2 ⊗ L(ν−

1
2 ; T1) + 3ν

1
2 ⊗ L(ν−

1
2 ;T1) + ν

1
2 L(ν−

1
2 , ν−

1
2 , ν−

1
2 )

+ ν
1
2 ⊗ L(ν−

1
2 ; T2)

and

s(1)ν
−

1
2 � L(ν−

1
2 ; T2) = ν−

1
2 ⊗ L(ν−

1
2 ;T2) + ν

1
2 ⊗ L(ν−

1
2 ; T2) + ν−

1
2 ⊗ ν−

1
2 � T2

+ ν
1
2 ⊗ ν−

1
2 � L(ν−

1
2 , ν−

1
2 )

= 2ν−
1
2 ⊗ L(ν−

1
2 ; T2) + 2ν

1
2 ⊗ L(ν−

1
2 ;T2) + ν−

1
2 ⊗ S

+ ν
1
2 ⊗ L(ν−

1
2 , ν−

1
2 , ν−

1
2 ).

Suppose, e.g. π1 = L(ν−
1
2 , ν−

1
2 ; T1). The above calculations then show ν−

1
2 ⊗ L(ν−

1
2 ; T2) �≤

s(1)π1. So, we let π2 be a component such that s(1)π2 ≥ ν−
1
2 ⊗ L(ν−

1
2 ; T2). The same central

character/Frobenius reciprocity argument used above then tells us π2 ↪→ ν−
1
2 �L(ν−

1
2 ; T2),

hence π2 = L(ν−
1
2 , ν−

1
2 ;T2). We note that the same considerations would apply if we

started with π1 = L(ν−
1
2 , ν−

1
2 ; T2). Thus, both L(ν−

1
2 , ν−

1
2 ; T1) and L(ν−

1
2 , ν−

1
2 ; T2) are

components of StGL(2) � L(ν−
1
2 , ν−

1
2 ), as claimed.

It remains to show that L(ν− 1
2 , ν− 1

2 ; T1) and L(ν− 1
2 , ν− 1

2 ; T2) are the only compo-

nents. This may be done using the same sort of s(1,1,1) considerations applied in showing

the irreducibility of StGL(2) � L(ν−
1
2 ; StSO(3)). �

Jacquet modules:

s(1)L(ν−
1
2 ; S) = ν−

1
2 ⊗ S + 2ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ; StSO(3))

s(1)L(ν− 1
2 , ν− 1

2 ;T1) = 2ν− 1
2 ⊗ L(ν− 1

2 ;T1) + ν
1
2 ⊗ L(ν− 1

2 , ν− 1
2 , ν− 1

2 )

s(1)L(ν− 1
2 , ν− 1

2 T2) = 2ν− 1
2 ⊗ L(ν− 1

2 ;T2) + ν− 1
2 ⊗ S + ν

1
2 ⊗ L(ν− 1

2 , ν− 1
2 , ν− 1

2 )

+ 2ν
1
2 ⊗ L(ν− 1

2 ;T2)

s(1)L(ν−
1
2 , ν−

1
2 , ν−

1
2 ) = 3ν−

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + ν−

1
2 ⊗ L(ν−

1
2 ; StSO(3)) + 2ν−

1
2 ⊗ T1

s(1)L(ν−
1
2 , ν−

1
2 ; StSO(3)) = 2ν−

1
2 ⊗ L(ν−

1
2 ; StSO(3)) + ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 ; StSO(3))

s(1)L(ν−
1
2 ;T1) = ν−

1
2 ⊗ T1 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 ) + 2ν

1
2 ⊗ T1

s(1)L(ν−
1
2 ;T2) = ν−

1
2 ⊗ T2 + ν

1
2 ⊗ L(ν−

1
2 , ν−

1
2 )
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s(1)S = 2ν
1
2 ⊗ L(ν−

1
2 ; StSO(3)) + ν

1
2 ⊗ T1 + 3ν

1
2 ⊗ T2

s(1)L(ν− 1
2 , ν− 1

2 ) = 2ν− 1
2 ⊗ L(ν− 1

2 ) + ν− 1
2 ⊗ StSO(3)

s(1)L(ν− 1
2 ; StSO(3)) = ν− 1

2 ⊗ StSO(3)

s(1)T1 = ν
1
2 ⊗ L(ν−

1
2 )

s(1)T2 = ν
1
2 ⊗ L(ν−

1
2 ) + 2ν

1
2 ⊗ StSO(3)

Remark 2.6. The calculations done in this section can be generalized to (ρ,σ) having

reducibility at 1/2 (cf. [40] for more details).

2.3 Calculation of the Arthur R-group

We now show that the Arthur R-group for StGL(2) × trivGL(2) � 1 is Z/2Z × Z/2Z. Now,

σ = StGL(2) ⊗ trivGL(2) is a representation of the standard parabolic subgroup with Levi

factor M ∼= GL(2, F)×GL(2, F) ⊂ SO(9, F). Then, M̂ ∼= GL(2,C)×GL(2,C) ⊂ Sp(8,C), where

Sp(2n,C) =

{
X ∈ GL(2n,C) | TX

(
−J

J

)
X =

(
−J

J

)}
.

The L-parameter of σ may be determined from [42], section 10. We apply formula (15) on

page 340 of [9] to obtain the associated A-parameter

ψ : WF × SL(2,C) × SL(2,C) −→ M̂ ⊂ Sp(8,C).

In accordance with notation of [21], we write it in the form

ψ = (1 ⊗ S2 ⊗ S1) ⊕ (1 ⊗ S1 ⊗ S2) ⊕ (1 ⊗ S1 ⊗ S2) ⊕ (1 ⊗ S2 ⊗ S1),

where 1 denotes the trivial representation of WF and Sn the standard irreducible

n-dimensional algebraic representation of SL(2,C). In particular, S1 is the trivial rep-

resentation and S2 may be chosen to have S2(x) = x for x ∈ SL(2,C). Thus,

image ψ =







X1

X2

τX−1
2

τX−1
1


 | X1,X2 ∈ SL(2,C)




,

where τ denotes transpose with respect to the antidiagonal.
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Given the form of image ψ, its centralizer has the form

Sψ =




A1 B1

A2 B2

C2 D2

C1 D1


 ,

with Ai,Bi,Ci,Di 2 × 2 matrices. In particular, Wψ,W0
ψ ⊂ W(σ). Let

E =

(
1 0

0 −1

)
,

so that EX = τX−1E for X ∈ SL(2,C) (i.e., E gives the equivalence of representations

S2
∼= τS−1

2 , in the obvious notation). Now,




X1

X2

τX−1
2

τX−1
1







A1 B1

A2 B2

C2 D2

C1 D1


 =




A1 B1

A2 B2

C2 D2

C1 D1




×




X1

X2

τX−1
2

τX−1
1




immediately gives

XiAi = AiXi
τX−1

i Ci = CiXi

XiBi = Bi
τX−1

i
τX−1

i Di = Di
τX−1

i .

Therefore, by Schur’s lemma,

Ai = λAiI Ci = λCi E

Bi = λBiE Di = λDiI

for scalars λAi ,λBi ,λCi ,λDi (with I the 2 × 2 identity matrix).
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Now, to have




λA1I λB1E

λA2I λB2E

λC2E λD2I

λC1E λD1I


 ∈ Sp(8,C),

we must have λAiλCi = λBiλDi = 0 and λAiλDi + λBiλCi = 1. Thus,

Sψ =







λA1I

λA2I

λ−1
A2

I

λ−1
A1

I







∪







λA1I

λB2E

λ−1
B2

E

λ−1
A1

I







∪







λB1E

λA2 I

λ−1
A2

I

λ−1
B1

E







∪







λB1E

λB2E

λ−1
B2

E

λ−1
B1

E







.

Therefore, Wψ,σ = Wψ
∼= Z/2Z × Z/2Z and W0

ψ,σ = W0
ψ = 1. Thus, the Arthur R-group is

Rψ,σ
∼= Z/2Z × Z/2Z,

as claimed.

3 Action of intertwining operators

In this section, we show that the analog of (3) of Properties 1.1 holds for intertwining op-

erators coming from subgroups of W(σ). More precisely, we show the appropriate gener-

alization to accommodate nontrivial cocycle holds. Our approach is based on arguments

used for Knapp-Stein R-groups (cf. [22],[23],[6]) and the adaptations to nontrivial cocycle

from [3]. We remark that the results in this section can also be applied to real groups. G,

M are as in Section 1.2

3.1 Actions on intertwining algebras

In this section, we do a general version of (3) in properties 1.1, which will be applied

in the next section. Note that these algebraic arguments are based on known results
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for R-groups (cf. [22],[23],[6]), but incorporating a point-of-view more like that of [3]. We

have used a notation suggestive of an R-groups, though the results will be applied more

generally.

Let σ be an irreducible unitary representation of M and consider the induced

representation I = iG,M(σ). Let V denote the representation space of I. Let R be a finite

group, C[R] its group algebra. Suppose

r �→ A(r)

extended linearly to C[R] gives a homomorphism of C[R] into the intertwining algebra

C(σ) = HomG(I, I). In particular, this gives rise to a representation of R on V which

commutes with the action of G. It follows Ĩ : R × G → Aut(V) given by

Ĩ(r, g) = A(r)I(g)

is a representation of R × G on V. We have

Ĩ ∼=
⊕
ρ⊗π

mρ⊗πρ ⊗ π, (3.1)

where ρ runs over the set of equivalence classes of irreducible representations of R and

π runs over the set of equivalence classes of irreducible components of I. The integer

mρ⊗π ≥ 0 is the multiplicity of ρ ⊗ π in Ĩ. Let

V =
⊕
ρ⊗π

mρ⊗π⊕
i=1

Vρ⊗π(i) ∼=
⊕
ρ⊗π

mρ⊗π⊕
i=1

Ui
ρ⊗π ⊗ Vi

ρ⊗π (3.2)

be a decomposition of V into Ĩ-irreducible subspaces corresponding to Equation (3.1),

with Ui
ρ⊗π (resp., Vi

ρ⊗π) an irreducible R-invariant (resp., G-invariant) subspace of

Vρ⊗π(i). For an irreducible component π of I, define

ρπ =
⊕

ρ

mρ⊗πρ. (3.3)

This representation acts on the space Uπ =
⊕

ρ

⊕mρ⊗π

i=1 Ui
ρ⊗π ⊂ V. The spaces Vi

ρ⊗π, for all

ρ and i = 1, . . . ,mρ⊗π, are mutually equivalent and we can identify each of them with a

space denoted by Vπ ; we write Iρ,i : Vπ −→ Vi
ρ⊗π for the maps. From Equation (3.2),

V ∼=
⊕
ρ⊗π

mρ⊗π⊕
i=1

Ui
ρ⊗π ⊗ Vπ =

⊕
π

(⊕
ρ

mρ⊗π⊕
i=1

Ui
ρ⊗π

)
⊗ Vπ =

⊕
π

Uπ ⊗ Vπ.
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We may describe the isomorphism explicitly: for u ∈ Uπ, write u =
∑

ρ

∑
i uρ,i with

uρ,i ∈ Ui
ρ⊗π. For v ∈ Vπ, we have u ⊗ v ∈ Uπ ⊗ Vπ corresponds to

I(u ⊗ v) =
∑

ρ

∑
i

uρ,i ⊗ I−1
ρ,i (v) ∈ V,

which extends to give the isomorphism. It follows that

Ĩ ∼=
⊕

π

ρπ ⊗ π, I ∼=
⊕

π

(dimρπ)π. (3.4)

For a given π, the space Uπ ⊗ Vπ is the π-isotypic subspace of V and therefore is canoni-

cally defined (although Uπ and Vπ are not). The representation ρπ is also canonical. If we

want to fix a decomposition of Uπ ⊗ Vπ into G-irreducible subspaces, we fix an orthonor-

mal basis {u1, . . . ,uk} of Uπ. Then Uπ ⊗Vπ = (u1 ⊗Vπ)⊕· · ·⊕ (uk ⊗Vπ). The action of A(r)

on u ⊗ v ∈ u ⊗ Vπ is precisely ρπ(r)u ⊗ v.

For f ∈ C∞c (G), define

I(f ) =

∫
G

f (g)I(g)dg, π(f ) =

∫
G

f (g)π(g)dg.

For v ∈ V, write I−1v =
∑

π

∑
i ui

π ⊗ vi
π, in accordance with the decomposition Equation

(3.4) of Ĩ (ui
π ⊗ vi

π ∈ Uπ ⊗ Vπ). Then, for r ∈ R and f ∈ C∞c (G), we have

A(r)I(f )v = A(r)
∫

G
f (g)I(g)vdg =

∫
G

f (g)A(r)I(g)vdg =

∫
G

f (g)Ĩ(r, g)vdg

=

∫
G

f (g)
∑

π

∑
i

I
(
ρπ(r)ui

π ⊗ π(g)vi
π

)
dg

=
∑

π

∑
i

I

(
ρπ(r)ui

π ⊗
∫

G
f (g)π(g)vi

π

)
dg

=
∑

π

∑
i

I
(
ρπ(r)ui

π ⊗ π(f )vi
π

)
=

(⊕
π

ρπ(r) ⊗ π(f )

)
v.

Notice that all the integrals above are essentially finite sums. It follows that

A(r)I(f ) =
⊕

π

ρπ(r) ⊗ π(f ).

In particular,

trace(A(r)I(f )) =
∑

π

trace(ρπ(r) ⊗ π(f )) =
∑

π

trace ρπ(r) trace π(f ).
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We have proved the following:

Lemma 3.1. Let σ be an irreducible admissible unitary representation of M and

I = iG,M(σ). Let R be a finite group. Suppose r �→ A(r) is a homomorphism of R into a

multiplicative subgroup of C(σ) = Hom(I, I). To each component π of I we can attach in a

canonical way a representation ρπ of R. Then

I ∼=
⊕

π

(dim ρπ)π,

where π runs over equivalence classes of irreducible subrepresentations of I. If we define

〈r,π〉 = trace ρπ(r),

then

trace(A(r)I(f )) ∼=
∑

π

〈r,π〉 trace π(f ). (3.5)
�

3.2 Standard intertwining operators

In this section, we apply the general results of Section 3.1 to (arbitrary) subgroups of

W(σ). Since we do not assume trivial cocycle, we follow [3] and work with a central

extension. In particular, the results apply to Wψ,σ, consistent with the conjecture of

Arthur.

Let σ be an irreducible admissible unitary representation of M. For w ∈ W(σ),

take a representative w̄ ∈ K ⊂ G, a good maximal compact subgroup. Let A(ν,σ, w̄),

ν ∈ a∗
C
, be the standard intertwining operator defined in Section 1 of [33] (cf. [32] for

a more detailed description). Then ν �→ A(ν,σ, w̄) is a meromorphic function of ν. If

A(ν,σ, w̄) is holomorphic at ν = 0, then A(0,σ, w̄) is an intertwining operator between

iG,M(σ) and iG,M(w̄σ). We define a normalized intertwining operator

A ′(ν,σ, w̄) = n(ν,σ, w̄)A(ν,σ, w̄),

where n(ν,σ,w) is a normalizing factor. We do not specify the normalizing factor used

here, we just refer to [2], Theorem 2.1, for the proof of existence. Then the opera-

tors A ′(ν,σ, w̄) satisfy the properties described in Theorem 2.1 of [2]. Set A ′(σ, w̄) =

A ′(0,σ, w̄). One of the basic properties of normalized operators is

A ′(σ, w̄1w̄2) = A ′(w̄1σ, w̄2)A ′(σ, w̄2), (3.6)
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where w̄1, w̄2 are representatives of w1,w2 ∈ W(σ). Let 〈, 〉 be the pairing defined in

Section 2 of [32] (if f , f ′ ∈ iG,M(σ), then

〈f , f ′〉 =

∮
G
(f (g), f ′(g))dµ(g),

where (, ) is the unitary pairing on the space of σ and the notation
∮

G h(g)dµ(g) is

explained on page 303 of [32]). Then the property (R4) in Theorem 2.1 of [2] implies

〈A ′(σ, w̄)f , f ′〉 = 〈f ,A ′(w̄σ, w̄−1)f ′〉,

for f ∈ iG,M(σ) and f ′ ∈ iG,M(w̄σ). Then, using Equation (3.6),

〈A ′(σ, w̄)f ,A ′(σ, w̄)f 〉 = 〈f ,A ′(w̄σ, w̄−1)A ′(σ, w̄)f 〉 = 〈f , f 〉.

This tells us that A ′(ν,σ, w̄) is bounded at 0 and therefore holomorphic there. In particu-

lar, A ′(σ, w̄) ∈ HomG(iG,M(σ), iG,M(w̄σ)).

Next, we can associate to A ′(σ, w̄) an operator in C(σ), as follows. Since wσ ∼= σ,

σ extends to a representation σw of the smallest group containing M and w̄. Fix such an

extension σw and define

A(σ,w) = σw(w̄)A ′(σ, w̄). (3.7)

Then A(σ,w) ∈ C(σ) and the definition is independent of the representative w̄. Note

that σw(w̄) ∈ HomM(w̄σ,σ). Let w1,w2 ∈ W(σ), with representatives w̄1, w̄2. Since σ is

irreducible, there exists a constant η(w1,w2) such that

σw1w2(w̄1w̄2) = η(w1,w2)σw1(w̄1)σw2(w̄2).

It follows that

A(σ,w1w2) = η(w1,w2)A(σ,w1)A(σ,w2). (3.8)

Now, let R be a subgroup of W(σ). Equation (3.8) implies

A(σ, r1r2) = η(r1, r2)A(σ, r1)A(σ, r2), r1, r2 ∈ R. (3.9)

We will show that (3) of Properties 1.1 hold for R.
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If η = 1, then r �→ A(σ, r) is a representation of R on C(σ) and Equation (3.5)

follows directly. Assume η splits, i.e., there exists a function ξ : R → C× such that

η(r1, r2) = ξ(r1r2)ξ(r1)−1ξ(r2)−1.

Then ξ(r1r2)−1A(σ, r1r2) = ξ(r1)−1A(σ, r1)ξ(r2)−1A(σ, r2) and r �→ ξ(r)−1A(σ, r) is a

representation of R on C(σ). Formula (3.5) holds for ξ(r)−1A(σ, r) (noting that in this case,

the cocycle is normally absorbed into the normalization so does not appear).

If η does not split, we apply Schur’s theory of projective representations (cf. §53

[13], [30], [3]). Recall that α ∈ {η} means there exists a function ξ : R → C× such that

η(r1, r2) = α(r1, r2)ξ(r1r2)ξ(r1)−1ξ(r2)−1.

Theorem 53.3 in [13] tells us the class {η} has finite order n, i.e., ηn ∈ {1}. From the proof

of the same theorem, the class {η} has a representative α whose values α(r, s) are nth

roots of 1 and α(1, 1) = 1. Fix ζ, a primitive nth root of 1. For each pair r, s ∈ R, define the

integer ar,s by

α(r, s) = ζar,s ,

0 ≤ ar,s < n. Let Zα be the cyclic group generated by α. On the set R̃ of all ordered pairs

(r,αk), r ∈ R, αk ∈ Zα, define multiplication by

(r,αk)(s,αl) = (rs,αar,s+k+l).

Then R̃ is a group. (To see associativity, observe that Equation (3.9) for A ′(r) =

ξ−1(r)A(σ, r) gives A ′(r1r2) = α(r1, r2)A ′(r1)A ′(r2). Associativity follows from α(r1r2, r3)

α(r1, r2) = α(r1, r2r3)α(r2, r3), which can be obtained easily from (3.9) for A ′(r1r2r3).) The

mapping z �→ (1, z) is an isomorphism of Zα into the center of R̃. We have

1 → Zα → R̃ → R → 1.

Define a linear character χ : Zα → C× by χ(αk) = ζk. Define Ã : R̃ → C(σ) by

Ã((r, z)) = χ−1(z)ξ(r)−1A(σ, r),
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r ∈ R, z ∈ Zα. Then

Ã((r,αk)(s,αl)) = Ã((rs,αar,s+k+l)) = ζ−ar,s−k−lξ(rs)−1η(r, s)A(σ, r)A(σ, s)

= ζ−ar,s−k−lξ(rs)−1α(r, s)ξ(rs)ξ(r)−1ξ(s)−1A(σ, r)A(σ, s)

= ζ−ar,s−k−lζar,sξ(r)−1ξ(s)−1A(σ, r)A(σ, s) = Ã((r,αk))Ã((s,αl)).

It follows that r̃ �→ Ã(r̃), r̃ ∈ R̃, is a homomorphism of R̃ into C(σ) and formula (3.5) holds

for Ã. In particular, attached to each component π is a representation ρπ of the group R̃.

For r ∈ R, define

〈r,π〉 = trace ρπ((r, 1)).

Lemma 3.1 now implies the following:

Theorem 3.2. With notation as above,

ξ−1(r) trace(A(σ, r)I(f )) =
∑

π

〈r,π〉 trace π(f ). �

3.3 Arthur R-group

In this section, we discuss the application of the results of section 3.2 to Arthur R-

groups. We first note that to do this, we must have a well-defined action of the Arthur

R-group on the space of the induced representation. This is the case for the example from

Section 2; we close by revisiting this example.

We now consider the situation described in Section 1.2. In particular, ψ is an

elliptic A-parameter of M and σ belongs to the A-packet Πψ(M). The group Sψ (the

centralizer in Ĝ of the image of ψ) is a reductive group. It can be shown that Wψ/W0
ψ

is isomorphic to a subgroup of Wψ ; denote this subgroup by Rψ. In addition, it can be

shown that the following exact sequence splits:

1 −→ W0
ψ −→ Wψ −→ Rψ −→ 1.

Then we have an embedding

1 −→ W0
ψ,σ −→ Wψ,σ −→ Rψ,σ −→ 1

↓ ↓ ↓

1 −→ W0
ψ −→ Wψ −→ Rψ −→ 1
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of short exact sequences. If Rψ,σ ⊂ W(σ) (or if W0
ψ,σ acts trivially), we have a well-defined

action of Rψ,σ on the inducing space, so have (Theorem 3.2)

ξ−1(r) trace(A(σ, r)I(f )) =
∑

π

〈r,π〉 trace π(f ).

Example 3.3. We look at what happens in the example from Section 2. In this case,

π = IndG
P (σ) = StGL(2) × trivGL(2) � 1 and W(σ) = {1,w1,w2,w3}, where the elements

of W(σ) are most easily described by their actions: if m = diag(X1,X2, 1, τX2,
τ X1) ∈ M

(block diagonal matrix in SO(9, F)), then w1 · m = diag(X1,
τ X2, 1,X2,

τX1), w2 · m =

diag(τ X1,X2, 1, τX2,X1), and w3 · m = diag(τ X1,
τ X2, 1,X2,X1).

Recall that we have (cf. proof of Theorem 2.5)

StGL(2) � L(ν−
1
2 , ν−

1
2 ) = L(ν−

1
2 , ν−

1
2 ; T1) ⊕ L(ν−

1
2 , ν−

1
2 ; T2)

StGL(2) � L(ν−
1
2 ; StSO(3)) = L(ν−

1
2 ;S).

We may also determine that

trivGL(2) � T1 = L(ν−
1
2 , ν−

1
2 ; T1)

trivGL(2) � T2 = L(ν−
1
2 , ν−

1
2 ; T2) ⊕ L(ν−

1
2 ; S)

by a similar calculation (though made much easier since the Jacquet modules of the

various subquotients are already known).

We know StGL(2) � 1 = T1 ⊕ T2 and trivGL(2) � 1 = L(ν−
1
2 , ν−

1
2 ) ⊕ L(ν−

1
2 ; StSO(3))

(cf. Lemma 2.3). We use normalizations so that the nontrivial normalized standard inter-

twining operator for StGL(2) � 1 acts trivially on T2 (generic component) and nontrivially

on T1 (consistent with [33] by an argument from section 5 of [23] and a limit calcula-

tion); for trivGL(2) �1, we normalize so that the nontrivial normalized standard intertwin-

ing operator acts trivially on L(ν−
1
2 , ν−

1
2 ) (K-spherical component) and nontrivially on

L(ν− 1
2 ; StSO(3)). We then use corresponding normalizations for StGL(2)×trivGL(2) �1 (so that

A(σ,w1) acts trivially on StGL(2) � L(ν− 1
2 , ν− 1

2 ) and nontrivially on StGL(2) � L(ν− 1
2 ; StSO(3)),

etc.). The action of normalized standard intertwining operators is summarized below:

A(σ, 1) A(σ,w1) A(σ,w2) A(σ,w3)

π1 = L(ν−
1
2 , ν−

1
2 ; T1) 1 1 −1 −1

π2 = L(ν−
1
2 , ν−

1
2 ; T2) 1 1 1 1

π3 = L(ν− 1
2 , S) 1 −1 1 −1
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If we let ρ0 denote the trivial character of Rψ,σ = W(σ) and ρi for i = 1, 2, 3 the nontrivial

character which is trivial on wi, then the above implies ρπ1 = ρ1, ρπ2 = ρ0 and ρπ3 = ρ2

(with mρ3⊗π = 0 for all π). Thus, e.g.,

trace(A(σ,w1)π(f )) = trace π1(f ) + trace π2(f ) − trace π3(f ).

If we twist the normalizations by a character ρ of Rψ,σ, there is a corresponding twist

in the ρπi . Regarding the A-packet πψ corresponding to the parameter ψ, C. Moeglin

explained to us that πψ = {π1,π2,π3}, so the packet consists of three elements.
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[28] . “Les Débuts d’une Formule Des Traces Stable.” Publications mathématiques de
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[29] Muić, G. “Reducibility of Generalized Principal Series.” Canadian Journal of Mathematics 57

(2005): 616–647.
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