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Abstract: The noise that is associated with nonequilibrium processes commonly features more1

outliers and is therefore often taken to be Lévy noise. For a Langevin particle that is subjected to2

Lévy noise, the kicksizes are drawn not from a Gaussian distribution, but from an α-stable distribu-3

tion. For a Gaussian-noise-subjected particle in a potential well, microscopic reversibility applies.4

But it appears that the time-reversal-symmetry is broken for a Lévy-noise-subjected particle in a5

potential well. Major obstacles in the analysis of Langevin equations with Lévy noise are the lack6

of simple analytic formulae and the infinite variance of the α-stable distribution. We propose a7

measure for the violation of time-reversal-symmetry and we present a procedure in which this8

measure is central to a controlled imposing of time-reversal-asymmetry. The procedure leads to9

behavior that mimics much of the effects of Lévy noise. Our imposing of such nonequilibrium10

leads to concise analytic formulae and does not yield any divergent variances. Most importantly,11

the theory leads to simple corrections on the Fluctuation-Dissipation Relation.12

Keywords: Fluctuation-Dissipation Relation; Lévy Noise; Nonequilibrium; Time Reversal Sym-13

metry Breaking14

1. Introduction15

The Fluctuation-Dissipation Relation (FDR) is as simple as it is profound [1]. For a
particle in a fluid we have

D/(kBT) = µ. (1)

On the left hand side of this equation, D is the diffusion coefficient of the particle, kB16

is Boltzmann’s constant, and T is the absolute temperature. The product kBT has the17

dimension of energy and it is the characteristic “quantum” of Brownian motion. On the18

right hand side µ denotes the mobility, i.e., µ = v/F where v is the average speed of the19

particle in the fluid when it is subjected to a force F.20

On the molecular level there are other manifestations of the FDR. Take a resistor with21

a conductance G. With no net current flowing, there is still a fluctuating voltage between22

the two ends of the resistor due to the Brownian motion of the charge carriers (generally23

electrons) inside the resistor. Conductance can be viewed as the electrical equivalent24

of mobility, i.e. G = I/V with V being the voltage and I being the current. With this25

realization it is not hard to understand that the mean square of the fluctuating current,26

〈I2〉, is related to the conductance G through kBT. The relation 〈I2〉 = 4kBTG(∆ f ),27

where ∆ f is the frequency window, is known as the Johnson-Nyquist relation [2].28

Thinking of it more abstractly, the FDR connects characteristics of internal fluc-29

tuations on the left hand side of Eq. (1) with a first-order, linear response to external30
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prompting on the right hand side of Eq. (1). The equation relates the first moment upon31

application of a perturbing force to the second moment in the absence of such a force. A32

more all-encompassing formulation of the FDR is due to Green and Kubo [3].33

For the FDR to apply, it is essential that the system is close to equilibrium. Equi-34

librium means that there is no identifiable arrow of time. A system at equilibrium35

displays time-reversal symmetry. About a century ago Lars Onsager formulated the36

notion of microscopic reversibility, which is short for “time reversibility of microscopic37

dynamics” [4,5]. It means that any trajectory in a configuration space from an initial38

point (tini, xini) to a final point (t f in, x f in) is traversed in one direction as often as it is39

in the opposite direction. Much of the first order theory that describes systems that40

are close-to-equilibrium, like Onsager’s reciprocal relation for coupled energy flows, is41

based on the idea that microscopic reversibility still applies in case of small deviation42

from equilibrium [4,5].43

Considerable research effort has been directed towards formulating an FDR for44

a system that is far away from equilibrium. In the late 1990s, the Jarzynski Equation45

gave insight into the response of a system when nonequilibrium is imposed beyond a46

regime where linear perturbation theory applies [6,7]. The Jarzynski Equality has an47

elegant simplicity and soon after its discovery it also turned out remarkably accurate48

in quantitatively accounting for the results of micromanipulation experiments with49

biomolecules [8].50

The work towards a nonequilibrium FDR has commonly taken an approach that51

is similar to the one that led to the Jarzynski Equation [9,10]. The guiding idea has52

been to let nonequilibrium events happen in a bath that is at equilibrium and that has a53

temperature. Temperature is a collective property and actually only makes sense if the54

collective is at equilibrium.55

But what if the bath is the very source of nonequilibrium?56

In liquid water at room temperature an individual water molecule collides about57

1012 times per second. For time intervals ∆t that are significantly larger than a picosecond58

the displacement of such a water molecule is the result of many collisions. The Central59

Limit Theorem [1] applies in that case and the displacement in ∆t follows the Gaussian60

distribution that is associated with equilibrium.61

Through numerical simulation Kanazawa et al. recently showed that in active62

media, i.e. media with artificial self-propelled colloids or swimming microorganisms,63

displacements of passive tracers follow, not a Gaussian, but an α-stable distribution [11].64

Where a Gaussian distribution results for a process that is the cumulative effect
of stochastic processes with a finite standard deviation, an α-stable distribution results
when infinite standard deviations come into play. The analytic expression for the α-stable
distribution is huge and cumbersome, but in Fourier space a concise formula ensues.
For a symmetric, zero-centered α-stable distribution the generating function is:

p̃α(k) = exp[−cα|k|α]. (2)

Here c is a scale factor and α is the so-called stability index (0 < α ≤ 2). For α = 2 the65

Gaussian distribution is actually retrieved and for α = 1 the α-stable distribution is the66

simple and well-known Cauchy distribution, i.e. p(x) = (c/π)(c2 + x2)−1.67

Nonequilibrium is commonly characterized by frequently occurring “outliers” [12–68

17]. If “outliers” means a Brownian trajectory with an overabundance of very large steps,69

then replacing the Gaussian distribution by an α-stable distribution is the next sensible70

move in the modeling.71

It is in the asymptotics, i.e. the behavior at |x| → ∞, that we find the most salient72

difference between a Gaussian and an α-stable distribution. For the Gaussian distribution73

the convergence follows p(x) ∼ exp
[
−x2/4c2] and is rapid (Note here that for α = 2,74

the scale factor c is the standard deviation divided by
√

2). For the α-stable distribution75

the tail follows a power law: p(x) ∼ |x|−α−1. The slow convergence of the power law tail76
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leads to an infinite standard deviation and is also behind the more frequent occurrence77

of outliers [18,19].78

2. Overdamped Particle in a Potential Well Subjected to IID α-stable Noise79

Consider a particle in a potential V(x) that is subjected to α-stable noise. We have
for the Langevin Equation for the position x(t) of an overdamped particle:

βẋ = −dV(x)
dx

+ βcξα(t). (3)

In the course of a simulation with timesteps of length ∆t, a noise contribution ξ(ti) at
the i-th step is taken as ξα(ti) = θα,i∆t1/α−1, where θα,i is the i-th random number in the
sequence of steps. The random numbers θi,α are drawn from an α-stable distribution with
a scale factor of one. They are independent and identically distributed (IID). The 1/α
in the exponent of ∆t guarantees that the diffused distance scales correctly if different
∆t’s are taken. Equation (3) furthermore shows how the scale factor is effectively an
amplitude. For Gaussian noise, i.e. α = 2, the scale factor c is the usual

√
2D, where

D is the diffusion coefficient. The variable β denotes the coefficient of friction. The
coefficient of friction is the inverse of the aforementioned mobility µ, i.e. β = 1/µ. The
left- and right-hand-side of Eq. (3) have the dimension of force. We consider a small
segment of a trajectory going from (ti, xi) to (ti + ∆t, xi + ∆xi). Multiplying with ∆xi,
we obtain the involved energies: β

(
∆xi
∆t

)
∆xi = [F(xi) + βcξα(ti)](∆xi). Here the term

on the left-hand-side indicates the amount of energy that is “dissipated out” in time ∆t.
The term in square brackets on the right-hand-side denotes the net force on the particle.
The net force is made up of the force due to the potential, F(xi) = −dV(xi)/dx, and the
force due to agitation by the bath. Multiplying the net force by the distance ∆xi over
which the force is applied, we obtain the work done on the particle over the segment
∆xi. Writing F(xi)∆xi = −V(x)|xi+1

xi , substituting ∆xi = [F(xi)/β + cξα(ti)]∆t on the
right-hand-side, and using again ξα(ti) = θα,i∆t1/α−1, we find:

β
(∆xi)

2

∆t
+ V(x)|xi+1

xi = cF(xi)θα,i∆t1/α−1 + βc2θ2
α,i∆t2/α−1. (4)

This equation again describes the energy traffic for the particle in a time interval ∆t.80

On the left-hand-side the first term is the dissipated energy and the second term is the81

energy associated with going up or down in the potential. The twofold expression on the82

right-hand-side describes the energy that is “fluctuated into the particle.” The second83

term would be the only contribution in case of a flat potential. The first term accounts84

for the interplay between the random kicks, ξα(ti), and the deterministic F(xi). If the85

Brownian kick and the deterministic force are in the opposite direction and such that86

they balance each other out, then the right-hand-side terms in Eq. (4) will add up to zero87

and the particle will not move.88

For the case of α = 2, Eq. (4) readily reduces to something more familiar. On the
left-hand-side, the existence of a basin of attraction implies that the changes V(x)|xi+1

xi
will ultimately average to zero. Furthermore, we have 〈θ2,i〉 = 0 and 〈F(xi)〉 = 0 in this
case. As the kicksizes θ2,i are not correlated to F(xi), we also have 〈F(xi)θ2,i〉 = 0 on the
right-hand-side. The Gaussian case, α = 2, also leads to 〈θ2

2,i〉 = 1. With c2 = 2D and
invoking the FDR, βD = kBT, we then obtain:

β〈ẋ2〉 = 2kBT
∆t

. (5)

This equation tells us that the long time average of the energy that is fluctuated into89

the particle is 2kBT per timestep. Note that in the continuum limit, ∆t→ 0, an infinite90

amount of energy flows through each particle in the system in any finite amount of time.91

The Langevin Equation, however, is an abstraction. As was mentioned before, in actual92
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reality there is about a picosecond between subsequent collisions of an individual water93

molecule and this puts a lower limit on the value of ∆t. Equation (5) has proven fruitful94

in the analysis of Brownian ratchets [20,21].95

A lot more infinities start accumulating once we make α < 2. For 0 < α < 2, the96

variance 〈θ2
α,i〉 diverges. Effectively this means that the bath has no temperature. No97

FDR can be formulated in this case. For 0 < α ≤ 1, 〈θα,i〉 is zero-centered, but does98

not converge. This leads to further problems in working with Eq. (4). However, most99

real-life instances of Lévy noise involve values of α that are between 1 and 2 [12–17].100

Below we propose a way to “fix" the 〈θ2
α,i〉-divergence for small deviations from101

equilibrium. The idea is inspired by the violation of time-reversal-symmetry that Lévy102

noise causes for a particle in a potential well. We will derive some simple formulae that103

we will check against the results of numerical simulation.104

3. Nonequilibrium and Time-Reversal Asymmetry in a Parabolic Well105

If V(x) is a flat potential, then Eq. (3) describes a simple 1D random walk. Both106

for α = 2 and α 6= 2, we then have time-reversal symmetry. If one were to make a107

movie of the moving particle, it would afterwards not be possible to determine whether108

the movie is played forward or backward. However, when the Brownian particle is109

in a 1D potential well, a different situation arises. When subjected to white Gaussian110

noise, Onsager’s microscopic reversibility has to apply, i.e., we still have time-reversal111

symmetry. But for a Lévy-noise-subjected particle in a 1D potential well, time-reversal112

symmetry is violated. Below we will explain this violation and elaborate on it. Based113

on the developed insights, we will formulate a measure for the time-reversal-symmetry114

breaking and we will derive approximate FDR relations for a nonequilibrium bath.115

Consider the situation with the parabolic well, V(x) = 1
2 Ax2 with A > 0, as116

depicted in Fig. 1a. Let the Brownian fluctuations make the particle go up the parabola to117

a considerable height x0 outside the basin of attraction. As the basin of attraction of the118

potential we take the interval around the minimum where the particle spends around119

90% of its time. In case of Gaussian noise we have microscopic reversibility. The most120

likely Brownian kick has magnitude zero. Therefore the most likely downslide is a series121

of such ‘zero’ kicks and the most likely upslide is, perhaps unintuitively, the exact reverse.122

The deterministic downslide follows βẋ = −Ax. This leads to x(t) = x0 exp[−At/β].123

If we let the downslide run from x0 all the way back back to x = 0, then we have124

for the dissipated energy
∫

βẋ(t) dx(t) = β
∫ ∞

0 ẋ2dt = (β2/(2A))x2
0. In principle, the125

downslide to x = 0 takes infinitely long. But if we take as the endpoint a location x∗ in the126

basin of attraction, then we have for the time t∗ to reach x∗: t∗ = β log[x0/x∗]/A. With127

a discretized time, this corresponds to n = t∗/(∆t) = (β log[x0/x∗])/(A∆t) timesteps.128
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Figure 1. (a) A Brownian particle in a parabolic potential V(x) = x2/2. (b) When subjected to Lévy
noise (α = 1.5, c = 1), microscopic reversibility, i.e. time-reversal symmetry, no longer appplies.
It is obvious from the figure that Lévy jumps lead to the particle “shooting up.” After the jump
there is a slower relaxation, a “sliding down,” back to the basin of attraction. (c) The parameter r
(see text) is a measure for the time-reversal asymmetry. The figure shows how r depends on the
stability index α of the Lévy noise. There appears to be a smooth approach to r = 0 (time-reversal
symmetry) as α approaches 2 (Gaussian noise). ∆t represents the time interval taken in a Langevin
simulation.

With Gaussian noise, the most likely upslide and most likely downslide both take n129

steps. In Ref. [22] it is shown rigorously that in case of Lévy noise, the most likely upslide130

takes one step and the most likely downslide takes n steps. Given what is observed in131

Fig. 1b, it is not hard to intuit this apparent violation of time-reversal symmetry. The132

noisy particle will spend most of its time in the basin of attraction near the bottom of the133

well. A Lévy jump makes the particle “shoot up” in one step. Afterwards it will slide134

down as if in equilibrium. Doing the upslide in one step (i.e. doing it n times as fast as135
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the deterministic downslide) leads to the dissipation of n times as much energy. This can136

be readily seen from the integral that gives the dissipated energy: Ediss =
∫

βẋ(t) dx(t).137

Figures 1b affirms the insight formulated in the previous paragraph. The one-step138

Lévy jumps are conspicuous and so are the slower subsequent relaxations back to the139

bottom of the well.140

For a potential with curvature, there is a problem when simulating the motion of141

a particle that is subjected to Lévy noise. Imagine that the particle in Fig. 1a is to the142

left of x = 0 and imagine next that it receives a large Lévy kick to the right. In a simple143

Euler scheme with a timestep ∆t, we would have the deterministic force on the particle,144

F(x) = −dV(x)/dx, be in the positive direction for the entire interval, even when the145

particle is actually “climbing” the potential on the part of the potential where x > 0.146

For a parabolic potential the solution to this “large kick problem” is straightforward.147

Through scaling of t and x, the Langevin Equation βẋ = −Ax + βcξα(t) can be brought148

into a form ẋ = −λx + ξα(t) [23]. We take λ = 1. Upon discretization of ẋ = −x + ξα(t),149

we let the kick at t = ti have a value ξα(ti) = K. We then take the curvature of the150

potential into account by simply taking the solution of ẋ = −x + K as describing what151

occurs between x(ti) = xi and x(ti+1) = xi+1. This leads to xi+1 = (xi − K)e−∆t + K.152

Figures 1b and 1c were obtained using the latter expression at every timestep.153

After taking the data from a computer simulation (with a time interval ∆t) or from
a real life system (sampled at a time interval ∆t), we can express the deviation from
microscopic reversibility as follows:

r = ϕdesc − ϕasc, (6)

where ϕdesc and ϕasc are the fraction of descending steps and the fraction of ascending154

steps, respectively. Descending steps are steps for which V(x)|xi+1
xi < 0 and ascending155

steps are steps for which V(x)|xi+1
xi > 0 (cf. Eq. (4)). Time-reversal turns ascending steps156

into descending steps and descending steps into ascending steps. So it is obvious that157

r = 0 in case of microscopic reversibility. No arrow of time can exist at equilibrium and158

r = 0 must ensue for any system at equilibrium. The parameter r indicates the level of159

symmetry breaking and can be thought of as an order parameter. Gaussian noise (α = 2)160

leads to r = 0 on any shape potential, even if the potential is not a simple well.161

Figure 1c shows r as a function of the stability index α for a Lévy-noise-subjected162

particle in a parabolic potential. Curves are drawn for different values of the time interval163

∆t. For Lévy noise there is a power-law-tail and a divergent variance for any α = 2− ε,164

where ε is small and positive. For α = 2 the Gaussian is recovered. Nevertheless, the165

convergence to r = 0 as α approaches 2 appears smooth.166

From Fig. 1c it is also obvious that there is a strong dependence on the timestep ∆t.167

It is for the green curve in Fig. 1c, i.e. ∆t = 0.1, that we get the fastest departure from168

r = 0. This apparent optimum is not hard to understand. In a parabola V(x) = 1
2 Ax2 the169

deterministic downslide starting at x0 = x(t = 0) is described by x(t) = x0 exp[−At/β].170

In other words, there is a characteristic time tchar = β/A for the downslide. If ∆t� tchar,171

then the particle will generally be back in the basin of attraction after one timestep.172

The shooting up and sliding down will not be resolved in that case. Suppose next that173

∆t→ 0+. With β∆xi = −Axi∆t + βcθi(∆t)1/α and 1 < α < 2, we then have ∆t1/α � ∆t.174

This leads to the noise-term being dominant and the contribution due to the slope being175

negligible. What this means in practice for the downslide is that it will take a very176

large number of steps, Ntot, to get back to the basin of attraction after a Lévy jump. A177

number Nasc ≈ Ntot/2 of these steps will be ascending and a number Ndesc ≈ Ntot/2178

will be descending. The difference Ndesc − Nasc will be small relative to Ntot and will179

lead to r = (Ndesc − Nasc)/Ntot → 0. In between ∆t→ 0+ and ∆t� tchar there will be180

a maximum for the value of r. Figure 1c shows that with a timestep, ∆t, that is about181

one tenth of the characteristic time, tchar, an optimal resolution of the nonequilibrium182

features is obtained. The parameter r for a Lévy particle in a harmonic potential is further183

explored in Ref. [23].184
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“... when all the fast things have happened, but the slow things have not." That is how185

Richard Feynman once described equilibrium [24]. The observations in the previous186

paragraph on the Lévy particle’s relaxation to the basin of attraction put an interesting187

take on Feynman’s premise for the case of our nonequilibrium system. If we take188

∆t� tchar we are indeed not sampling sufficiently fast to see the relaxation happen and189

we are then looking at the r = 0 that characterizes equilibrium. But if we take ∆t� tchar,190

we are sampling too fast and also do not see the relaxation happen as sampling too fast191

likewise leads to r = 0, i.e. the equilibrium result. So “... when the fast things happen, but192

we are sampling too fast to see it" would also describe equilibrium.193

4. Corrections on the FDR for a small Deviation from Microscopic Reversibility194

As we saw earlier, with Gaussian noise time-reversal symmetry implies that ascent195

and descent are on average equally fast. With Lévy noise the most likely trajectory from196

the basin of attraction to a position x0 high above the minimum takes one timestep. The197

subsequent most likely descent follows the deterministic pattern that would also ensue198

if there were equilibrium. Below we analyze such breaking of time-reversal symmetry199

in a close-to-equilibrium condition. We will come to an intuitive understanding and200

associated approximate relations. Ultimately, we will derive how the FDR looks for a201

small deviation from equilibrium.202

Consider a small interval ∆x0 on the x-axis. With a coefficient of friction β, the
energy that is dissipated if ∆x0 is crossed at a speed v is E = βv(∆x0). Over a long
time interval, ∆x0 is traversed equally often in both directions. Let v0 be the speed
on the downslide and let v0(1 + δ) be the speed on the upslide. Close-to-equilibrium
means that δ is sufficiently small to justify a first order approximation. With the upslide
speed corrected by a multiplicative factor (1 + δ), the number of ascending steps gets a
multiplicative factor (1− δ) relative to the number of descending steps. This leads to:

r =
Ndesc − Nasc

Ndesc + Nasc
=

1− (1− δ)

1 + (1− δ)
≈ 1

2
δ. (7)

If ∆x0 is traversed first at an upslide-speed v0(1 + δ) and next, on the way back to the
basin of attraction, at a speed v0, then the dissipated energy is:

Enoneq
diss = βv0(1 + δ)(∆x0) + βv0(∆x0) = 2βv0(∆x0)(1 + r). (8)

The energy Eeq
diss = 2βv0(∆x0) is what would be dissipated if, in case of microscopic

reversibility, we traverse the two directions with the same speed v0. The higher speeds
on the upslides, i.e. the violation of microscopic reversibility, lead to the (1+ r) correction
factor:

Enoneq
diss = Eeq

diss(1 + r). (9)

For a corrected Energy-FDR we thus find:

Pnoneq
diss =

2kBTeq

∆t
(1 + r). (10)

This equation can be seen as an adjusted form of Eq. (5) for the case of a small violation203

of time-reversal-symmetry as quantified by the parameter r. Note that the temperature204

Teq is still in the formula. On the right-hand-side, the small r leads to a small amount of205

extra power being “fluctuated in.” This power is included in what gets dissipated.206

In principle, temperature is a characteristic of a system that is at thermodynamic
equilibrium. Nevertheless, even in a nonequilibrium setup, we can associate the temper-
ature with the average kinetic energy of the particles, i.e., 〈Ekin〉 = 1

2 kBT in case of a 1D
system. Let upslide and downslide cover the same distance ∆x0. In that case the upslide
speed, vup = v0(1 + δ), is held for a shorter time than the downslide speed v0. This will
lead to the average actually being smaller than v0(1 + 1

2 δ). However, this is a second
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order effect in δ (see the short derivation in the Appendix). At first order we thus have:
vavg ≈ v0(1 + 1

2 δ) = v0(1 + r). If all of the involved particles have the same mass m and
taking the average of the square as the square of the average, we come to a lowest order
approximation: 〈Ekin〉 = 1

2 mv2
avg ≈ 1

2 mv2
0(1 + δ). With δ = 2r, this leads to

Tnoneq = Teq(1 + 2r). (11)

The Kubo relation expresses the diffusion coefficient D as the time correlation of the
velocity: D =

∫ ∞
0 〈v(t)v(0)〉 dt [25]. With the insights developed in this paragraph we

find that this leads to
Dnoneq = Deq(1 + 2r). (12)

Equations (11) and (12) express, in terms of r, what the effect of the time-reversal-207

symmetry breaking is on the temperature and the diffusion. Equations (10-12) constitute208

the main result of this work.209

5. A Stochastic Simulation with an Artificial Violation of Microscopic Reversibility210

In this section we view the violation of time-reversal symmetry from a different211

perspective. We rederive Eqs. (11) and (12) and check the theoretical results with a212

stochastic simulation.213

Consider Fig. 2. We take two points, P1 and P2, on the parabolic potential of Fig. 1a.214

The point P1 is in the basin of attraction and the distance between the points is such that215

it takes more than one timestep to cover the trajectory. Say it would take n steps to go216

from P2 to P1 on a deterministic downslide. As discussed before, at equilibrium the most217

likely upslide trajectory is the reverse of the deterministic downslide and also takes n218

steps. With the violation of microscopic reversibility that was discussed in the previous219

section, a mismatch arises. If the upslide speeds carry a factor (1 + δ), then the n steps220

will bring the particle further up in the potential. Instead of the equilibrium distance ∆x,221

a distance ∆x(1 + δ) would be covered and the point P′2 would be reached.222

Figure 2. The parabolic potential with a point P1 in the basin of attraction and a point P2 signif-
icantly higher. At equilibrium, the upward trajectory ω̃ and its reverse ω are traversed equally
often. With a small violation of time-reversal symmetry, i.e. r > 0 and a slightly faster upslide,
a mismatch arises. The adjusted upslide ω̃′ reaches to P′2 and the Boltzmann distribution in the
potential is correspondingly widened.



Version February 9, 2022 submitted to Symmetry 9 of 12

For the equilibrium situation, there is an elegant relation connecting any trajectory ω
to its time-reverse ω̃. Let P(ω) and P(ω̃) be the probabilities of the underlying sequences
of steps for ω and ω̃. We have [26]:

P(ω̃)

P(ω)
= exp

[
− ∆E

kBT

]
. (13)

The right-hand-side of the equation is recognized as the Boltzmann factor, i.e. the ratio223

of the population densities at P2 and P1. With Eq. (13) we see that upslide and downslide224

ultimately occur equally often, i.e. we have microscopic reversibility.225

With the small deviation from microscopic reversibility, we obtain the slightly226

mismatched situation: the starting point of the trajectory ω is a small distance away227

from the endpoint of ω̃′. What is a single point P2 in the equilibrium state, is a small228

segment at nonequilibrium. It is not unreasonable to hypothesize that the value of the229

probability density that at equilibrium corresponds to P2 is achieved halfway between230

P2 and P′2 at nonequilibrium. This point is indicated in Fig. 2 with an open circle.231

It is obvious that the augmentation of the upslides (cf. Fig. 2) leads to a widening232

of the distribution. The standard deviation will increase, but it will not become infinite233

as with α-stable distributions. In other words, we move towards the α < 2 situation234

without blowing up the standard deviation and other moments.235

With Eq. (3) and Gaussian noise, the stationary probability distribution for the236

position in a parabolic potential V(x) = 1
2 Ax2 is a zero-average Gaussian with a standard237

deviation of σ =
√

D/A [1]. With the small violation of microscopic reversibility238

characterized by δ, we expect that the probability density will still “look” very Gaussian,239

but it will have a standard deviation of σ′ = σ(1 + δ/2) = σ(1 + r) (cf. Fig. 2). So the240

Gaussian will be stretched by a multiplicative factor (1 + r).241

With σ =
√

D/A, we see that
√

D gets a multiplicative factor (1 + r) upon going to242

nonequilibrium. This means that D gets, at first order, a factor (1 + 2r), i.e. we retrieve243

Eq. (12). With the FDR, D = kBT/β, we see that Eq. (11) follows concurrently.244

The ideas put forward in the previous paragraphs can be readily checked through245

a Langevin simulation. The simulation is based on a Euler scheme using Eq. (3). The246

coefficient of friction β and the diffusion coefficient D are set equal to one and we247

also pick A = 1. The Euler scheme thus computes the increments and new positions248

using ∆xi = −xi∆t + θ2,i
√

2∆t and xi+1 = xi + ∆xi, respectively, where θ2,i is the i-th249

random number drawn from a Gaussian distribution with a zero-average and a standard250

deviation of one. A breaking of time-reversal symmetry similar to the one brought about251

by Lévy jumps is applied by simply augmenting the climbing steps by a small fraction252

δ. However, care must be taken here as σ′ = σ(1 + δ/2) is only obtained when some253

supplementary conditions are implemented.254

Following the simple criterion for “climbing” formulated with Eq. (6), the augmen-255

tation would also apply inside the basin of attraction. This would lead to the Gaussian256

distribution becoming bimodal, i.e., the distribution turning into one with with two257

maxima. Bimodal distributions have been observed more commonly in the context of258

Lévy noise in a potential well [27–29]. The bimodality is intriguing and worth further259

study, but here we wish to stop it from occurring and maintain the Gaussian shape.260

We thus only apply the augmentation outside the basin of attraction, i.e. on the i-th261

step if |xi| > x̂ and sgn(∆xi) = sgn(xi). With this procedure we “fatten” the tail of the262

position distribution without causing bimodality or bringing about an infinite standard263

deviation. Figure 3 shows how for x̂ = 1.87, i.e. almost two standard deviations from the264

center, we obtain the σ′ = (1 + δ/2) that the theory predicts. For a Gaussian distribution265

with a unit standard deviation, the interval between −1.87 and 1.87 contains 94% of the266

probability.267



Version February 9, 2022 submitted to Symmetry 10 of 12

0.05 0.10 0.15 0.20 δ
1.02

1.04

1.06

1.08

1.10

σ′

Figure 3. Each point is the result of a Langevin simulation of 125 million steps. The line represents
the best linear fit to the points. The basic setup is that of a Euler scheme following a Brownian
particle in a parabolic potential V(x) = x2/2. We take β = 1 and D = 1 (see text). The timesteps
have a length of ∆t = 0.01. The breaking of microscopic reversibility consists in an augmentation
of climbing steps that occur at more than 1.87 standard deviations away from x = 0. The parameter
δ, which is varied from 0.01 to 0.2 in steps of 0.01, represents the fraction by which a climbing step
is made longer. We let σ′ represent the standard deviation of the augmented Gaussian. The graph
shows how the simulations bear out the theoretically derived σ′ = (1 + δ/2).

6. Discussion268

Extension of the FDR to nonequilibrium is a challenge that has been taken up by269

many and different approaches have been tried [10,30,31]. Our starting point is a Lévy-270

noise-subjected particle in a quadratic potential well. The quadratic potential well is271

generic in the sense that along any potential profile V(x), the first term in the expansion272

around a minimum at x = x0 is generally quadratic, i.e. V(x) ≈ V(x0) +
1
2 V′′(x0)(x−273

x0)
2.274

Lévy noise is characterized by the occurrence of frequent outliers. In everyday275

data-processing practice, however, the reasoning is often in the opposite direction: upon276

observation of frequent outliers it is inferred that the underlying noise must be Lévy.277

Subsequent theoretical analysis is then commonly greatly impaired by the divergent278

integrals that are associated with Lévy noise. In the face of these infinities, relating data279

and theory is no longer straightforward.280

At that point it makes sense to take a step back and realize that infinity is an281

abstraction. In the aforementioned setup of Kanazawa et al [11], for instance, the liquid282

in an experimental realization has to be in a container and it is obvious that no Lévy283

jump will ever be larger than the size of the container. Silva et al [17] followed the spatial284

fluctuations of a cytoskeletal network and found fat tails in the ensuing distribution.285

Also here the container size imposes a natural cutoff on the jump size. An infinite286

standard deviation is just as unrealistic as ∆t→ 0 in our Eq. (5).287

With finite standard deviations the Central Limit Theorem should apply again.288

This idea was what motivated Mantegna and Stanley as they took n different truncated289

α-stable distributions [32]. They added the results of draws from these n distributions290

and found that convergence to a Gaussian occurs with increasing n, but it is very slow.291

Note that the position distribution that we arrive at in Section 5 is still Gaussian, but that292

it has just been artificially widened by the augmentation of the climbing steps.293

In this article we started with the observation that time-reversal-symmetry is vio-294

lated for a Lévy-noise-subjected particle in a harmonic well. The particle tends to “shoot295

up” and “slide down.” We quantified the “degree of violation” with a parameter r. For296

the Lévy-noise-subjected particle in a harmonic well, the standard deviation and the297

higher moments diverge. There is no temperature and no FDR. We devised a way to298

artificially implement a small amount of violation of the time-reversal-symmetry. In this299

Discussion section we explained why it is sensible and realistic to keep all the involved300
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moments finite. Our scheme does not give rise to divergent integrals and leads to simple301

expressions for a corrected FDR. The correction only involves the parameter r.302

A possible experimental verification of Eqs. (10) and (12) would entail a setup303

with an energy input; an energy input leading to a bath with particles whose motion304

violates time-reversal-symmetry. Through following that motion with a probe, the r305

could possibly be established. The power dissipation or the diffusion coefficient could306

next be established independently.307

Author Contributions: Conceptualization, S.Y. and M.B.; methodology, S.Y., N.B. and M.B; soft-308

ware, S.Y. and N.B.; formal analysis, S.Y., N.B. and M.B; investigation, S.Y., N.B. and M.B; writing—309

original draft preparation, N.B. and M.B.; writing—review and editing, S.Y., N.B. and M.B;310

supervision, M.B. All authors have read and agreed to the published version of the manuscript.311

Funding: This research received no external funding.312

Conflicts of Interest: The authors declare no conflict of interest.313

Abbreviations314

The following abbreviations are used in this manuscript:315

FDR Fluctuation-Dissipation Relation
IID Independent and Identically Distributed

316

Appendix A317

Consider the situation depicted in Fig. A1. An interval ∆x is traversed at a speed318

v f = v0(1 + ε) and next at a speed vb = v0(1− ε) in the reverse direction. The total time319

for the out-and-back run is320

Ttot =
∆x
v f

+
∆x
vb

=
∆x
v0

(
1

1 + ε
+

1
1− ε

)
≈ 2∆x

v0

(
1 + ε2

)
.

Fourth and higher order contributions have been neglected in the last expression. For
the average speed over the entire out and back trajectory, we now have

vavg =
2∆x
Ttot
≈ v0

(
1− ε2

)
.

We see that the average speed, vavg, is lower than v0. This is due to the fact that the lower321

speed is held over the same distance as the higher speed. It is therefore kept for a longer322

time than the higher speed. The first correction on v0 is quadratic in ε. For the first order323

treatment in Section 4, the second-order-correction can be disregarded.324

vf = v0(1 + ε) 

vb = v0(1 − ε) 
Figure A1. An interval of length ∆x is traversed in the forward direction at a speed v f = v0(1 + ε)

and, subsequently, in the backward direction at a speed vb = v0(1− ε). In this Appendix it is
shown that the average speed during the out-and-back run is v0 with a lowest order correction
that is quadratic in ε: vavg = v0

(
1− ε2).
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