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Abstract. In this paper, we prove the Langlands quotient theorem in the context of finite
central extensions of connected, reductive p-adic groups.

1. Introduction

In this paper, we prove the Langlands quotient theorem in the context of finite central

extensions of reductive p-adic groups (which includes the double cover ˜Sp(2n, F ) and the
metaplectic covers of GL(n, F )–cf. [Ku], [K-P]).

Suppose G is the F -points of a connected, reductive group defined over a nonarchimedean
local field F . The Langlands classification (Langlands quotient theorem) gives a bijective
correspondence

Irr(G)←→ Lang(G)

between irreducible, admissible representations of G and triples of Langlands data (see
[Sil],[B-W],[K]). The Langlands classification was originally done in the context of con-
nected real groups (see [Ln]). The proof for real groups given in [B-W] covers any real G
in Harish-Chandra’s class, so applies to metaplectic covers. In this paper, we prove the
Langlands classification for metaplectic covers of p-adic groups.

More precisely, let G be the group of F -points of a connected, reductive group defined over
a nonarchimedean local field F of characteristic zero. Let (G̃, ρ) be a finite central extension
of G as defined in section 2. In particular, we have a short exact sequence

1 −→ C −→ G̃
ρ
−→ G −→ 1,

where C is a finite subgroup of the center of G̃ and ρ is a covering of topological groups.
Let P = MU be a parabolic subgroup of G. We call P̃ = ρ−1(P ) a parabolic subgroup of
G̃. We have

P̃ = M̃Û,

where M̃ = ρ−1(M) and Û is the canonical lifting of U to G̃ (section 2.3, [M-W]). Let
X(M)F be the group of F -rational characters of M and a∗

M = X(M)F ⊗Z R. Given ν ∈ a∗
M ,

we denote by exp ν the corresponding unramified character of M . We also have an associated
unramified character of M̃ , denoted by ẽxpν. This comes from Lemma 2.3, which gives an
isomorphism between the group of unramified characters of M and the group of unramified
characters of M̃ .

D.B. supported in part by NSF grant DMS-0601005 and by a Research Fellowship of the Alexander von
Humboldt Foundation; C.J. supported in part by NSA grant H98230-10-1-0162.
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We define (aM)∗+ = {x ∈ a∗
M | 〈x, α〉 > 0, ∀α ∈ Π(P, AM)}. (For details, see section 2.3.)

Our main result is the following theorem:

Theorem 1.1 (The Langlands quotient theorem). Let P̃ = M̃Û be a standard parabolic

subgroup of G̃, ν ∈ (aM)∗+ and τ the equivalence class of an irreducible tempered representa-

tion of M̃ . Then the induced representation iG̃,M̃ (ẽxp ν⊗τ ) has a unique irreducible quotient,

which we denote by J(P̃ , ν, τ ). Conversely, if π is an irreducible admissible representation
of G̃, then there exists a unique (P̃ , ν, τ ) as above such that π ∼= J(P̃ , ν, τ ).

Our approach follows a philosophy begun in [B-J]. The basic idea is that in light of
the Bernstein-Zelevinsky geometric lemma and the Casselman criterion for temperedness, it
should be possible to prove the Langlands classification using what are essentially combina-
torial arguments on the exponents which occur. The exponents may be viewed as elements of
a∗, where a is the Lie algebra of the maximal split torus A which is the Levi factor of a fixed
minimal parabolic subgroup. As the positive-valued unramified characters of A and those
for the corresponding subgroup Ã ⊂ G̃ may be both identified with a∗, these combinatorial
arguments apply to both G and G̃. In essence, we are reproving the Langlands classification
in a manner which not only covers connected reductive groups, but also their finite central
extensions. We note that the case where G = GL(n, F ) and G̃ is a double cover of G is
discussed in [H-M], where the Langlands classification for G̃ is derived as a consequence of
the Langlands classification for GL(n, F ).

The main technical result in this paper is the Casselman criterion for square-integrability
(Theorem 3.4). The proof is based on Casselman’s original work for reductive groups ([Ca]),
using a number of structure results; some are easy to adapt, while others require subtler
arguments.

We assume F has characteristic zero. If U is the unipotent radical of a parabolic subgroup
of G, then (regardless of characteristic) U has a canonical lifting to G̃. In zero characteristic,
however, this lifting is unique. This fact is used in several places (proofs of Lemma 2.7,
Proposition 2.11 and Lemma 2.13).

The paper is organized as follows: In the next section, we review some structure theory
for finite central extensions. In section 3, we discuss some representation theory for these
groups–parabolic induction, Jacquet modules, the Casselman criterion for temperedness, etc.
Finally, in section 4 we give the Langlands quotient theorem and its proof. More precisely,
we present the Langlands classification in its subrepresentation form in Theorem 4.1, with
the quotient form in Remark 4.2.

In closing the introduction, we would like to thank Goran Muić, who suggested this project.
We would also like to thank Bill Casselman, David Vogan, and the referees for their valuable
comments. D.B. thanks Werner Müller and Mathematical Institute of the University of
Bonn for their hospitality during her three month research stay, where a part of this work
was done. In an earlier version of this paper, we had an assumption that G is split; we are
grateful to Gordan Savin for his advice on how to remove the assumption.
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2. Structure results

In this section, we review background material and introduce notation needed in the
remainder of the paper.

Let F be a nonarchimedean local field of characteristic zero whose residue field has q
elements. We denote by O the ring of integers of F and by p the prime ideal of F . Let G
be the group of F -points of a connected reductive group defined over F .

Definition 2.1. We call (G̃, ρ) a finite central extension of G if the following hold:

(1) ρ : G̃ −→ G is a surjective homomorphism of topological groups.
(2) C = ker(ρ) is a finite subgroup of Z(G̃), where Z(H) denotes the center of H.
(3) ρ is a topological covering (as described in [M-W]). In particular, there is an open

neighborhood O of the identity in G and a homeomorphism j : ρ−1(O) −→ O × C
such that pr1 ◦ j = ρ on ρ−1(O).

We introduce some terminology for finite central extensions. If (G̃, ρ) is a finite central

extension of G, a section of ρ is a continuous map µ : G→ G̃ such that ρ◦µ = idG. A lifting
of a subgroup H of G is a continuous homomorphism s : H → G̃ such that ρ ◦ s = idH.

Obviously, if G lifts to G̃ (in other words, if the sequence 1 −→ C −→ G̃
ρ
−→ G −→ 1

splits), then G̃ ∼= G× C .

Notation Convention. Let H be a subgroup of G. Throughout the paper, the preimage
of H in G̃ will be denoted by H̃ and a lifting of H (if it exists) will be denoted by Ĥ. Hence,

H̃ = ρ−1(H) and Ĥ ∼= H.

2.1. Compact subgroups.

Lemma 2.2. Let (G̃, ρ) be a finite central extension of G. Then there exists a compact open
subgroup of G which lifts to G̃.

Proof. Let O be an open neighborhood of 1 as in Definition 2.1. Define Ô = j−1(O × {1}).
There exists an open subset Û ⊂ Ô such that ÛÛ ⊂ Ô. Let K be a compact open subgroup
of G such that K ⊂ ρ(Û ). Denote by µ a homeomorphism µ : O→ Ô such that ρ ◦ µ = idO.
For k1, k2 ∈ K, we have

µ(k1k2) = µ(ρ(µ(k1))ρ(µ(k2)))

= µρ(µ(k1)µ(k2))

= µ(k1)µ(k2),

so µ|K is a homomorphism. �

At this point, we have the usual sort of basis of compact neighborhoods of the identity in
G̃. In particular, let K be a compact open subgroup of G which lifts to G̃, with a lifting
sK : K → K̂ ⊂ G̃. Let Ki be a basis of compact open subgroups in G which lie in K.
Then sK(Ki) gives a basis of compact open subgroups in G̃. This makes G̃ an l-group in the
terminology of [B-Z].

If Kmax is a maximal compact open subgroup of G, then K̃max = ρ−1(Kmax) is a maximal

compact open subgroup of G̃.
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2.2. Unramified characters. Let us call a character of G̃ unramified if it is trivial on
0̃G = ρ−1(0G), where 0G = ∩χker|χ|, the intersection over all rational characters χ of G.

Lemma 2.3. We have an isomorphism between the group Xun(G) of unramified characters
of G and the group Xun(G̃) of unramified characters of G̃. It is implemented by the following
(well-defined) maps:

(1) If χ̃ is a character of G̃, we define the corresponding character χ of G by

χ(g) = χ̃(µ(g)),

where µ is any section of G (i.e., µ : G −→ G̃ with ρ ◦ µ = id).
(2) If χ is a character of G, we define the corresponding character χ̃ of G̃ by

χ̃(g̃) = χ(ρ(g̃)).

Proof. The observations that the maps χ 7→ χ̃ and χ̃ 7→ χ are well-defined, send unramified
characters to unramified characters, and are inverses of each other are all straightforward
calculations (or obvious). In particular, the map χ̃ 7→ χ does not depend on the choice of a
section µ. �

Note 2.4. The unramified characters (resp., positive-valued unramified characters) of G
correspond to elements of the dual of the real Lie algebra z∗

C
(resp., z∗), where Z is the

center of G. Thus, the preceding lemma allows us to associate unramified characters (resp.,

positive-valued unramified characters) of G̃ to elements of z∗C (resp., z∗) as well.

2.3. Parabolic subgroups. Fix a maximal split torus A in G. We denote by W = W (G, A)
the Weyl group of G with respect to A. Let Φ = Φ(G, A) be the set of roots. Fix a minimal
parabolic subgroup B containing A. The choice of B determines the set of simple roots Π
and the set of positive roots Φ+ ⊂ Φ. If α ∈ Φ+, we write α > 0.

Let P = MU ⊂ G be a standard parabolic subgroup of G. We denote by ΠM ⊂ Π
the corresponding set of simple roots. Let AM be the split component of the center of M ,
X(M)F the group of F -rational characters of M . If ΠM = Θ, we also use AΘ to denote AM .
Hence, A∅ = A and AΠ = AG.

The following discussion follows [A], Section 5. The restriction homomorphism X(M)F →
X(AM)F is injective and has a finite cokernel. Therefore, we have a canonical linear isomor-
phism

a
∗
M = X(M)F ⊗Z R

∼
−→ X(AM )F ⊗Z R.

If L is a standard Levi subgroup such that L < M , then

AM ⊂ AL ⊂ L ⊂ M.

The restriction X(M)F → X(L)F is injective and it induces a linear injection ιLM : a∗
M → a∗

L.
The restriction X(AL)F → X(AM)F is surjective and it induces a linear surjection rL

M :
a∗

L → a∗
M . Let (aM

L )∗ denote the kernel of the restriction rL
M . Then

a
∗
L = ιLM (a∗

M)⊕ (aM
L )∗

(see Section 5 of [A] for details). In the case of the dual Lie algebra a∗ = a∗
A corresponding

to the maximal split torus A of G, we write simply

ιM : a
∗
M → a

∗ and rM : a
∗ → a

∗
M .
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Note that we have rM ◦ ιM = id.
There is a homomorphism (cf. [H-C]) HM : M → aM = Hom(X(M), R) such that q〈χ,HM(m)〉 =

|χ(m)| for all m ∈M, χ ∈ X(M)F . Given ν ∈ a∗
M , let us write

exp ν = q〈ν,HM(·)〉

for the corresponding character of M . As in Note 2.4, there is then an associated unramified
character of M̃ ; for clarity, we denote this character ẽxp ν.

Let Π(P, AM) = {rM(α) | α ∈ Π\ΠM} denote the set of simple roots for the pair (P, AM).
Choose a W -invariant inner product 〈·, ·〉 : a∗ × a∗ → R. As in [Sil], identifying a∗

M with the
subspace ι(a∗

M) ⊂ a∗, we set

(aM)∗+ = {x ∈ a
∗
M | 〈x, α〉 > 0, ∀α ∈ Π(P, AM)},

+a
∗
M = {x ∈ a

∗
M | x =

∑

α∈Π(P,AM )

cαα, cα > 0},

+ā
∗
M = {x ∈ a

∗
M | x =

∑

α∈Π(P,AM )

cαα, cα ≥ 0},

and (aM)∗− = −(aM)∗+.
Let P = MU be a parabolic subgroup of G. We call

P̃ = ρ−1(P )

a parabolic subgroup of G̃. Let M̃ = ρ−1(M) and Û the canonical lifting of U to G̃ described
in the first appendix to [M-W]. Then

P̃ = M̃Û

serves as the Levi factorization. Set ÃM = ρ−1(AM).

Lemma 2.5. With notation as above, ãM̃ ã−1 ⊆ M̃ , for all ã ∈ ÃM .

Proof. Let ã ∈ ÃM , m̃ ∈ M̃ , a = ρ(ã), m = ρ(m̃). Then

ρ(ãm̃ã−1) = ama−1 = m ∈M,

so ãm̃ã−1 ∈ ρ−1(M) = M̃ . �

Lemma 2.6 (Bruhat decomposition).
With notation as above,

G̃ =
∐

w∈W

B̃µ(w̄)B̃,

where w ∈W has representative w̄ ∈ G (noting that the double-cosets are independent of the
section µ and the choice of representatives w̄). More generally, if P = MU and Q = LV
are two standard parabolic subgroups of G, then

G̃ =
∐

w∈WM,L

Q̃µ(w̄)P̃ ,

where W M,L = {w ∈W |w · ΠM ⊂ Φ+, w−1 · ΠL ⊂ Φ+} (see [B-Z]).
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Proof. We do the minimal parabolic case; the general case is similar.
First we check that G̃ = ∪w∈W B̃µ(w̄)B̃. For g̃ ∈ G̃, write ρ(g̃) = b1w̄b2. Then g̃ =

µ(b1w̄b2)cg̃ = µ(b1)µ(w̄)µ(b2)c, where c ∈ C depends on cg̃ and the cocycle. Since C ⊂ B̃, we

see that µ(b1), µ(b2)c ∈ B̃, giving the desired decomposition. To see that the double-cosets
are distinct, suppose b̃1µ(w̄)b̃2 = b̃′1µ(w̄′)b̃′2 with w 6= w′. Applying ρ, we get

ρ(b̃1)w̄ρ(b̃2) = ρ(b̃′1)w̄
′ρ(b̃′2) ∈ (Bw̄B) ∩ (Bw̄′B) = ∅,

a contradiction. The lemma follows. �

Let P be the standard parabolic subgroup of G corresponding to the set of simple roots
Θ ⊂ Π. For ε ∈ (0, 1], define

A−
Θ(ε) = {a ∈ AΘ | |α(a)| ≤ ε, for all α ∈ Π \Θ}.

We write A−
Θ for A−

Θ(1). Define Ã−
Θ = ρ−1(A−

Θ). For α ∈ Π, ã ∈ Ã∅, we define α(ã) = (α◦ρ)(ã).

Since ã ∈ Ã−
Θ ⇐⇒ ρ(ã) ∈ A−

Θ, we have

Ã−
Θ = {ã ∈ ÃΘ | |α(ã)| ≤ 1, for all α ∈ Π \Θ}.

If P = MU is any parabolic subgroup, then P = g−1P ′g, for some g ∈ G and some
standard parabolic subgroup P ′. Let Θ ⊂ Π be the set of simple roots corresponding to P ′.
Define A−

M(ε) = g−1A−
Θ(ε)g and Ã−

M (ε) = ρ−1(A−
M(ε)). The following lemma is analogous to

Proposition 1.4.3 of [Ca]:

Lemma 2.7. Let P̃ = M̃Û be a parabolic subgroup of G̃. If N̂1, N̂2 are two open compact
subgroups of Û , then there exists ε > 0 such that ã ∈ Ã−

M(ε) implies ãN̂2ã
−1 ⊆ N̂1.

Proof. Let N1 = ρ(N̂1), N2 = ρ(N̂2) and let N be a compact open subgroup of U such that
N2 ⊆ N `, where ` = |C|. According to Proposition 1.4.3 of [Ca], there exists ε > 0 such that

aNa−1 ⊆ N1, for all a ∈ A−
M(ε). Let ã ∈ Ã−

M(ε) and a = ρ(ã). Define sa : N → Û by

sa(x) = ã−1sU (axa−1)ã,

where sU is the unique lifting sU : U → Û ([M-W], Appendix I). Then sa is a homomorphism

and ρ ◦ sa = idN . In addition, for x ∈ N2 we have sa(x) = sU (x). Therefore, sa(N2) = N̂2.
It follows that

ãN̂2ã
−1 = sU(aN2a

−1) ⊆ sU(N1) = N̂1.

�

Define ÃO = ρ−1(A∅(O)).

Lemma 2.8. With notation as above,

ρ−1(A−
Θ \ A∅(O)AΠ) = Ã−

Θ \ ÃOÃΠ.

Proof. This follows from the fact that for any two subsets X and Y of G, we have

ρ−1(XY ) = ρ−1(X)ρ−1(Y ),

ρ−1(X \ Y ) = ρ−1(X) \ ρ−1(Y ).

�
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2.4. Iwahori factorization; Cartan decomposition.

Lemma 2.9 (The Cartan decomposition). Suppose that the center of G is anisotropic. Then

there exists a maximal compact subgroup K̃max ⊂ G̃ such that

(a) G̃ = K̃maxP̃ , for any parabolic subgroup P̃ .

(b) ÃO ⊆ K̃max

(c) G̃ = K̃maxÃ
−
∅ K̃max, with the map ã 7→ K̃maxãK̃max establishing a bijection between

K̃max \ G̃/K̃max and Ã−
∅ /ÃO.

Proof. We apply Lemma 1.4.5 of [Ca]. Let Kmax be a maximal compact open subgroup of
G such that properties (a), (b), (c) hold for G. Let K̃max = ρ−1(Kmax). Then (a) and
(b) for G̃ follow directly from the corresponding properties for G. Also, G = KmaxA

−
∅ Kmax

implies G̃ = K̃maxÃ
−
∅ K̃max. It remains to prove the bijection. Suppose ã1 = k̃1ã2k̃2, where

ã1, ã2 ∈ Ã∅
−
, k̃1, k̃2 ∈ K̃max. Let ã = ã1ã

−1
2 . Then (c) for G implies ρ(ã) ∈ A∅(O). Therefore,

ã ∈ ρ−1(A∅(O)) = ÃO. �

Proposition 2.10. Let G be arbitrary. Let Γ be a subgroup of G such that Γ/AΠ is compact,
A∅(O) ⊆ Γ and G = ΓA−

∅ Γ. Define Γ̃ = ρ−1(Γ) and ÃΠ = ρ−1(AΠ). Then

(i) Γ̃/ÃΠ is compact.
(ii) ÃO ⊆ Γ̃.
(iii) G̃ = Γ̃Ã−

∅ Γ̃.

Proof. It is clear that (ii) and (iii) hold. The map on p.17 [La], which shows Γ̃/ÃΠ
∼= Γ/AΠ,

is a homeomorphism, thus giving (i) �

We define Iwahori factorizations as in section 1.4 [Ca]. Let K be a compact open subgroup
of G̃. We say that K has an Iwahori factorization with respect to P̃ if the following hold:

(i) the product map is an isomorphism of (Û− ∩K)× (M̃ ∩K)× (Û ∩K) with K.

(ii) for every ã ∈ Ã−
M , ãÛK ã−1 ⊆ ÛK , ã−1Û−

K ã ⊆ Û−
K .

Here, Û (respectively, Û−) denotes the canonical lifting of U (respectively, U−) and M̃ =
ρ−1(M). The following proposition is analogous to Proposition 1.4.4 of [Ca].

Proposition 2.11. Let B̃ be a minimal parabolic subgroup of G̃. There exists a collection
{K̂n}n≥n0

, which forms a neighborhood basis of identity such that

(a) Every K̂n is a normal subgroup of K̂n0
;

(b) If P̃ is a parabolic subgroup containing B̃ then K̂n has an Iwahori factorization with
respect to P̃ ;

(c) If P̃ = M̃Û is a parabolic subgroup containing B̃ then M̃Kn
= M̃∩K̂n has an Iwahori

factorization with respect to M̃ ∩ B̃.

Proof. We have B̃ = ρ−1(B), where B is a minimal parabolic subgroup of G. Let {Kn}n≥0

be the collection of compact subgroups of G from Proposition 1.4.4 of [Ca]. Let O be a

compact open subgroup of G which lifts to G̃. Fix a lifting sO : O→ G̃. There exists n1 ≥ 0
such that Kn ⊆ O, for all n ≥ n1. For n ≥ n1, define K̂n = sO(Kn).



8 DUBRAVKA BAN AND CHRIS JANTZEN

Let U0 denote the unipotent radical of B. Then U0 is conjugate to a subgroup of the
upper triangular unipotent group U(m, F ) ⊆ GL(m, F ), for some m ([Bor], Proposition
1.10, Corollary 15.5 and Theorem 21.20). We can assume U0 ⊆ U(m, F ) (the result in
general is obtained by conjugation). For n ≥ 0, denote by V ′

n the kernel of the reduction
U(m,O) → U(m,O/pn). Define Vn = V ′

n ∩ U0. There exists n2 such that Vn2
⊆ Kn1

∩ U0.
Let p be the residual characteristic of F and e the ramification degree. Let C = kerρ and
` = |C|. Write ` = pt0`0, where `0 is relatively prime to p. Set n3 = n2 + t0me. There exists

n0 such that Kn0
∩ U0 ⊆ Vn3

. The collection {K̂n}n≥n0
satisfies (a).

For (b), let K̂ = K̂n for some n ≥ n0. Let P = MU be a parabolic subgroup of G

containing B and P̃ = M̃Û = ρ−1(P ). We claim that K̂ has an Iwahori factorization with
respect to P̃ . Let sU , s−U denote the liftings

sU : U → Û , s−U : U− → Û−.

We first show

sO|K∩U = sU |K∩U , sO|K∩U− = s−U |K∩U−.

Let u ∈ U . Then there exists a unique v ∈ U such that u = v` (see Appendix I of [M-W]).
Let ṽ ∈ ρ−1(v). Then sU(u) = (ṽ)` and this does not depend on the choice of ṽ.

If u ∈ K ∩ U , then we claim that v ∈ Kn1
∩ U . Let

u = 1 + x, v = 1 + y,

where xij ∈ pn3 , for all i, j = 1, . . . , m and xij = 0, yij = 0 for i = 1, . . . , m, j = 1, . . . , i.
Then

(1) (yk)ij = 0, for j < i + k.

We have 1 + x = (1 + y)`, so

(2) x = `y +

(
`
2

)
y2 + · · · +

(
`
`

)
y`.

From (1) and (2), we obtain yi,i+1 ∈ pn3−t0e, for all i. It follows that

(3) (yk)ij ∈ p
n3−t0e, i = 1, . . . , m, j = 1, . . . , i + 1, j ≤ m.

We prove by induction on s ∈ {1, . . . , m− 1} that

(4) (yk)ij ∈ p
n3−t0es, i = 1, . . . , m, j = 1, . . . , i + s, j ≤ m.

For s = 1, this is (3). Now, assume that (4) is true for s and prove it for s + 1.
Let k > 1. If i + s + 1 ≤ m, then

(yk)i,i+s+1 = (y · yk−1)i,i+s+1 =
m∑

r=1

yi,r(y
k−1)r,i+s+1.

For r = 1, . . . i, we have yi,r = 0. For r = i + s + 1, . . . , m, we have (yk−1)r,i+s+1 = 0.
Therefore,

(yk)i,i+s+1 =
i+s∑

r=i+1

yi,r(y
k−1)r,i+s+1.
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The inductive assumption implies (yk)i,i+s+1 ∈ pn3−t0es. From (2), we obtain yi,i+s+1 ∈
pn3−t0e(s+1). This proves (4) for all s ∈ {1, . . . , m− 1}. It now follows that yij ∈ pn2 , for all
i, j = 1, . . . , m, that is, v ∈ Kn1

∩ U . Therefore

sO(u) = sO(v`) = (sO(v))` = sU (u),

so sO|K∩U = sU |K∩U . Similarly, sO|K∩U− = s−U |K∩U−.

We have sO(U ∩ K) ⊆ sU (U) ∩ sO(K) = Û ∩ K̂ . On the other hand, ρ(Û ∩ K̂) ⊆

ρ(Û) ∩ ρ(K̂) = U ∩K, so Û ∩ K̂ ⊆ sO(U ∩K). It follows that Û ∩ K̂ = sO(U ∩K), i.e.,

(5) ÛK = sO(UK) = Û ∩ K̂

In the same way we obtain

(6) Û−
K = sO(U−

K) = Û− ∩ K̂.

Similar arguments work for M̃K . We have

(7) M̂K = sO(MK) = M̃K ∩ K̂.

Now condition (i) for the Iwahori factorization follows immediately from (5), (6) and (7).
For condition (ii) for the Iwahori factorization, let ã ∈ Ã−

M and a = ρ(ã). Then aUKa−1 ⊂

UK and aUKn1
a−1 ⊂ UKn1

. Define sa : UKn1
→ G̃ by

sa(x) = ã−1sU (axa−1)ã.

Then sa is a homomorphism and ρ ◦ sa = idUKn1

. If u ∈ UK , then we proved above that

u = v` for v ∈ UKn1
. Then sa(u) = sa(v

`) = (sa(v))` = sU (u). It follows sa|K∩U = sU |K∩U

and sa(UK) = ÛK . Therefore, ÛK = ã−1sU (aUKa−1)ã and

ãÛK ã−1 = sU (aUKa−1) ⊆ sU(UK) = ÛK ,

and similarly for U−
K . This proves (b). It is clear that the collection {K̂n}n≥n0

satisfies
(c). �

2.5. Central extensions of tori. Central extensions of tori are generally not commutative.
An appropriate replacement for Ã∅ is the centralizer of M̃∅ in Ã∅. This fact, together with
the following lemma and its proof, was communicated to us by Gordan Savin.

Lemma 2.12. Let A be a p-adic torus. Let n be a natural number. Then An is an open
subgroup of finite index in A.

Proof. Let A0 be the maximal compact subgroup of A. Then A/A0 is a lattice, hence (A/A0)
n

is a full sublattice. It remains to prove that An
0 is an open compact subgroup of A0.

Let A be the p-adic Lie algebra of A and A0 a p-adic lattice inA. Let $ be the uniformizer
of the p-adic field. Define Ai = $iA0. Then there exists an integer i0 such that the expo-
nential map is well defined on Ai for all i > i0. (The group A is an algebraic group, hence
it sits as a subgroup of GLm, and A is a subalgebra of the algebra of matrices Mm. The
exponential map is the usual one for matrices.) Let Ai = exp(Ai). It follows that An

i = Aj

for every i ≥ i0, where j − i is the valuation of n, since n-th power on Ai corresponds to
multiplication by n on A.

�
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Lemma 2.13. Let Z̃∅ denote the centralizer of M̃∅ in Ã∅. Then

(a) Z̃∅ has finite index in Ã∅;
(b) Z̃Θ = Z̃∅ ∩ ÃΘ is the centralizer of M̃Θ in Ã∅.

Proof. (a) Let ` = |C|. Then Ã`
∅ ⊆ Z̃∅, so the statement follows from Lemma 2.12.

(b) Let U be a unipotent subgroup of MΘ. There exists a unique homomorphism s :

U → M̃Θ such that ρ ◦ s = idU . Set Û = s(U). For ã ∈ ÃΘ, define sã : U → M̃Θ by
sã(x) = ãs(x)ã−1. Then ρ ◦ sã = idU . This implies sã = s, so ã commutes with any element

of Û .
The group MΘ is generated by M∅ and the root subgroups Uα, α ∈ Θ. This implies M̃Θ

is generated by M̃∅ and the subgroups Ûα, α ∈ Θ. Therefore, ã ∈ Z̃Θ = Z̃∅ ∩ ÃΘ commutes
with any element of M̃Θ. �

2.6. Haar measure. Let H be a locally compact topological group and H̃ a covering group.
Then H̃ is a locally compact topological group. Therefore, it has, up to a positive multiplica-
tive constant, a unique left Haar measure. Let dh be a left Haar measure on H. Suppose H
has an open compact subgroup K which lifts to K̂ ⊂ H̃ . Then we can choose a left Haar
measure dh̃ on H̃ such that

(8) measH̃(K̂) = measH(K).

Moreover, if (8) holds for K, it holds for any compact open subgroup of H which lifts to H̃.
If (8) holds, we say that dh̃ and dh are compatible.

For x̃ ∈ H̃, define δH̃(x̃) by
∫

H̃

f(x̃−1h̃x̃)dh̃ = δH̃(x̃)

∫

H̃

f(h̃)dh̃.

The definition of δH̃(x̃) does not depend on the choice of dh̃. The function δH̃ : H̃ → R>0

is a character of H̃ called the modular character. The kernel of δH̃ contains every compact

open subgroup of H̃.

Proposition 2.14. Let P = MU be a parabolic subgroup of G and P̃ = ρ−1(P ). Let

ã ∈ Ã−
M and a = ρ(ã). Then

δP̃ (ã) = δP (a).

Proof. Select compatible Haar measures on P̃ and P . Let K̂ ⊂ Ô be a compact open
subgroup such that ãM̂K ÛK ã−1 ⊆ M̂K ÛK ⊆ Ô, where M̂K = M̃ ∩ K̂, ÛK = Û ∩ K̂ (cf.
Lemma 2.5, Proposition 2.11). We have

measP̃(ãM̂KÛK ã−1) = δP̃ (ã)measP̃(M̂K ÛK)

and

measP̃(ãM̂KÛK ã−1) = measP(aMKUKa−1) = δP (a)measP(MKUK).

Since measP̃ (M̂KÛK) = measP(MKUK), the claim follows. �
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3. Admissible representations

In this section, we review some representation theoretic background in the context of finite
central extensions. In particular, we discuss parabolic induction and Jacquet modules, as
well as giving the Casselman criteria for square-integrability and temperedness.

An l-group is a Hausdorff topological group with a basis of neighborhoods of the identity
consisting of compact open subgroups. As we observed earlier, G̃ is an l-group. We may
then define smooth and admissible representations as usual. We give the definitions below.
In addition, G̃ is countable at infinity (i.e., G̃ is a countable union of compact sets).

Let (π, V ) be a representation of G̃ on a complex vector space V . For any subgroup K
of G̃, we define V K = {v ∈ V | π(k)v = v, for all k ∈ K}. Define (π, V ) to be a smooth
representation if every v ∈ V lies in V K for some compact open subgroup K of G̃. We say
that (π, V ) is admissible if it is smooth and dim(V K) <∞ for every open subgroup K of G̃.

Lemma 3.1 (Schur’s Lemma).

If (π, V ) is an irreducible smooth representation of G̃, then EndG̃(V ) = C.

Proof. Since G̃ is countable at infinity, we can apply Schur’s Lemma from [B], section 4.2. �

As a standard consequence of Schur’s Lemma, we have the following: if (π, V ) is an

irreducible smooth representation of G̃, then there exists a character ωπ of the center Z(G̃)
such that

π(z̃)v = ωπ(z̃)v, for all z̃ ∈ Z(G̃), v ∈ V.

We call ωπ the central character of π.

3.1. Parabolic induction and Jacquet modules. Let P̃ be a parabolic subgroup of G̃,
with Levi factorization P̃ = M̃Û (see Section 2.3). These then satisfy the requirements of 1.8
[B-Z], so we have normalized induction and Jacquet functors. More precisely, let (σ, V ) be
a smooth representation of M̃ . Then the induced representation iG̃,M̃ (σ) is a representation

of G̃ acting on the space

iG̃,M̃(V ) = {f : G̃→ V | f is smooth and f(ũm̃g̃) = δP̃ (m̃)1/2σ(m̃)f(g̃), ũ ∈ Û , m̃ ∈ M̃ , g̃ ∈ G̃}

by right translation. Let (π, V ) be a smooth representation of G̃. Define

V (Û ) = spanC{π(ũ)v − v | ũ ∈ Û , v ∈ V }

and VÛ = V/V (Û). Then rM̃,G̃(π) is a representation of M̃ acting on VÛ by

rM̃,G̃(π)(m̃)(v + V (Û)) = δP̃ (m̃)−1/2π(m̃)v + V (Û).

The functors iG̃,M̃ and rM̃ ,G̃ have the usual properties (see Proposition 1.9 of [B-Z]).

Lemma 3.2. Let (π, V ) be a smooth representation of G̃. For a compact subgroup Û1 of Û ,

define V (Û1) = {v ∈ V |
∫

Û1

π(û)v dû = 0}. Then

V (Û) =
⋃

V (Û1),

the union over all compact open subgroups Û1 of Û .
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Proof. The proof is the same as for Proposition 3.2.1 in [Ca]. �

Proposition 3.3. Let P̃ = M̃Û and Q̃ = L̃Ṽ be standard parabolic subgroups of G̃, where
P̃ = ρ−1(P ), M̃ = ρ−1(M), and Û is the canonical lift of U . If τ is an admissible represen-
tation of M̃ , then in the Grothendieck group, we have

rL̃,G̃ ◦ iG̃,M̃(τ ) =
∑

w∈WM,L

iL̃,L̃′ ◦ w ◦ rM̃ ′,M̃(τ ),

where M̃ ′ = M̃ ∩ w−1(L̃) and L̃′ = L̃ ∩ w(M̃).

Proof. This follows from Lemma 2.6 and Theorem 5.2 of [B-Z]. It is a straightforward
matter to show that a subgroup H ⊂ G which is decomposable with respect MU has H̃
decomposable with respect to M̃Û , so condition (4) in Theorem 5.2 is satisfied. Conditions
(1)-(3) are essentially obvious. �

3.2. Square-integrable representations. Let (π, V ) be a smooth representation of G̃. We

denote by (π̃, Ṽ ) the contragredient of (π, V ). We have a natural pairing 〈 , 〉 : V ⊗ Ṽ → C

given by 〈v, ṽ〉 = ṽ(v). The matrix coefficient of π associated to v and ṽ is the function
cv,ṽ(g̃) = 〈π(g̃)v, ṽ〉.

We define square-integrability in the usual way: an irreducible representation π of G̃ is
called square-integrable if it has unitary central character and |cv,ṽ| ∈ L2(G̃/ZG̃) for all v ∈ V

and ṽ ∈ Ṽ . An irreducible representation π of G̃ is called tempered if it has unitary central
character and |cv,ṽ| ∈ L2+ε(G̃/ZG̃) for all ε > 0.

Let P̃ = M̃Û be a standard parabolic subgroup of G̃. Let µ ∈ a∗
M . We let expµ denote

the corresponding character of AM (or M) and ẽxpµ the corresponding character of ÃM (or
M̃)–cf. section 2.2.

Let π be an irreducible admissible representation of G̃. An exponent of π with respect to
P̃ is a µ ∈ a∗

M such that

ẽxpµ⊗ ρ ≤ rM̃ ,G̃(π) for some ρ with ωρ unitary.

Theorem 3.4 (The Cassleman criterion for square-integrability).

Suppose π is an irreducible admissible representation of G̃ having unitary central character.
Then π is square-integrable if and only if for every standard parabolic subgroup P̃ = M̃Û
and every exponent ν with respect to P̃ , we have ν ∈ +a∗

M .

Proof. Let π be an irreducible admissible representation of G̃ having unitary central char-
acter. Observe that in section 2 we have proved the structure results which are a ba-
sis for Casselman’s proof of the criterion for square-integrability [Ca]. More precisely,
Lemma 2.7, Lemma 2.9, Proposition 2.10 and Proposition 2.11 correspond to Proposi-
tion 1.4.3, Lemma 1.4.5, Proposition 1.4.6 and Proposition 1.4.4 of [Ca], respectively. In addi-
tion, Proposition 2.14 implies the statements corresponding to Lemma 1.5.1 and Lemma 1.5.2
of [Ca].

Let v ∈ V , ṽ ∈ Ṽ . Let Z̃∅ denote the centralizer of M̃∅ in Ã∅. We know from Lemma 2.13
that Z̃∅ has finite index in Ã∅. Let S be a finite set of representatives of Ã−

∅ /(Ã−
∅ ∩ Z̃∅). Let

K be a compact open subgroup of G̃, normal in Γ̃ (Γ̃ as in Proposition 2.10), such that v, ṽ
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are fixed by K and π(s̃)v is fixed by K, for all s̃ ∈ S. We consider square-integrability for
|cv,ṽ|. More generally, we discuss integrability for |cv,ṽ|p, p > 0. As in the proof of Theorem

4.4.6 of [Ca], we reduce it to the question of integrability of |cv,ṽ|p on KÃ−
∅ K/Z(G̃). Now,

∫

KÃ−

∅
K/Z(G̃)

|〈π(x)v, ṽ〉|pdx =
∑

s̃∈S

∫

K(Ã−

∅
∩Z̃∅)s̃K/Z(G̃)

|〈π(x)v, ṽ〉|pdx

=
∑

s̃∈S

∫

K(Ã−

∅
∩Z̃∅)K/Z(G̃)

|〈π(x)π(s̃)v, ṽ〉|pdx.

We may replace π(s̃)v by v and consider only |cv,ṽ| on K(Ã−
∅ ∩ Z̃∅)K/Z(G̃). As in [Ca], we

reduce the problem to matrix coefficients of Jacquet modules of π. More precisely, let ε be
as in Corollary 4.3.4 of [Ca]. Let

ΘÃ−
∅ (ε) =

{
ã ∈ Ã−

∅

|α(ã)| ≤ ε for α ∈ Π \Θ,
ε < |α(ã)| ≤ 1 for α ∈ Θ

}
.

Then Ã−
∅ is the disjoint union of ΘÃ−

∅ (ε) as Θ ranges over all subsets of Π. Fix Θ. Let
P = MU be the standard parabolic subgroup corresponding to Θ. We consider integrabil-
ity for |cv,ṽ|p on K( ΘÃ−

∅ (ε) ∩ Z̃∅)K/Z(G̃). Using Lemma 1.5.2 of [Ca] (which follows from

Proposition 2.14), this reduces to |cv,ṽ|pδ
−1
P on ΘÃ−

∅ (ε) ∩ Z̃∅/Z(G̃). Let x, x̃ be the images of

v, ṽ in VÛ , ṼÛ−. Then for ã ∈ ΘÃ−
∅ (ε), we have 〈π(ã)v, ṽ〉 = 〈δ1/2

P (ã)rM,Gπ(ã)x, x̃〉U and can
consider

(9) |〈rM,Gπ(ã)x, x̃〉U |
pδ

p/2−1
P (ã).

Observe that Lemma 2.13 implies

ÃΘ ∩ Z̃∅ = ÃΘ ∩ Z(M̃ ).

Therefore, ÃΘ ∩ Z̃∅ has generalized eigencharacters on rM̃,G̃π (central characters), and we
can apply Casselman’s proof. It follows that |〈rM̃ ,G̃π(y)x, x̃〉U | is square integrable on

K( ΘÃ−
∅ (ε) ∩ Z̃∅)K/Z(G̃) if and only if for every exponent ν with respect to P̃ ,

(10) |ẽxp ν(ã)| < 1, for all ã ∈ (Ã−
Θ ∩ Z̃∅) \ ÃOÃΠ.

For any ã ∈ ÃΘ we have ã` ∈ Z(M̃), where ` = |C|. Condition (10) is then equivalent to

|ẽxp ν(ã)| < 1 for all ã ∈ Ã−
Θ \ ÃOÃΠ. In summary, π is square-integrable if and only if for

every standard parabolic subgroup P̃ = M̃Û and every exponent ν with respect to P̃ , we
have |ẽxp ν(ã)| < 1 for all ã ∈ Ã−

Θ \ ÃOÃΠ. According to Lemma 2.3 and Lemma 2.8, this is
equivalent to | exp ν(a)| < 1 for all a ∈ A−

Θ \ A∅(O)AΠ, i.e., ν ∈ +a∗
M . �

Proposition 3.5 (The Casselman criterion for temperedness). Suppose π is an irreducible
admissible representation of G̃ having unitary central character. Then π is tempered if and
only if for every standard parabolic subgroup P̃ = M̃Û and every exponent ν with respect to
P̃ , we have ν ∈ +ā∗

M .
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Proof. We apply the proof of the previous theorem for p = 2 + ε, ε > 0. Define Ψ(ã) =
〈(rM,Gπ)(ã)u, ũ〉N . Then (9) is equal to

|Ψ|pδ
p/2−1
P = |Ψ|2+εδ

ε/2
P = |Ψδ

ε/(2(2+ε))
P |2+ε.

So, for temperedness, we need for every central character χ of Ψ, ã ∈ Ã−
Θ \ ÃOÃΠ,

|χ(ã)| < δ
−ε/(2(2+ε))
P (ã), for all ε > 0.

We have δP (ã) < 1, for ã ∈ Ã−
Θ\ÃOÃΠ. Therefore, the right hand side of the above inequality

is greater than 1 for all ε > 0. Since limε→0 ε/(2(2 + ε)) = 0, we obtain |χ(ã)| ≤ 1. �

Remark 3.6. To faciliate the combinatorial arguments in section 4, we take a moment to
reformulate this as in [B-J]. If π is an irreducible admissible representation of G̃, let

Mmin(π) = {L̃ standard Levi | rL̃,G̃(π) 6= 0 but rH̃,G̃(π) = 0 for all H̃ < L̃}.

Now, set

Exp(π) = {ι(µ) | ẽxp µ⊗ ρ ≤ rL̃,G̃(π) for some ρ with ωρ unitary and L̃ ∈Mmin(π)}.

It now follows from Lemma 4.3 [B-J] that if π is an irreducible unitary representation, then
π is tempered if and only if ν ∈ +ā∗ for every ν ∈ Exp(π).

4. The Langlands classification

In this section, we state and prove the Langlands classification for finite central exten-
sions. The subrepresentation version is Theorem 4.1; the quotient version Theorem 1.1 and
Remark 4.2. The proof is done in the subrepresentation setting for technical reasons: if
π ∼= L(P̃ , ν, τ ), then ẽxp ν ⊗ τ ≤ rM̃ ,G̃(π).

A set of Langlands data for G̃ is a triple (P̃ , ν, τ ) with the following properties:

(1) P̃ = M̃Û is a standard parabolic subgroup of G̃,
(2) ν ∈ (aM̃ )∗−, and

(3) τ is (the equivalence class of) an irreducible tempered representation of M̃ .

We now state the Langlands classification in the subrepresentation setting.

Theorem 4.1 (The Langlands classification).
Suppose (P̃ , ν, τ ) is a set of Langlands data for G̃. Then the induced representation

iG̃,M̃(ẽxp ν ⊗ τ ) has a unique irreducible subrepresentation, which we denote by L(P̃ , ν, τ ).

Conversely, if π is an irreducible admissible representation of G̃, then there exists a unique
(P̃ , ν, τ ) as above such that π ∼= L(P̃ , ν, τ ).

The proof of this result has three main parts. First, we show that L(P̃ , ν, τ ) is well-
defined–i.e., that iG̃,M̃(ẽxp ν⊗τ ) has a unique irreducible subrepresentation–see Corollary 4.4.
Then, in Proposition 4.8, we show that any irreducible admissible π may be written in the
form L(P̃ , ν, τ ) (existence of Langlands data). Finally, in Proposition 4.10, we show that if
(P̃1, ν1, τ1) and (P̃2, ν2, τ2) are two such triples and L(P̃1, ν1, τ1) ∼= L(P̃2, ν2, τ2), then P̃1 = P̃2,
ν1 = ν2, and τ1

∼= τ2 (uniqueness of Langlands data).
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Remark 4.2. This theorem describes the Langlands classification in the subrepresentation
setting. It can also be formulated in the quotient setting (see Theorem 1.1), in which case
one has ν ∈ (aM̃ )∗+ (and the associated irreducible representation appears as a quotient).

To see this, let π be an irreducible admissible representation. Let (P̃ , ν, τ ) be the Langlands
data for π̃, the contragredient of π. Since π̃ is the unique irreducible subrepresentation of
iG̃,M̃(ẽxp ν ⊗ τ ), we see π is the unique irreducible quotient of

iG̃,M̃(ẽxp ν ⊗ τ )̃ ∼= iG̃,M̃(ẽxp(−ν)⊗ τ̃ ).

We have −ν ∈ (aM̃ )∗+ and τ̃ tempered, as needed. (The quotient and subrepresentation data
for a given π should be related as in Lemma 1.1 [J]. However, the argument there relies on
the characterization of the Langlands quotient in terms of standard intertwining operators,
which we do not have at this point.)

As in [B-W], Chapter XI, set F =
∑

Rαi, where the sum is over the simple roots Π =
{α1, . . . , αn}. Then a∗ = z∗ ⊕ F , where z∗ = {x ∈ a∗ | 〈x, α〉 = 0, for all α ∈ Π}. For

ν ∈ a∗, we define ν0 to be the point in (a∗
−) ∩F which is closest to ν. Define β1, . . . , βn ∈ F

by 〈βi, αj〉 = δij. Then F =
∑

Rβi. More generally, if I ⊂ {1, . . . , n}, then a∗ = z∗ +∑
i6∈I Rβi +

∑
i∈I Rαi (see Chapter IV.6.6 [B-W]). Note that if M is the standard Levi factor

with ΠM = {αi | i ∈ I}, then iM(a∗
M) = z∗ +

∑
i6∈I Rβi. The set of simple roots Π is a basis

of an abstract root system in F . Note that if ν = z +
∑

i6∈F aiβi +
∑

i∈F aiαi with ai < 0 for
all i 6∈ F and ai ≥ 0 for all i ∈ F , then

ν0 =
∑

i6∈F

aiβi

(see Lemma 8.56 [Kn]).
We now recall the following result (Lemma 3.3 [B-J]):

Lemma 4.3. Let P̃ = M̃Û be a standard parabolic subgroup of G̃. Let F ⊂ {1, . . . , n} be
such that ΠM̃ = {αi | i ∈ F}. If

x ∈ TF = {x ∈ F |x =
∑

i6∈F

ciβi +
∑

j∈F

cjαj with ci < 0 for i 6∈ F and cj ≥ 0 for j ∈ F}

and w ∈W M,A (cf. Lemma 2.6) with w 6= 1, then (wx)0 6= x0.

Corollary 4.4. Let (P̃ , ν, τ ) be a set of Langlands data for G̃. Then iG̃,M̃(ẽxp ν ⊗ τ ) has

a unique irreducible subrepresentation (denoted L(P̃ , ν, τ ) above).

Proof. We use the following standard result (see Proposition 2.1.9 [Ca], Lemma 8.2 [Gus],

section I.3 [W] for G; it is essentially the same for G̃): If (ρ, V ) is an admissible representation
of M̃ and ω is a character of ZM̃ , write

Vω = {v ∈ V | there is an n ∈ N such that [ρ(z)− ω(z)]nv = 0 for all z ∈ ZM̃}.

Then V = ⊕ωVω as a direct sum of M̃-modules. In particular, let ρ = rM̃,G̃(π) and λ =

ẽxp ν ⊗ ωτ . By Lemma 4.3 and Proposition 3.3, Vλ is just the M̃ -module ẽxp ν ⊗ τ (as it
is the unique subquotient of rM̃ ,G̃(π) having this central character), so appears as a direct
summand in rM̃ ,G̃(π). The corollary now follows from Frobenius reciprocity. �



16 DUBRAVKA BAN AND CHRIS JANTZEN

Remark 4.5. This actually shows more: it also follows that L(P̃ , ν, τ ) appears with mul-
tiplicity one in iG̃,M̃(ẽxp ν ⊗ τ ). Further, ẽxp ν ⊗ τ is the unique irreducible subquotient of
rM̃,G̃ ◦ iG̃,M̃(ẽxp ν ⊗ τ ) having its central character.

The proof of existence is based in part on that given in [Kn], which borrows from the
original proof in [Ln].

Definition 4.6. For ν, ν ′ ∈ a∗, we write ν � ν ′ if 〈ν ′ − ν, βi〉 ≥ 0 for all i.

We note that � defines a partial order on a∗. We now have the following standard lemma:

Lemma 4.7. If ν � ν ′, then ν0 � ν ′
0.

Proof. This is Lemma 8.59 in [Kn]. �

For F ⊂ {1, . . . , n}, let TF be defined as in Lemma 4.3. The sets TF partition F into
2n disjoint subsets (this follows immediately from Lemmas IV.6.9–IV.6.11 in [B-W]). For
ν ∈ a∗, we define F (ν) ⊂ {1, . . . , n} to be the unique subset for which we have ν ∈ z∗+TF (ν).

Proposition 4.8. Let π be an irreducible admissible representation. Then there exists a

triple (P̃ , ν, τ ) satisfying the requirements for Langlands data and such that π ↪→ IndG̃
P̃
(ẽxp ν⊗

τ ).

Proof. Choose µ ∈ Exp(π) such that µ0 is minimal with respect to � (Exp(π) as in Re-
mark 3.6). Write

µ = z +
∑

i6∈F (µ)

aiβi +
∑

j∈F (µ)

ajαj

with ai < 0 for i 6∈ F (µ) and aj ≥ 0 for j ∈ F (µ). Let P̃ = P̃F (µ) = M̃Û . Set

ν = rM


 ∑

i6∈F (µ)

aiβi


 ,

(notation as in section 2.3). We have ν ∈ (a∗
M)−.

By definition, µ ∈ Exp(π) means µ = ι(µ′) for some ẽxpµ′ ⊗ ρ ≤ rL̃,G̃(π), with ρ an
irreducible unitary supercuspidal representation ρ and µ′ ∈ a∗

L. We now claim there is some

ẽxp ν ⊗ θ ∈ rM̃,G̃(π) such that ẽxpµ′ ⊗ ρ ≤ rL̃,M̃(ẽxp ν ⊗ θ). If we show L̃ ≤ M̃ , this

follows immediately from taking Jacquet modules in stages. To show L̃ ≤ M̃ , we argue
that if i 6∈ F (µ) (i.e., αi 6∈ ΠM̃), then αi 6∈ ΠL̃. To this end, note that if αi ∈ ΠL̃, then
〈ι(µ′), αi〉 = 0. On the other hand, if i 6∈ F (µ), then

〈µ, αi〉 = ci +
∑

j∈F (µ)

cj〈αj , αi〉 < 0

since 〈αj , αi〉 ≤ 0 for j 6= i. The claim follows. Note that any λ ∈ Exp(ẽxp ν ⊗ θ) may be
written

λ = z +
∑

i6∈F (µ)

aiβi +
∑

j∈F (µ)

bjαj

(not necessarily having bj ≥ 0).
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It remains to check that θ is tempered for any such θ. By the Casselman criterion, this
requires showing bj ≥ 0 for all j ∈ F (µ). Suppose this were not the case. Let F ′ = {j ∈
F (µ) | bj < 0}. Then,

λ = z +
∑

i6∈F (µ)

aiβi −
∑

j∈F ′

(−bj)αj +
∑

j∈F (µ)−F ′

bjαj � z +
∑

i6∈F (µ)

aiβi +
∑

j∈F (µ)−F ′

bjαj = λ′.

Since µ0 =
∑

i6∈F (µ) aiβi = λ′
0, it follows from Lemma 4.7 that

λ � λ′

⇓
λ0 � λ′

0 = µ0.

By the minimality of µ0, we see that λ0 = µ0. Therefore, F (λ) = F (µ), so F ′ = ∅. Thus
bi ≥ 0 for all i ∈ F (µ), implying temperedness.

That π ↪→ IndG̃
P̃
(ẽxp ν⊗ τ ) for some irreducible tempered τ now follows immediately from

Frobenius reciprocity and central character considerations as in Corollary 4.4. �

The proof of uniqueness is based on that in [Ev]. Let γ =
∑n

i=1 βi. Note that 〈
∑

aiαi, γ〉 =∑
ai.

Lemma 4.9. Suppose

ν =
∑

i6∈F

ciβi +
∑

j∈F

cjαj ,

with ci < 0 for i 6∈ F and cj ≥ 0 for j ∈ F . Let M̃ = M̃F and w ∈W M,A with w 6= 1. Then
〈wν, γ〉 > 〈ν, γ〉.

Proof. Observe that

〈wν, γ〉 =
∑

i6∈F

ci〈wβi, γ〉+
∑

j∈F

cj〈wαj , γ〉.

Since w ∈W M,A, we have wαj > 0 for all j ∈ F . It follows immediately that

〈wαj , γ〉 ≥ 〈αj , γ〉

for all j ∈ F . On the other hand, since γ ∈ a∗
+, it follows from the Corollary to Proposition

18, chapter 6, section 1 [Bou] that

〈wβk, γ〉 ≤ 〈βk, γ〉

for all k with strict inequality for at least one k. The lemma now follows. �

Proposition 4.10. Suppose (P̃1, ν1, τ1) and (P̃2, ν2, τ2) are Langlands data such that L(P̃1, ν1, τ1) ∼=
L(P̃2, ν2, τ2). Then, P̃1 = P̃2, ν1 = ν2, and τ1

∼= τ2.

Proof. Write π = L(P̃1, ν1, τ1) ∼= L(P̃2, ν2, τ2). For i = 1, 2, let µi ∈ Exp(ẽxp νi ⊗ τi) with

〈µi, γ〉 minimal. Since π ↪→ IndG̃
P̃2

(ẽxp ν2⊗ τ2), it follows from Frobenius reciprocity and the

Bernstein-Zelevinsky/Casselman result (Proposition 3.3) that µ2 = wµ′
1 for some w ∈W M1,A

and µ′
1 ∈ Exp(ẽxp ν1 ⊗ τ1). By the preceding lemma,

〈µ2, γ〉 ≥ 〈µ
′
1, γ〉 ≥ 〈µ1, γ〉,
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with equality possible only if w = 1, i.e., µ2 = µ′
1. Similarly, 〈µ1, γ〉 ≥ 〈µ2, γ〉. In particular,

we must have equality, so µ2 = µ′
1. Now, any exponent in Exp(ẽxp ν1 ⊗ τ1) has the form

z +
∑

i6∈F1
ciβi +

∑
j∈F1

cjαj with ι(ν1) = z +
∑

i6∈F1
ciβi (so ν1 ∈ (a∗

M)− ⇒ ci < 0 for i 6∈ F1)

and
∑

j∈F1
cjαj an exponent for the tempered representation τ1 (so cj ≥ 0 for all j ∈ F1

by the Casselman criterion). In particular, all the exponents in Exp(ẽxp ν1 ⊗ τ1) belong to

z∗ + TF1
, so µ2 ∈ z∗ + TF1

, i.e., F1 = F2. Thus, P̃1 = P̃2; write P̃ = M̃Û for this parabolic
subgroup. Then, we also have

ν1 = rM(µ′
1) = rM (µ2) = ν2.

That τ1
∼= τ2 now follows as in Proposition 5.3/Corollary 5.4 of [B-J] (noting that the key

ingredient in that proof–Lemma 3.3 of [B-J], which is Lemma 4.3 above–is combinatorial in
nature and can be applied to the case of central extensions). �

Remark 4.11. Based on the real case and the p-adic version in Borel-Wallach, one might
hope to have ν minimal with respect to � in the standard module. This would require a
nontrivial refinement of Lemma 3.3 [B-J], but would also be enough to show the uniqueness
above.
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