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The timing of self-compatibility was found to vary within and among populations of Leptosiphon jepsonii,
a narrowly distributed California annual species. In each of 17 populations, some individuals exhibited
transient self-incompatibility, a phenomenon that confers delayed selfing, while others were fully self-
compatible upon flower opening, allowing for concurrent self- and cross-fertilization. The frequency of
initially self-compatible individuals varied significantly among populations, ranging from 3.2% to 71.0%. A
comparison of outcrossing rate estimates for three populations was consistent with the hypothesis that early
self-compatibility promotes higher selfing rates. Population means for each of three floral morphological traits
were significantly correlated with a population index of self-incompatibility that reflects the frequency of fully
self-compatible and transiently self-incompatible individuals. A high frequency of self-compatibility was
associated with shorter corolla tubes, smaller corolla lobes, and greater overlap of stigma and anthers. The
demonstration of this relationship among populations within a small geographic range suggests fine-scale local
adaptation of mating system traits in L. jepsonii.
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Introduction

One of the most common adaptive transitions in higher
plants is the evolution of self- versus cross-fertilization (Steb-
bins 1950, 1974). For several decades, studies of intraspecific
variation in the rate of self-fertilization (selfing) have pro-
vided insights into the evolution of this important character.
For instance, the occurrence of selfing populations at range
limits (Schoen 1982; Holtsford and Ellstrand 1989; Ohara
et al. 1996), ecologically marginal areas (Moore and Lewis
1964), and xeric habitats (Lloyd 1965; Arroyo 1975; Solbrig
and Rollins 1977; Dole 1992) have been interpreted as evi-
dence that pollinator scarcity is a driving force in the evolu-
tion of self-fertilization. The majority of these studies
concern self-compatible species (Moore and Lewis 1964; En-
nos 1981; Wyatt 1984; Lyons and Antonovics 1991; Dole
1992; Motten and Antonovics 1992; Belaoussoff and Shore
1995; Karron et al. 1995; Routley et al. 1999; Lu 2000;
Motten and Stone 2000). In contrast, comparatively few
studies have addressed variation among populations in the
presence or strength of homomorphic self-incompatibility
(Lloyd 1965; Solbrig and Rollins 1977; Rick et al. 1979;
Ohara et al. 1996; Lipow et al. 1999) despite the prevalence
of this trait in angiosperms and its important role in plant re-
productive strategies (de Nettancourt 1977).
We know relatively little about the breakdown of self-

incompatibility (SI) and its relationship to the evolution of flo-
ral morphological traits. The transition from outcrossing to

selfing must begin with a breakdown of the SI system. In the
few families in which SI has been well studied, its weakening
or loss has been attributed to a variety of mechanisms, in-
cluding mutations in the S locus, unlinked modifier loci, or
duplications of the S locus (Nasrallah et al. 1992; McClure
et al. 2000; Stone 2002). The loss of SI may be only a first
step in the transition to a highly selfing strategy, however.
The evolution of selfing often includes additional changes
in a suite of morphological traits that reduce allocation to
pollinator attraction and male function and increase rates
of self-pollen deposition (Ornduff 1969). In comparisons of
species with contrasting mating systems, cross-fertilization
(outcrossing) has been shown to be associated with larger co-
rolla size, higher pollen to ovule ratios, and greater spatial
separation of stigma and anthers (Cruden and Lyon 1985;
Ritland and Ritland 1989).
Theoretical work has shown that the evolution of mating

systems can be influenced by functional dimensions of self-
fertilization (Lloyd 1979, 1992; Lloyd and Schoen 1992).
Three modes of autonomous selfing (self-fertilization without
the aid of a pollen vector) have been distinguished based on
the relative timing of selfing and outcrossing (Lloyd 1979;
Lloyd and Schoen 1992). While all of these can provide re-
productive assurance when pollinators are scarce, they differ
in their potential costs. Selfing that occurs before outcross-
ing (prior selfing) or concurrent with outcrossing (competing
selfing) can reduce the pollen or ovules available for cross-
fertilization. In contrast, delayed selfing, in which selfing
occurs after opportunities for outcrossing, does not incur
such costs. Thus, the conditions favoring the selection for
self-fertilization may depend on the mechanism and timing
of self-fertilization (Lloyd 1979; Lloyd and Schoen 1992).
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Functional aspects of self-fertilization are increasingly consid-
ered in studies of plant mating systems (Leclerc-Potvin and
Ritland 1994; Kalisz et al. 1999; Culley 2002; Herlihy and
Eckert 2004), yet little empirical or theoretical work has ad-
dressed the transitions between modes of self-fertilization
(Harder and Wilson 1998; Armbruster et al. 2002). Such stud-
ies may provide valuable insights into the evolutionary pro-
cesses shaping plant mating systems.
Leptosiphon jepsonii provides a unique opportunity to

study the evolution of pollen-pistil and floral morphological
characters and transitions between different modes of selfing.
The genus Leptosiphon (formerly Linanthus section Lepto-
siphon) in the family Polemoniaceae includes both SI and
self-compatible (SC) species. Independent losses of SI have
occurred in at least three lineages in the genus, with parallel
evolution of reduced flower size in selfing taxa (Goodwillie
1999). Leptosiphon jepsonii holds particular interest because
in several respects it is intermediate between the obligate out-
crossing and nearly complete selfing observed in congeneric
species. The species exhibits a transient form of SI in which
stigmas become SC 24–48 h after flowers open. This phe-
nomenon, which has been well described in Campanula ra-
punculoides (Stephenson et al. 1992; Vogler and Stephenson
2001), confers delayed selfing and intermediate outcrossing
in L. jepsonii (Goodwillie 2000; Goodwillie et al. 2004).
However, preliminary observations of several populations in-
dicate that some individuals are immediately SC upon flower
opening and suggest that the frequency of fully SC pheno-
types varies among populations. Moreover, populations ex-
hibit variation in floral traits associated with the mating
system such as corolla size and stigma-anther position, with
values ranging between those seen in fully selfing and obli-
gately outcrossing congeners. Interestingly, this differentia-
tion among populations occurs at a very small spatial scale,
with all known populations L. jepsonii separated by less than
65 km.
The presence of local variation in the mode of selfing in L.

jepsonii raises questions concerning the evolution of this
trait. Is delayed selfing a stable adaptation maintained by se-
lection or a transient phase in the evolution toward a more
highly selfing species? What genetic or ecological factors are
driving the dynamics of this mixed mating system? Here we
present a phase of this investigation in which we carry out
a common garden experiment to measure phenotypic varia-
tion in the timing of SC and the potential for autonomous
selfing within and among populations throughout the species
range, examine the relationship between the population out-
crossing rate and the frequency of SC and transiently SI indi-
viduals, measure variation in floral traits within and among
populations, and test for associations between morphological
and pollen-pistil traits. In addition, we discuss some prelimi-
nary inferences concerning evolutionary processes acting in
this dynamic system.

Material and Methods

Species and Site

The spring annual species Leptosiphon jepsonii has a re-
stricted distribution, with present populations known from

only Napa and Sonoma Counties in the north coast ranges of
California. Herbarium specimens indicate historical presence
of populations in southern Lake County as well (Schemske
and Goodwillie 1996). The species is found in open grassy
areas of oak woodlands at elevations ranging from 98 to
735 m. The study sites included 17 of 19 known populations
of L. jepsonii in Napa and Sonoma Counties (fig. 1).
The small plants have salverform corollas, with long slen-

der corolla tubes and five corolla lobes. Corollas are either
pink or white, with most populations fixed or nearly so for
one flower color. Emasculated and unfertilized flowers can
last up to 6 d, but flowers senesce about 1 d after fertilization
occurs. Flowers are visited by beeflies (Bombyliids), which
hover above the flowers while collecting pollen and nectar.
Flowering occurs between late March and early June, and
fruits mature and dehisce in about 3 wk. Ovule numbers
range from 12 to 16 (C. Goodwillie, unpublished data).

Assays for Self-Incompatibility

Thirty-two plants from each study population were raised
from seeds of plants collected in the field in spring 2002 or
2003. Each seed was taken from a different maternal plant
separated from other plants by at least 1 m in the field. Seeds
were germinated on moist filter paper at 4�C and then planted
in Conetainers (Stuewe and Sons, Corvallis, OR) in standard
potting soil. Plants were subirrigated continuously and wa-
tered once weekly with a mild solution of 12-55-6 commer-
cial fertilizer. Seedlings were raised in a growth chamber, and
mature plants were moved for the pollination experiments to
a growth room with both artificial and natural light. Because
of space and time limitations, all pollination experiments
could not be conducted simultaneously; populations were
tested sequentially between 2002 and 2004.
To assay plants for the presence and duration of SI, we

counted pollen tubes in a series of experimental pollinations,
each replicated on three flowers per plant. All pollinations
were conducted between 0900 and 1030 hours, and styles
were removed 3 h after pollination. Stigmas and styles were
inspected for pollen tubes using aniline blue staining and
epifluorescent microscopy, as described in a previous paper
(Goodwillie et al. 2004). In the SI system of Leptosiphon,
rejection of self-pollen occurs at the stigma surface and
prevents pollen germination; thus, we quantified SC as the
number of pollen tubes penetrating through the stigma lobe.
Because the accuracy of counting diminished at high pollen
tube densities, we set a maximum at 60 pollen tubes.
In previous experiments (Goodwillie et al. 2004), we ap-

plied self-pollen on the first, second, and third day that
a flower was open and found that self-pollen tube counts
often increased but never decreased with floral age. After veri-
fying that developmental changes from SC to SI did not oc-
cur for several populations in the current study, we optimized
our experimental protocol to discontinue self-pollinations
once stigmas became SC.
Initially, two pollination treatments were applied to the

stigmas of flowers that were open for the first day (hereafter
day 1 flowers): pollen from two haphazardly chosen plants
from the same population (cross-pollen) and self-pollen. We
applied self-pollen to flowers of increasing age (day 1, day 2,
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and day 3) until stigmas were found to be SC. We considered
a mean pollen tube number >20, which exceeds ovule num-
ber, to be SC. For self-pollinations on day 2 and day 3, flow-
ers were emasculated on the morning that flowers first
opened, and petals were marked with a colored dot on con-
secutive days to record flower age. In plants that did not
produce self-pollen tubes by day 3, pollen was tested for
viability by applying it to the stigmas of unrelated plants and
staining for pollen tubes. In all of the treatments described
above, fresh pollen from day 1 flowers was used. Previous ex-
periments indicate that pollen age does not influence pollen-
pistil interactions (Goodwillie et al. 2004).
Analysis. All analyses were carried out on SPSS v. 12 (SPSS

2003) except where noted. We used nested ANOVA to test
for variation within and among populations in the timing of
SC. As a measure of early SC versus transient SI, we used the
number of self-pollen tubes in day 1 flowers. To improve the
fit of the data to model assumptions, we expressed pollen
tube number as a proportion of the maximum pollen tube
count of 60 and arcsine transformed that value. Plants were
nested within populations, and both were considered random

factors. Using methods described by Graham (2001), we cal-
culated the magnitude of effect, or percent of total variance,
found within plants, among plants within populations, and
among populations. As another measure of variability among
populations that takes into account more information on the
timing of SC, we scored each plant as one of four SI classes
on the basis of the time at which self-pollen tubes were first
produced. Plants in class 1 produced >20 self-pollen tubes in
day 1 flowers, plants in class 2 were SI on day 1 but pro-
duced >20 self-pollen tubes on day 2, and class 3 plants did
not become SC until flowers were 3 d old. Plants with viable
pollen that did not produce self-pollen tubes by day 3 were
assigned to class 4. We carried out x2 analysis to test the null
hypothesis that the frequency of SI class was independent of
population source.

Seed Set

We examined the potential for seed set by facilitated and
autonomous self-fertilization in growth room experiments.
On a subset of 11 populations, we applied three pollina-
tion treatments on all plants used for the pollen tube study:

Fig. 1 Location of sampled populations in Napa and Sonoma Counties, California.
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(1) outcross pollination as described above, (2) facilitated
self-pollination, or (3) autonomous self-pollination (no ma-
nipulation). Pollinations for treatments 1 and 2 were carried out
on day 1 flowers. Treatments were replicated on three flowers per
plant, and calyces were marked with colored ink. We col-
lected mature fruits and counted the number of seeds per
flower.
Analysis. We used a mixed model ANOVA to test for dif-

ferences in mean seed number per flower resulting from polli-
nation treatments (fixed factor), variation among populations
(random factor), and their interaction. For each experimental
plant, a mean of three replicate flowers was used in the anal-
ysis. Scheffe post hoc tests were used to test for significant
pairwise differences between treatments. On a combined
data set of plants from the 11 populations, we tested for
a correlation between the timing of SC and autonomous self
seed set (treatment 3 above). We used self-pollen tube num-
ber in day 1 flowers as a measure of the timing of SC. To
control for individual differences in ovule number or overall
plant performance that could affect seed set, we used the dif-
ference between outcross and autonomous self seeds per
flower for this correlation.

Floral Traits

On all experimental plants used for pollinations, we mea-
sured corolla tube length, corolla lobe length, and stigma-
anther separation. Measurements were made with digital
calipers and replicated on three flowers per plant. Stigma-
anther separation was measured as the distance between the
base of the stigma lobes and the top of the anthers. Thus,
a negative number indicates vertical overlap of anthers and
stigma lobes. ANOVA was used to test for variation in the
three floral traits within and among populations. Population
and plant were treated as random factors, and plants were
nested within populations. We calculated the magnitude of
effect, or percent of total variance, found within plants,
among plants within populations, and among populations
(Graham 2001).

Relationships between Self-Incompatibility
and Floral Morphology

For each population, we calculated an overall SI index as
the mean of SI class values (1–4) of individual plants. Thus,
an SI index of 1 would indicate a population in which all in-
dividuals are SC on day 1. Note that this index differs from
SI or SC indices used in other literature, which generally refer
to a ratio of seed set in cross- and self-pollinated flowers (Be-
cerra and Lloyd 1992). Using population means, we tested
the correlation of SI index with each of the floral traits (co-
rolla tube length, corolla lobe length, and stigma-anther sep-
aration). In separate analyses for each population, we tested
for a correlation between individual plant means for floral
traits and the mean number of self-pollen tubes in day 1
flowers. We also measured correlations among the three flo-
ral traits with population means and, in separate analyses for
each population, with individual plant means. Significance
levels were adjusted for multiple tests (Rice 1989).
It can be argued that populations in close proximity are

more likely to exchange genes or share recent evolutionary

history than are distant populations. Thus, correlations
among traits may reflect overall genetic similarity of neigh-
boring populations, and as a result, adaptive arguments built
on these trait associations may be spurious. To test for simi-
larity in floral or SI traits corresponding to geographic dis-
tance, we employed Mantel tests using the software
PASSAGE (Rosenberg 2001). We created a matrix of spheri-
cal distances among populations from latitudinal and longi-
tudinal coordinates and tested for a correlation between the
spatial distance matrix and distance matrices for SI index
and overall floral morphology. Euclidean distance for floral
morphology was calculated from population means for co-
rolla tube length, corolla lobe length, and stigma-anther dis-
tance. For SI index, we calculated distance as the squared
difference between population means. In addition, we carried
out partial Mantel tests in which correlations between ma-
trices are calculated while controlling for a third distance
matrix (Smouse et al. 1986). This allows one to test whether
apparent relationships between two factors can in fact be ex-
plained by the correlation of each to a third factor.

Mating System Analysis

We hypothesized that the timing of SC in populations
would be related to the rate of outcrossing. That is, popula-
tions with a high frequency of individuals with transient SI
were expected to have a higher outcrossing rate than those
with predominantly early SC. We estimated mating system
parameters in 2003 and 2004 for three populations (6, 7,
and 16) that span most of the range in SI indices. Maternal
seed families were collected haphazardly from these popula-
tions at the end of each season. Proteins were extracted from
young seedlings using a sucrose buffer (0.1 M Tris base,
0.5 M sucrose, 0.02 M sodium bisulfite, pH 7.5; K. Rit-
land, personal communication). Using starch gel electropho-
resis, we were able to resolve only two polymorphic loci:
6-phosphogluconate dehydrogenase (6PGD) and isocitrate
dehydrogenase (IDH). Although all three populations con-
tained at least two alleles at both loci, we found sufficient
polymorphism for analysis in only one locus per population:
6PGD in populations 7 and 16 and IDH in population 6.
Staining and running buffer (morpholine citrate) recipes fol-
lowed Werth (1985). The number of maternal families per
population and year ranged from 42 to 50, with a mean
progeny number per family of 14.4.

Results

Assays for Self-Incompatibility

Final population sample sizes varied somewhat as a result
of plant mortality (mean population sample ¼ 30:7 plants,
total ¼ 519 plants). The pollen tube data confirmed the pres-
ence of transient SI in Leptosiphon jepsonii, as was reported
for two populations in a previous study. In some individuals
from each of 17 populations, self-pollen tube number in day
1 flowers was close to 0, while outcross pollen tubes grew
readily upon flower opening. In 2- or 3-d-old flowers, how-
ever, the number of self-pollen tubes was considerably higher
and often similar to that of outcross pollen tube number on
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day 1 flowers. In all populations, some plants were largely
SC immediately upon flower opening (>20 self-pollen tubes
in day 1 flowers). Across all populations, a minority of plants
produced intermediate numbers of pollen tubes in day 1 flow-
ers. Of the total 519 plants assayed, 294 (57%) had a mean
of five pollen tubes or fewer, 155 (30%) showed a mean
greater than 20, and only 70 plants (13%) had means be-
tween five and 20. In a small number of plants, outcross
pollen tube counts were low, which we interpreted as cross-
incompatibility with pollen donors expressing the same SI ge-
notype. Results for individual plants in population 14 (fig. 2)
provide a representative sample of individual data, although
the frequency of SI classes varied among populations. In
nested ANOVA, the arcsine-transformed values for day 1
self-pollen tubes varied significantly among populations and
among plants within populations (table 1). Population means
for day 1 self-pollen tubes (untransformed) ranged from 2.1
to 33.8. Variation among plants within populations contrib-
uted the most to total variance (67%), while variation among
populations was smaller in magnitude (17% of total vari-
ance; table 1). Populations included plants of two to four dif-
ferent SI classes (fig. 3). Frequencies of SI classes 3 and 4,
which were generally low, were pooled in the x2 analysis to
avoid bias in the statistic. The x2 test strongly rejected the
null hypothesis that SI class frequencies were independent of
population source (x2 ¼ 278:9, df ¼ 32, P < 0:001), indicat-
ing that populations differ significantly in the frequency of SI
classes.

Seed Set

Seed set from both self-pollination treatments (autono-
mous and facilitated) was substantial in all populations (fig.
4), demonstrating the potential for some self-fertilization.

The effect of pollination treatment on seeds per flower was
significant, however (table 2), and post hoc tests showed that
outcross seed number was significantly higher than that
from facilitated (P < 0:001) or autonomous (P < 0:001) self-
pollination. Seeds per flower in the two self-pollination treat-
ments did not differ (P ¼ 0:293), indicating that self seed set
was not limited by autonomous deposition of pollen in most
populations. The interaction between treatment and popula-
tion was significant, and inspection of the populations means
reveals that the difference between self and outcross seeds
per flower was generally greater in populations with high SI
indices (fig. 4). When individuals from all populations were
combined, we found a weak but significant negative correla-
tion between self-pollen tube number in day 1 flowers and
the difference between outcross and autonomous self seeds
per flower (r ¼ �0:236, P < 0:001, N ¼ 285).

Relationships between Pollen-Pistil and
Floral Morphological Traits

We found highly significant variation among populations
and among plants within populations in the three floral traits
that were measured (table 3). For corolla lobe length and co-
rolla tube length, variability among population means con-
tributed the most to total variance (table 3). Variation among
plants within populations contributed a smaller but substan-
tial component of the total in both traits. For stigma-anther
separation, variation within and among plants was com-
parable in magnitude, while variation among populations
contributed considerably less to total variance (table 3).
Population SI index was positively and significantly corre-
lated with population means for each of the floral traits (co-
rolla tube length: r ¼ 0:763, P < 0:001; corolla lobe length:
r ¼ 0:622, P ¼ 0:008; stigma-anther separation: r ¼ 0:630,
P ¼ 0:007; fig. 5). In contrast, when individual plant data
were used, we found little evidence for a relationship be-
tween the timing of SI (number of self-pollen tubes on day 1)
and floral traits. Of the 51 correlations with self-pollen tube
number (17 populations3 three floral traits), only four were
significant at the a ¼ 0:05 level, and only one of these (be-
tween self-pollen tubes and corolla lobe length in population
16; r ¼ �0:632, P < 0:001) was significant after adjusting
the a value for multiple tests. The lack of strong correlations
between floral and pollen-pistil traits among individuals
indicates that the relationships observed at the population
level do not reflect genetic correlations caused by linkage or
pleiotropy.

Fig. 2 Mean pollen tube numbers for self- and outcross polli-

nations in 30 individuals from population 14 (final sample size

reduced to 30 as a result of plant mortality). Means were calculated
from three replicate flowers per plant and treatment. Open

circles ¼ outcross pollinations; closed circles ¼ self pollinations.

Self-pollinations of day 2 and day 3 flowers were carried out only in

plants that failed to produce >20 self-pollen tubes in day 1 and day 2
flowers, respectively.

Table 1

Nested ANOVA for Self-Pollen Tube Numbers in Day 1 Flowers

Source of variation df MS F v2

Population 16 5.354 7.91* 16.68

Plant (population) 492 0.677 13.18* 66.96

Error 1009 0.051 16.36

Note. See text for details on data transformation. Populations

and plants are treated as random factors. v2¼ magnitude of effect,

or percent of total variance explained (for calculation, see Graham

2001).
� P < 0:001.
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Although each of the mean floral traits was positively re-
lated to the SI index, the strength of correlations among flo-
ral traits was variable. With respect to population means,
corolla lobe length was significantly correlated to stigma-
anther separation (r ¼ 0:737, P ¼ 0:001), but corolla tube
length was significantly correlated to neither corolla lobe
length (r ¼ 0:398, P ¼ 0:113; fig. 6) nor stigma-anther sepa-
ration (r ¼ 0:344, P ¼ 0:177). The pattern was somewhat
congruent when correlations were carried out at the level of
individual plants within populations. The single test that was
significant at the experiment-wise level was a positive corre-
lation between corolla lobe length and stigma-anther separa-
tion (population 2; r ¼ 0:508, P ¼ 0:001), as were six of the
10 correlations that were significant at the individual test
level (r ranged from 0.414 to 0.508; P values ranged from
0.001 to 0.046). Thus, there is some evidence for a genetic
correlation between stigma-anther separation and corolla
lobe length, but corolla tube length appears to be evolving in-
dependently of the other traits.
In Mantel tests, we found that spatial distance was signifi-

cantly correlated with SI index distance and marginally cor-
related with floral morphology distances (table 4). However,
the correlation coefficient between the matrix for SI index
and floral distance remained essentially the same when spa-
tial distance was held constant in a partial Mantel test. This
indicates that the relationship between the first two variables
cannot be explained by the relationship of each to spatial dis-
tance. When we controlled for SI index, the correlation be-
tween floral morphology and spatial distance was greatly
reduced, indicating that the marginally significant spatial pat-
tern can be attributed largely to the association of floral traits
with the SI index. Conversely, the strength of the correlation
between SI index and spatial distance was little affected
when floral distance was held constant. In summary, there is
a significant, though somewhat weak, correspondence be-
tween spatial distance and SI index, and the observed rela-

tionship between SI index and floral trait distance appears to
be unrelated to geographic similarity.

Mating System Estimates

Estimated outcrossing rates (t) ranged widely among popu-
lations (table 5). In both years, the rank ordering of t values
was consistent with that of SI indices. Outcrossing rates were
higher in all populations in 2004, which raises the possibility
that the year-to-year differences resulted from a factor such
as variation in pollinator abundance. However, sampling er-
ror could also contribute to the variation, especially given
that estimates were based on a single locus.

Fig. 3 Percentages of self-incompatibility (SI) classes in 17 study populations. Population SI index is given at top of bars (see text for

calculation of SI index). Black bars ¼ class 1 (self-compatible [SC] on day 1); hatched bars ¼ class 2 (SI on day 1, SC on day 2); gray bars ¼ class 3

(SI on days 1 and 2, SC on day 3); open bars ¼ class 4 (SI for days 1–3).

Fig. 4 Mean seeds per flower from three pollination treatments in

11 populations. Populations are arranged from highest (left) to lowest

(right) self-incompatibility index (see text for calculation of index).
Error bars indicate 1 SE.

746 INTERNATIONAL JOURNAL OF PLANT SCIENCES



Discussion

Variation in the Timing of Self-Compatibility

Our survey of Leptosiphon jepsonii found considerable
variation within and among populations in the timing of SC.
In all populations sampled, the flowers of some individuals
were immediately SC, while others exhibited transient SI, in
which self-pollen is rejected until the second or third day
after flower opening. Moreover, populations varied sig-
nificantly in the frequency of these phenotypes, with the pro-
portion of fully SC individuals ranging from 3.2% in
population 5 to 71.0% in population 6. The timing of SC is
expected to influence the selfing rate of individuals because
competing selfing reduces opportunities for outcrossing rela-
tive to delayed selfing. Allozyme analyses of three popula-
tions indicate a correspondence between the frequency of SI
classes and the population outcrossing rate. Although esti-
mates based on single loci must be interpreted with consider-
able caution, the strong congruence of t with the SI index in
both years provides support for the hypothesized relationship.
The differentiation of populations occurs at a markedly

fine geographic scale. For instance, note that population 7
and population 9, which are nearly at the two ends of the
selfing continuum (fig. 3), are separated by only 6 km (fig. 1).
Interestingly, other studies have found substantial variation
in mating or breeding systems among populations separated
by similarly small distances. For example, populations of
Leavenworthia crassa occurring within a single square mile
differed significantly in outcrossing rates and floral traits
(Lyons and Antonovics 1991), and distinct selfing and out-
crossing populations of Clarkia xantiana were found within
an area of just 80 m2 (Moore and Lewis 1964). In contrast,
however, spatial patterns of mating system variation in other
plant taxa often occur at a considerably larger scale. For ex-
ample, predominantly SI populations of Trillium kamtschati-
cum (Liliaceae) in eastern Hokkaida, Japan, are separated by
hundreds of kilometers from most of the SC populations in
northern and southern regions (Ohara et al. 1996). Similarly,
selfing and outcrossing populations of Arenaria uniflora gen-
erally occur in geographically distinct regions of the south-
eastern United States (Wyatt 1984).
This study does not provide estimates of heritability, but

several lines of evidence suggest a strong genetic contribution
to variation in the timing of SC. First, environmental and de-
velopmental factors were kept constant, to a large extent. To
control for developmental factors such as plant age or pres-

ence of fruits that have been shown to influence SI in other
species (Vogler et al. 1998), we carried out all experimental
pollinations on the first several flowers to open before any
fruit set occurred. Although all populations were not assayed
simultaneously, ambient temperature was maintained within
a fairly narrow range in the growth room, which minimized
the potential for temperature effects on SI (Wilkins and Thor-
ogood 1992; Jakobsen and Martens 1994). Second, in a study
now in progress, we have developed inbred lines that differ
dramatically in self-pollen tube number for populations 1, 4,
and 6 (C. Goodwillie, unpublished data). Third, growth
room and field experiments in a previous study yielded re-
markably similar frequencies of fully SC individuals for
a population at Wantrup Reserve (population 16 in this
study; Goodwillie et al. 2004). However, in a minority of
plants, pollen tube numbers varied considerably among repli-
cate flowers, indicating that nongenetic factors also contrib-
ute to this variation.

Relationship between Pollen-Pistil Interactions
and Floral Morphology

The population SI index was significantly related to popu-
lation means for each of the three floral traits measured.
Based on the lack of correlation among individual plants,
these did not appear to be caused by genetic linkage or plei-
otropy. Instead, the population-level correlations suggest that
fine-scale local adaptation of, or in response to, the selfing
rate is occurring in L. jepsonii. A relationship between floral
size and mating systems has been documented in compari-
sons among plant species (Cruden and Lyon 1985; Ritland
and Ritland 1989; Affre and Thompson 1998; Goodwillie
1999; Armbruster et al. 2002) and, to a lesser extent, among
populations within species (Wyatt 1984; Lyons and Anto-
novics 1991). This has been interpreted in the context of re-
source allocation; if in selfing populations resources required
for attractive structures can be diverted to other fitness-
related functions such as seed maturation, reduction in corolla
size will be selectively favored (Cruden and Lyon 1985;

Table 3

Nested ANOVA for Three Floral Traits

Trait/source of variance df MS F v2

Corolla lobe length:
Population 16 10.425 28.70* 42.33

Plant (population) 502 0.363 7.72* 39.88

Error 1037 0.047 17.79
Corolla tube length:

Population 16 1989.531 42.08* 53.84

Plant (population) 502 47.282 11.50* 35.90

Error 1037 4.113 10.26
Stigma-anther separation:

Population 16 2.125 12.65* 20.62

Plant (population) 502 0.169 4.09* 40.48

Error 1037 0.041 38.90

Note. Populations and individuals are treated as random factors.

v2¼ magnitude of effect, or percent of total variance explained (for

calculation, see Graham 2001).
� P < 0:001.

Table 2

Mixed Model ANOVA of Seed Number per Flower

Source of variance df MS F

Pollination treatment 2 446.4 15.77**

Population 10 254.3 8.98**

Treatment 3 population 20 28.315 1.89*

Error 861 14.934

Note. Pollination treatments are cross-pollination, facilitated

self-pollination, and autonomous self-pollination.
� P ¼ 0:01.
�� P < 0:001.
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Charlesworth and Charlesworth 1987). We found significant
variation among populations in two floral size traits, and pop-
ulation means for each was significantly correlated with the
population SI index in the direction predicted by theory.
Spatial overlap of stigma and anthers, which is associated

with high selfing rates in other plant taxa (Lyons and An-
tonovics 1991; Dole 1992; Belaoussoff and Shore 1995;
Motten and Stone 2000), was observed in populations of
L. jepsonii with low SI indices. While shifts in corolla size
may reflect adaptation in response to a change in the selfing

rate, stigma-anther position is expected to be a primary
determinant of the selfing rate in SC species because it affects
rates of self-pollen deposition. Selection to increase or de-
crease the rate of selfing may be acting concurrently on the
timing of SI and on stigma-anther position in L. jepsonii.
Positive correlations between stigma-anther separation and
corolla tube length suggest genetic covariation of the traits
and the possibility that evolution in one may be affected by
selection on the other. In addition, the arrangement of stigma
and anthers can affect the placement and delivery of pollen
by vectors and can therefore influence outcross success.
Thus, the potential selective factors acting on stigma-anther
separation are complex and require further study.
A possible complicating factor demands consideration. Flo-

ral and pollen-pistil traits were measured in plants grown
from field-collected seeds for which the history of inbreeding
is variable and unknown. Inbreeding depression for floral
traits could cause a reduction in flower size in more SC popu-
lations, as has been hypothesized in a study of floral size vari-
ation in Crepis tectorum (Andersson 1996). It seems unlikely,
however, that this factor contributes substantially to the ob-
served correlation. First, if inbreeding depression is largely
responsible for reduced flower size, one might expect to find
some correlation between floral size and SC at the level of
individuals, and that relationship was not found. Second, in
a previous experimental study of inbreeding depression of
L. jepsonii (Goodwillie 2000), the magnitude of inbreeding
depression for flower size in population 16 was found to be
considerably less than the differences observed among popu-
lations in this study (C. Goodwillie, unpublished floral mor-
phology data). For example, mean corolla lobe length in
selfed offspring (4.36 mm) was only 1.2% less than that in
outcrossed offspring (4.41 mm), as compared with a 21.1%
difference between the smallest (3.73 mm, population 9) and
the largest (4.77 mm, population 10) mean corolla lobe
length observed in this study.

Fig. 6 Scattergram of mean corolla tube length versus corolla lobe

length for 17 populations. Size of circle is proportional to value of self-

incompatibility index (range ¼ 1:35�3:56). Population numbers are
indicated inside circles.

Fig. 5 Scattergrams of mean floral trait values versus self-

incompatibility index for 17 populations: a, corolla lobe length; b,
corolla tube length; c, stigma-anther separation. Error bars indicate 1

SE for floral traits.
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Evolution of Mating Systems

What factors are driving the evolutionary dynamics at this
interface between SI and self-fertilization? Our data provide
a starting point for understanding. The presence of different
SI classes in L. jepsonii can be viewed as variation in the
mode of selfing, where transient SI confers selfing that is de-
layed until after opportunities for outcrossing and full SC
promotes competing selfing.
Selection for reproductive assurance has been invoked as

a driver in the evolution of self-fertilization (Stebbins 1957;
Baker 1959). Whether it plays a role in the evolution of the
timing of SC in L. jepsonii depends in part on the relative
amount of seed set provided by delayed and competing self-
ing in the absence of pollinators. Although seed set from self-
pollination (both autonomous and facilitated) was generally
substantial in L. jepsonii, it was significantly lower overall
than that from cross pollination, and the difference was
greatest in populations with a low frequency of early SC
(competing selfing) phenotypes (fig. 4). As expected, self seed
set was quite low in population 5, in which pollen tube data
indicate that many plants are fully SI. Surprisingly, however,
the difference between outcross and self seed set was also
considerable in some populations comprising mostly tran-
sient SI plants (e.g., populations 10 and 16; fig. 4). We also
observed a significant relationship between early self-pollen
tube growth and autonomous seed set at the level of individ-
uals. Taken together, these results indicate that the potential
for reproductive assurance provided by transient SI, while
substantial, is less than that conferred by early SC. Reduced
selfed seed set in plants with transient SI could reflect the per-

sistence of some degree of partial SI in older flowers. Alterna-
tively, it could indicate a cost of delaying fertilization such
that there is insufficient time for pollen tube growth before
flowers or ovaries senesce. Differences observed in the seed
set of selfed and outcrossed flowers could also result from
early inbreeding depression. The pattern seen among pop-
ulations of L. jepsonii is consistent with an expectation of
higher inbreeding depression in more outcrossing popula-
tions when deleterious recessive alleles are purged with self-
ing (Lande and Schemske 1985; Husband and Schemske 1993).
In a preliminary study of plants from population 16 (with an
intermediate SI index of 2.0), dissections of selfed and out-
crossed fruits show a higher proportion of both unfertilized
ovules and aborted seeds in selfed relative to outcrossed
fruits (C. Goodwillie, unpublished data), indicating that both
pre- and postfertilization events may account for differences
in self and outcross seed set. Thus, differences among popu-
lation might reflect variation in pollinator abundance that se-
lects on the timing of selfing for reproductive assurance. In
addition, variation in the magnitude of inbreeding depression
may exert differential selection on the selfing rate among
populations.
Our data provide evidence for a spatial pattern in mating

system variation, which may yield insights into the evolution-
ary processes acting on this variation. Distances among pop-
ulations in SI index were significantly related to spatial
distance, with more highly selfing populations often found at
the southeastern end of the distribution (figs. 1, 3). For in-
stance, population 5, at the northwestern end of the species
distribution, has the highest SI index, with the majority of in-
dividuals appearing to be fully SI. In contrast, the eight most
highly SC populations include six that are found in the
southern half of the distribution. Although population sites
occur within a relatively small geographical area and occupy
apparently similar oak woodland habitats, the possibility ex-
ists that this pattern may indicate an underlying ecological
factor that influences selection on SI variation, such as a gra-
dient in pollinator abundance.
While spatial distances among populations are correlated

with SI distance and marginally correlated with floral dis-
tance, the results of a partial Mantel test indicate that the
relationship of floral traits to SI is independent of the geo-
graphical pattern. This indicates that associations between the
timing of SI and floral morphology have arisen independently
in different populations, strengthening the argument for an

Table 4

Results of Simple and Partial Mantel Tests

Distance matrices

compared

Distance matrix

held constant

Correlation

coefficient P

SI and floral . . . 0.584 0.001

SI and floral Spatial 0.560 0.001

Floral and spatial . . . 0.198 0.065
Floral and spatial SI �0.0143 0.864

SI and spatial . . . 0.358 0.027

SI and spatial Floral 0.305 0.034

Note. P values obtained from permutation tests with 999 itera-

tions. SI ¼ self-incompatibility.

Table 5

Mating System Parameters for Three Populations Spanning the Range of SI Indices

Population 6 Population 16 Population 7

SI index 1.42 2.00 2.78

Mating system estimates:
2003 t ¼ 0.006 (0.007) t ¼ 0.296 (0.055) t ¼ 0.679 (0.146)

F ¼ 0.562 (0.153) F ¼ 0.141 (0.151) F ¼ 0.029 (0.164)

44 families, 591 progeny 47 families, 630 progeny 42 families, 601 progeny

2004 t ¼ 0.125 (0.096) t ¼ 0.504 (0.107) t ¼ 0.699 (0.120)
F ¼ 0.489 (0.217) F ¼ 0.218 (0.192) F ¼ 0.131 (0.175)

50 families, 785 progeny 45 families, 633 progeny 47 families, 709 progeny

Note. Outcrossing rates (t) and fixation indices (F) estimated from single locus allozyme analysis. Standard
errors based on 1000 bootstrap replicates with maternal family as the resampled unit. SI ¼ self-incompatibility.
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adaptive process. Moreover, although SI index was positively
correlated with population means for both corolla tube and
lobe length, the two trait means were not significantly related
to each other, indicating that populations with similar SI indi-
ces differ in their floral allometry. For instance, if we compare
populations 11 and 17 with similar and moderately low SI in-
dices (fig. 6), we find that the reductions in corolla size occur
in different dimensions; population 11 has short tubes and
long corolla lobes, and the reverse is true for population 17.
An intriguing possibility is that selection is acting on different
standing mutations and following a different sequence of
adaptive steps as populations converge on similar flower size.

Conclusions

The genus Leptosiphon contains species that are SI, large-
flowered, and obligately outcrossing and others that are SC,
small-flowered, and highly selfing. The finding in L. jepsonii
of considerable variation in both floral traits and SI indicates
that the mating system of this intermediate species is evo-
lutionarily dynamic, providing an opportunity to study the
evolutionary processes associated with this transition. Our
phenotypic data indicate that coordinated adaptation of floral

size, spatial arrangement of stigma and anthers, and pollen-
pistil traits has occurred in populations of this species. A more
complete understanding of the selective factors acting on vari-
ation in L. jepsonii and the stability of its intermediate mating
system will require detailed studies that address pollinator vis-
itation, inbreeding depression, reproductive assurance, herita-
bility of traits, and the evolutionary relationships among
populations.
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