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It has been recently proved by S. L. Ziglin that transversal intersections of separatrices (invariant manifolds) in 
near-integrable Hamiltonian systems of two degrees of freedom imply the existence of multi-valued solutions with infinitely 
many Riemann sheets. Ziglin's theorem is illustrated here on a simple example and then extended and applied to 
non-Hamiltonian, analytic flows Yc = f ( x )  + eg(x, t), with x -= (x, y) and g(x, t) = g(x, t + 2~r), which for e = 0 possess the 
Painlev6 property. On the other hand, the theoretically expected logarithmic singularities for e ~ 0 are obtained explicitly in 
solutions near the intersecting separatrices. Thus, we conjecture that dynamical systems with the Painlev6 property, can have 
no separatrix intersections and hence no strange attractors, etc. These singularities are then numerically located and found to 
form certain very interesting "chimney" patterns in the complex t-plane, on which they accumulate densely. The upper part of 
the chimneys (away from the Re t axis) is asymptotically quite insensitive to changes in parameter values or initial conditions. 
The singularity pattern itself, however, becomes "denser" and each chimney is seen to gradually "collapse" towards the Re t 
axis, as the amplitude of the driving term increases and the motion becomes more chaotic. 

1. Introduction 

In recent years, a novel approach has been 
developed in the study of nonlinear dynamical 
systems, based on the analysis of their singulari- 
ties in the complex time (t-) plane [1-7]. These 
singularities of the (generally) unknown solutions 
of the equations of motion of the system, 

( d x / d t  - ) Jc =)r(x; t), 

x ( t )  - ( x x ( t )  . . . . .  x , ( t ) ) ,  
(1.1) 

are called movable [8], since their location in the 
complex t-plane depends on the initial conditions 
X(to),  required to specify uniquely each solution 
(or orbit) of eq. (1.1) for all t. In particular, one 
starts by looking for all possible leading behaviors 
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of the form 

x k (  t ) - zPg(log T) qk, 

• = - t - t .  (k = 1, . . . ,  n) 

near such a singularity at t = t . ,  

(1.2) 

and expands 
X k ( t  ) in powers of ~" (and log "r) so as to satisfy 
eq. (1.1) to all orders in ~'r(log ~.)s (r >-Pk)- 

If, in these series expansions, no logarithms are 
found to enter, and all powers of ~" are integers 
[with at least one p~ < 0 in (1.2)], (1.1) is said to 
obey necessary conditions for possessing the 
Painlevb property of having only poles in t ~ C [7, 
8]. One might naturally expect that systems, which 
could be proved to possess this property, would be 
easier to integrate, or perhaps even analytically 
solve, describing thus predictable and globally 
"regular" motions. This expectation indeed turned 
out to be true: many new, such "completely inte- 
grable" dynamical systems-  Hamiltonian or 
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not - were discovered by the requirement that their 
solutions possess only poles [12], and were subse- 
quently integrated explicitly (sometimes even 
solved completely), establishing thus sufficient 
conditions for having the Painlev6 property [9-13]. 

When the Painlev6 property is violated in a 
systematic w a y -  by varying e.g. the values of 
certain parameters of the system, or introducing 
additional terms in the equations of motion - loga- 
rithmic terms are generally seen to arise in the 
expansions of xk( t  ) near a singularity at t = t,  [6, 
7]. Moreover, it was observed, on numerous exam- 
ples, that the higher the order tr(r >Pk) at which 
the log z terms entered, the "weaker" the chaotic 
properties of the system as a whole, as measured 
e.g. by the "size" of large scale chaotic regions at 
comparable values of the total energy, etc. [6, 7]. 
These results, however interesting by themselves, 
are for the most part non-rigorous and empirical, 
and hence have remained to date outside a more 
comprehensive treatment of the singularities of 
chaos in "non-integrable" dynamical systems. 

In this paper, we obtain rigorous results 
connecting the transversal intersections of sep- 
aratrices (or, invariant manifolds) in near-integra- 
ble dynamical systems to multi-valued solutions 
with infinitely many Riemann sheets in the com- 
plex t-plane. Our point of departure is a recent 
theorem due to S. L. Ziglin [14], establishing such 
a connection in the Hamiltonian case, and our 
main purpose is to extend the applicability of 
Ziglin's theorem to non-Hamiltonian systems. In 
the process, we shall demonstrate how these re- 
suits, remarkably enough, bring together the 
celebrated work of Melnikov [15, 16] and the 
singularity analysis of dynamical systems in 
the complex t-plane. 

Thus, this important phenomenon of transversal 
separatrix intersections-intimately connected 
with chaotic behavior in non-integrable systems 
[16-18]- is  shown to imply the existence of in- 
finitely branched, multi-valued solutions, in con- 
trast with the Painlev~ property, which allows only 
poles, in completely integrable systems. Based on 
these results we may assert that dynamical systems 

possessing the Painlev6 property can have none of 
the chaotic phenomena associated with intersect- 
ing invariant manifolds, and more generally, we 
conjecture that they can have no strange attractors 
[16, 18]. 

Multi-valued solutions with infinitely many 
Riemann sheets have already been observed in 
several non-integrable tw0-degree-of-freedom 
Hamiltonian systems [3-5]. Their series expan- 
sions, near one of their singularities at t =  t,, 
involve irrational or complex powers 0 "~ of • = t - 
t,, while these singularities appear to form self- 
similar natural boundaries in the complex t-plane 
[3-5]. By comparison, we find in this paper that 
an equally- if not more-  typical situation in non- 
integrable oscillating systems is the occurrence of 
logarithmic singularities, forming rows of "chim- 
neys" in the complex t-plane, on which these 
singularities accumulate infinitely densely. 

In section 2, we state Ziglin's theorem on the 
transversal intersection of invariant manifolds in 
the perturbed two-degree-of-freedom Hamiltonian 

JC= J~'0(x, y , I ) + e 3f'l ( x , y,  I, q~ ) 

(2~r-periodic in ~), (1.3) 

and illustrate it on a simple example where qa = t. 
For e = 0, these invariant manifolds join 
"smoothly" in a single separatrix, or homo(hetero)- 
clinic orbit of the completely integrable unper- 
turbed problem, whose solutions have only poles 
in complex t. For e =~ 0, however, these manifolds 
intersect at infinitely many points and infinitely 
branched multi-valued solutions appear, as pre- 
dicted by Ziglin, with logarithmic singularities. 

Following Ziglin's approach, in section 3, we 
extend and apply his theorem to periodically 
driven, generally non-Hamiltonian systems of the 
form 

~ c = l ( x ) + e g ( x , t  ), g ( x , t ) = g ( x , t +  2~r), 

x-~ (x, y) ,  (1.4) 

where a~=af(x ) has the Painlev~ property and 
contains a "smooth" separatrix. We prove for all 
such functions f(x) ,  analytic in x, y and a gen- 
eral, analytic perturbation g(x,  t), that the 
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"splitting" of this separatrix into transversally in- 
tersecting invariant manifolds (for e ~ 0), neces- 
sarily implies the existence of infinitely branched, 
multi-valued solutions x(t) of (1.4). Their singu- 
larities are written down explicitly and are found 
again to be of logarithmic type, as in the Hamilto- 
nian example of section 2. 

In section 4, we investigate the patterns formed 
by the singularities of (1.4) in the complex t-plane, 
using the ATOMCC computer program of Chang 
and Corliss [19] to solve numerically (in the com- 
plex domain) typical examples of systems (1.4), 
like Duffing's equation. 

2 = y ,  ~ = - A x - x 3 + e { y c o s t - ~ y ) .  (1.5) 

In the Painlev6 integrable case, e = 0, the (Jacobi 
elliptic function) solutions of (1.5) have a doubly 
periodic, infinite lattice of poles in the complex 
t-plane [20]. With e ~ 0, however, these poles be- 
come logarithmic singularities; and the lattice 
"collapses" to two rows of "chimneys" (one above 
and one below the Re t axis) each chimney extend- 
ing, in general, to a finite distance and becoming 
infinitely thin in the Im t direction. On these chim- 
neys, singularities appear to accumulate densely, 
in a way which is asymptotically insensitive to 
changes in the parameter values or initial condi- 
tions. 

Such chimney patterns have been observed by 
other researchers in non-integrable, two-degree of 
freedom Hamiltonian systems, with complex power 
behavior ( t - t , )  ~ near a singularity [3]. Using 
some of their ideas, we have been able to explain 
some interesting features of the chimneys of eq. 
(1.5): for example, we have derived analytical 
formulas which describe the numerically observed 
"condensation" of the singularity pattern, and. the 
gradual "collapse" of the chimneys towards the 
Re t axis, as "t > 0  is increased in (1.3) and 
the motion becomes more chaotic. 

Finally, in section 5, we offer some concluding 
remarks and discuss the importance of our results 
in the broader context of the singularity analysis 
of nonlinear dynamical systems. 

2. Ziglin's theorem on a simple Hamiltonian 
example 

In this section, we shall state Ziglin's theorem 
on the splitting of separatrices in 2-degree of 
freedom Hamiltonian systems and illustrate it ex- 
plicitly on a simple example. Consider the Ham- 
iltonian 

9~= 9f'o(X, y, I )  + e~,~l ( x, y, I, qJ ), (2.1) 

where (y,  x)  and (I,  q~) are canonically conjugate 
pairs of momentum-position and action-angle 
variables respectively. With Ziglin [14], we now 
make the following assumptions about (2.1): 

(A1) ~ is real and analytic in some domain of 
x = (x, y), I I - I01 < ~, lel </~ and 2~r-periodic 
in q~. 

(A2) For e = 0, I = I0, (2.1) has two hyperbolic 
fixed points x+, x_ (not necessarily distinct), 
joined by a doubly asymptotic solution k( t )  with 
.~(t)~x+_ a s t ~ _ _ _ ~ .  

(A3) (O.g'o/aI)(~(t), I0) > c > 0 for all t, and 
the solution 

£(t) = ( k ( t ) , I o , ~ ( t ) ) ,  

f t 0 9f~o 
~,(t) = j a I  dr ' ,  (2.2) 

can be analytically continued to the strip H : 0 < 
Im t < 2~r/~+ (where X+ is the positive eigenvalue 
of the linearized system about x+) and has no 
more than a finite number of singular points in /7 .  

(A4) ~ ( z ,  e) can be analytically continued for 
c o m p l e x  z and  ( a ~ o / O I ) ( £ ( t ) )  and  
(O~JOeO)(£(t, q~o)) are single valued in/-/,  for all 
fro ~ R, where £(t, q~o) denotes the solution £(t) of 
(2.2) with ~ replaced by q~ + q~o. 

Theorem (Ziglin [14]). Under the above assump- 
tions and if (O.g~l/Oq~)(g(t, ~o)) has nonzero sum 
of residues in /7 (for at least one ~o), the system 
(2.1) possesses multiple-valued solutions I( t ) = I o 
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+ el l ( t  ) + . . . .  since whose associated equations of motion 

dI1 0ael 
AI1 ~r dt  d t =  ~r 0~ ( f ( t ' q ~ ° ) ) d t * 0  

(2.3) 

for some contour F c/- / .  In fact, since for any 
given q~o, going around F changes the value of 11 
by the same amount AI~, we conclude that I ( t )  is 
infinitely branched in the complex /-plane much 
like a log t function. 

X ~ - X - - X  2 , p~-  - - y +  2 x y + e c o s t ,  (2.7) 

are easily seen to possess, for e = 0, two hyper- 
bolic fixed points x_ = (0, 0) and x+ = (1, 0) in the 
x, y plane. In the unperturbed case, x_+ are joined 
by a single, "smooth" separatrix, along the (0,1) 
interval of the x-axis, as in fig la, on which the 
solution :~(t) = (~(t),  ~(t)) is 

The connection between (2.3) above and the 
splitting of separatrices comes from Ziglin's proof 
[14] that (2.3) implies that the following integral 
does not vanish identically: 

J(,#o) = {Ho, H1)(f(t),qJ+qJo)dtrkO, 
00  

(2.4) 

where {.,.} denotes the Poisson bracket, and 
H0, H 1 are related to the original Hamiltonians by 
solving (2.1) for a (single-valued) I on a constant 
energy surface 

- I = H o ( x , y ) + e H l ( x , y , ~ ) +  . . . .  (2.5) 

It is well-known from the work of Poincar6 [21], 
Melnikov [15] and others [16] that as a direct 
consequence of (2.4) the stable manifold of x+ 
and the unstable one of x_ "split", and intersect 
transversally if J(q~0) has simple zeros in e~ 0. 

More than that, Ziglin also proves that (2.3) 
implies that the Hamiltonian system (2.1) does not 
possess a second analytic integral independent of 

for any sufficiently small lel ~ 0 [14]. We con- 
centrate here, however, on the connection between 
transversal intersections of separatrices and in- 
finitely branched multi-valued solutions since it is 
this aspect of Ziglin's result that we wish to extend 
to non-Hamiltonian systems in the next section. 

Let us first attempt to elucidate this connection 
here on a simple example described by the 
Hamiltonian 

H = y ( x - x  2) - e x c o s t = H o + e H 1 ,  (2.6) 

~ ( t ) = [ l + e x p ( t 0 - t ) ]  -1, ~ ( t ) = 0 .  (2.8) 

The question is what happens to this separatrix 
for e 4:0 and what does this imply about the 
singularities of the general solution of (2.7) (see 
fig. lb). 

Following Ziglin's approach, we first rewrite 
(2.6) as a 2-degree-of-freedom Hamiltonian 

, 9 ~ ' = y ( x - x 2 )  + I - e x c o s e P = ~ o + e ~ l ,  (2.9) 

cf. (2.1), for which all the assumptions of Ziglin's 
theorem are seen to be satisfied. We now calculate 
the residues of (O.~l/aq~)(f(t ,~o)),  using (2.8), 
and find that 

Re s--o-~- (L q~o) 
sin (t + to) 

= Res  
1 + e x p ( - t )  

= sin(i ~r + to) ~ 0, 

Y 

/ k/ 
(a) 

Y 

\ 
[I,0) 

(b) 

\ 
(1~0) 

Fig. 1. Schematic representation of the time evolution in the 
x, y-plane of eq. (2.7) at (a) e = 0; and (b) on its surface of 
section at e ~ O. 
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over a contour -/enclosing the pole at t = iTr. We 
conclude, therefore, that the function I ( t )  changes 
by the same amount A1 q: 0, when going around 
Y, and hence is multi-valued with infinitely many 
Riemann sheets. 

This leads, by the residue theorem, to the result 
[14] 

f 
oo 

J ( 0 o )  = (Ho, H1}(x,¢+¢o)dt 
- -O0 

= ~ - d-----T + ~ (£(t ,  q~0)) dt 

O, (2.10) 

ten down for this simple example: 

y(t)=cosh2(~-~){y(to) 

fot-toCOS(tt+to) ) 
+ e  cosh2( t , /2  ) d t '  , 

x(t) = [1 + exp( t  o -  t)] -1, 

to, y (t o) arbitrary constants. 

(2.12a) 

(2.12b) 

Now, while x(t) is certainly meromorphic in t, 
y(t) has a logarithmic singularity, as can be seen 
by expanding the integrand in (2.12a) and in- 
tegrating term by term 

which, in our simple example is established di- 
rectly, using ~ 1  = / /1  = x cos q~. 

The integration in (2.10) is performed over a 
rectangular contour F, whose upper side crosses 
the Im t axis at i2~r. But the first integral in (2.10) 
with q~ replaced by t, is none other than the 
Poincar t -Melnikov integral [15, 16], which can 
also be evaluated directly by the residue theorem 
(over a similar contour F) to yield 

J ( t o )  = (Ho, H1}(~,t+to)dt 
oo 

= f ~  c ° s ( t  + t0) 
- ~  4cosh2( / /2  ) dt 

= 4~r csch ~r cos to, (2.11) 

where we have used (2.8). The fact that J(to) 
has simple zeros in t 0 -  as (2.11) clearly shows-  
implies that the stable and unstable manifolds of 
(1, 0) and (0, 0), along the x-interval [0,1] intersect 
transversally, as indicated in fig. lb.  

The infinitely branched multi-valuedness of I ( t )  
must, of course, be shared also by y(t) and /o r  
x(t), since, by (2.9), I is an analytic function of x 
and y on every constant energy surface ~,~= const. 
But then, this could have been independently 
verified by analyzing the solutions y(t) and x(t) 
of eq. (2.7) directly! These can be explicitly writ- 

y(t) = e ( - ~ ' 2 / 4 + . . . )  

4 cos t o 
X 4cost t ,  + 4 s in t ,  l o g ~ +  ( 2 k +  1)i~r 

- 4 s i n  tolog[-~r i(2k + 1)] + . . . )  

+ y( to) ( -z2/4+. . . )  

× ( + ... : higher integer powers of ,r), 
(2.13) 

where ~ ' = t - t . , t . = t  0 + i ( 2 k + l ) ~ r  (k any in- 
teger). 

In some sense, of course, the example of this 
section can be considered explicitly solvable. It is 
certainly separable, and its most general solution 
can be reduced to a final quadrature, cf. (2.12a), 
which converges for all t. On the other hand, it 
does possess transversal separatrix intersections 
and heteroclinic orb i t s - see  e.g. the surface of 
section of fig. l b - u s u a l l y  associated with 
chaotic behavior in non-integrable (non-separable) 
Hamiltonian systems [16, 18]. Note, however, that 
the Poincar6 map of (2.6) has no horseshoes [17], 
for e 4= 0, since the stable and unstable manifolds 
of (0, 0) and (1, 0) respectively extend to infinity 
(see fig. lb),  and do not intersect each other 
transversally in the finite domain. Thus, we have 
here one more example of the fact that intersect- 
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ing invariant manifolds do not always imply chaos 
(see also [22]). 

3. Separatrix splitting in a non-Hamiltonian system 

We now turn to the analysis of separatrix split- 
ting in non-Hamiltonian systems by considering 
the following example of two periodically forced, 
first order o.d.e.'s 

Yc = x - x 2 + 3xy =fx(X,  y )  + egl(x,  y,  t), 

p = _ y  _ y 2  + 3xy + e(3'cos ~0t + 8x) 

=f2(x ,  y )  + eg2(x, y , t ) ,  (3.1) 

where the perturbations gi(x, y, t) = gi(x, y, t + 
2~r/to), i =  1,2 will later be allowed to be more 
general functions of x and y. We shall demon- 
strate on this model, and for a large class of 
perturbations g i ( x , y , t ) ,  that transversal sep- 
aratrix intersections are intimately related to in- 

finitely branched multi-valued solutions, in a simi- 
lar way as in the Hamiltonian case of section 2. 

For e = 0, the non-Hamiltonian system (3.1), 
=jr(x), is known to possess the Painlev6 prop- 

erty [23]. Its general solution can, in fact, be 
explicitly obtained in terms of elliptic functions 
[23], but this will not be important for the discus- 
sion here. Instead, we shall concentrate on the 
motion of the system in the x, y plane (or, surface 
of section e3' 4= 0), depicted in fig. 2. 

There are 3 hyperbolic fixed points for e = 0: 
(0, 0), (1,0) and ( 0 , -  1) joined smoothly by sep- 
aratrices in the shape of a right triangle OAB (see 
fig. 2a). For e 4= 0, and 8 4= 0, but 3' = 0, these 
separatrices split as indicated in fig. 2b, with the 
stable manifolds of (1,0) and ( 0 , -  1) coming in 
from (0, + oo), while the unstable manifold of 
(0,0) is attracted by the stable fixed point. We 
wish to examine what happens to these manifolds 
for e3'8 ~ 0: 

We begin our analysis by evaluating Melnikov's 
integral [16] for the splitting of separatrix AB, 

J ( , o ) - -  t) 

[ ] Xexp - f o t - t ° T r D f ( 1 ) d t  ' dt, (3.2) 

o _ _ =o _ on which the solution of the unperturbed system is 

- ~ i ~ ~  x j--- (~( t ) , )3 ( t ) )  

/ (~-I1 ( 1 --exp[2(t--/0)] ) 
/4/  (CI) / / t / / f  (ID) = 1 + e x p [ 2 ( t - t o )  ] ' l - + - ~ t - - t - - ~ ]  ' 

(3.3) 

and Df  denotes the Jacobian matrix of the unper- 
X ~  X turbed vector field jr= ( f l ,  f2) in (3.1). Substi- 

tuting (3.3) in (3.2) and using (3.1) yields the 
following integral: 

/.o~ - e x p  ( t -  to) 
J( to)  g _ 1-;e p 

Fig. 2. Schematic representation of the time evolution in the × 3'COS ~0t + 1 + exp [2(t - to)] dt. 
x, y-plane of eq. (3.1) at (a) e = 0; (b) e e 0, 8 ~ 0, ~ = 0; and 
(c) e e 0, 8 ~ 0, and ~, 4= 0 on the surface of section. ( 3 . 4 )  
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elm 

3 i-n-12 
r3 irr 

r 4 i t r /2  
q 

-R  
- i w l 2  

I 
{ 

{ 
I 
I 

X t,{ 
{ 

X 
I 

R 

Fig. 3. Contour F in the complex time plane used to solve eq. 
(3.8). 

By contour integration around a rectangular con- 
tour F, whose upper side crosses the Im t axis at 
t = irr (enclosing thus only one pole of the in- 
tegrand at t . - - t 0 + i ~ r / 2 ,  see fig. 3), (3.4) is 
evaluated by the residue theorem: 

-~r3' ~r8 
J ( t  o) = e,,O~/2 + e_,,,o/2 cos ~0t 0 - -~- ~ 0. (3.5) 

Note, first, that J(to) has simple zeroes, and 
hence, according to Melnikov, there are transver- 
sal intersections of separatrices between A and B, 
if 

> cosh (2~ro~/2) --R~Aa. (3.6) 

As a check for the accuracy of these formulas we 
calculated for ¢0 = 2, R~ B= 5.796 from (3.6) and 
found that for 3' = 0.2 the critical 8 value for 
separatrix intersections is 18th1=0.0345. Taking 
initial conditions along vertical directions above 
x > 0 and near the y-axis of the Poincar6 surface 
of section (see fig. 2c), we observed numerically 
that separatrices intersect for 18nu~.0[<0.038, a 
nearly 10% discrepancy from the theoretical value. 

As fig. 2c shows, at I~1  >- 0.038 the stable and 
unstable manifolds of the fixed points A and O 
respectively, have not intersected as yet. This is 
also predicted theoretically by calculating oh R,o ,cf. 
(3.6), using the corresponding Melnikov integral, 
exactly as was done above for separatrix AB. For 
~o = 2, R ° A =  6.352 and [8°AI = 0.0315, for 3' = 

0.2, suggesting that there are no transversal inter- 
sections between O and A at 181 ~- 0 .038,  in agree- 
ment with fig. 2c. 

Returning to the solutions between A and B for 
e 4: 0, direct singularity analysis yields the follow- 
ing asymptotic expansions [6, 7]: 

- 1  
x ( t )  = ~ + Co + q~ + -~ 2ycoso~t, 

19,,2 
- 8 -  ~--,~o e)~-ln,r + O ( r : l n r ) ,  

y ( t )  = ~ + d o + d l Z -  ~ 2Vcoso~t, 

19 ~2 - 8 -  ~--~o e ) T l n r + O ( ' r 2 1 n T ) ,  

(3.7) 

~" = t - t . ,  t .  being the location of the singularity, 
c o, d o, d 1 known constants and t., c 1 free to be 
determined by the initial conditions. It is easy to 
verify that for e = 0 (3.7) reduces to the series 
expansions of ~(t), 33(0 of (3.3) with t .  = t o + (2k 
+ 1)~ri/2. On the other hand, between the fixed 
points O and A in fig. 2b, c the solutions of (3.1) 
possess a singularity type different than (3.7): At 
leading order, as T = (t - t ,) ~ 0, x - 1/~- and 
y - - e 8 / 3 ,  with logarithms entering at higher 
orders, which reduces to the separatrix OA at 
e = 0 .  

In seeking to establish a direct connection be- 
tween (infinitely branched) multi-valuedness of 
solutions and separatrix intersections, we isolate 
first the part of the Melnikov integral (3.2) that 
depends on t o . For the specific example of (3.1) 
this is 

J l ( t O )  = - + 3~3)cos o~(t + to) 

× e x p [ -  fot(yc + ~ ) d t ' ] d t ,  (3.8) 

which has simple zeros in to(dJx/dt o ~ 0), as was 
already discussed above, and its value is given by 
the cos ~t o dependent term in (3.5). The evalua- 
tion of (3.8), over the contour F of fig. 3, proceeds 
by observing that the integral over /'3 is propor- 
tional to Jl(to) (i.e. that over F1), while the 



T. Bountis et al./ lntersecting separatrices in near-integrable dynamical systems 299 

ones over F 2 and F4 vanish in the limit (R ~ oo). 
Thus if we could find a function h(x, y, t )= 
ehl(x, y, t) + ¢(e 2) such that 

× cosh (t - to)COS to(t + to)d t  ~ 0, (3.9) 

[where (3.3) has been used to evaluate the ex- 
ponential in (3.8)] hi, and hence h(x, y, t), would 
be a multi-valued, infinitely branched function of 
t, when evaluated along a solution x( t )= 5¢(t)+ 
d~(e) of the perturbed problem. This h(x, y, t) 
would then play a role analogous to that of the 
action I in Ziglin's theorem for Hamiltonian sys- 
tems, cf. (2.3), (2.4) and section 2. 

The important question now is: Does there exist 
such an h(x, y, t) and if so, what kind of function 
of x, y, t is it? To answer this question, we first 
rewrite (3.9) as a linear, first order partial differen- 
tial equation, valid for x = : ~ +  d~(e), with h = 
eh 1 + tg(e2), at order e: 

. Oh I . Oh 1 Oh1 
f l ( x '  Y)--~-x- + f 2 ( x '  Y)'-~'- + at  

= x(1 - x + 3y) cosh (t - to) cos to(t + to), 
(3.10) 

where we have used (3.1) and omitted a propor- 
tionality constant in front of the rhs. It is now 
simple to ascertain that there exists a domain D, 
near the origin, in complex x, y, t - t .  space, over 
which the rhs of (3.10) and, of course, the coeffi- 
cients of the first derivatives on the lhs are ana- 
lytic, single-valued functions of x, y and t, cf. 
(3.1), (3.3). 

Under the above conditions (and after specify- 
ing equally "smooth" data at t = t .  and on cgD), 
the celebrated Cauchy-Kowalevskaya theorem can 
be invoked [24] to guarantee that (3.10) has a 
unique solution hi(x, y, t), which is analytic and 
single-valued in x, y, t over D. But since accord- 
ing to (3.9), h(t) is multi-valued as a function of t 
alone, it dearly follows, from its "smooth" depen- 

dence on x, y, that this multivaluedness must be a 
property of the solutions x(t),  y(t) of the per- 
turbed problem. 

Thus, we have established, on the non-Hamilto- 
nian system (3.1), a direct connection between 
transversal intersection of invariant manifolds and 
infinitely branched, multi-valued solutions, at least 
for small values of the perturbation parameter e. 
Our arguments parallel those of Ziglin, on near- 
integrable two-degree of freedom Hamiltonian 
systems [14]. Our result, although obtained with 
the aid of a specific example of gi(x, t) actually 
holds for much more general perturbations in (3.1) 
provided they are analytic, single-valued functions 
of x, y and periodic in t: One simply has to 
concentrate on their periodic part and form in- 
tegrals like Jl(to), cf. (3.8) leading to the existence 
of multivalued h(t),  analytic in x, y, and hence to 
multivalued x(t)  and /o r  y(t). One may have to 
expand the gi's and h(t) in Fourier series but the 
approach will be entirely analogous to the above. 

Note also that the final form of the rhs of the 
partial differential equation for hi(x, y, t), cf. 
(3.10), will depend on the exponential term in 
(3.2), (3.8), involving the trace of the Jacobian Df  
evaluated on the unperturbed separatrix x = :[. If 
this term is analytic in t, as e.g. in the case of the 
separatrix AB here, we can apply the Cauchy- 
Kovalevskaya theorem directly. 

In fact, one can always find a function E(x, y) 
analytic in a neighborhood of the separatrix, which, 
when evaluated on the unperturbed separatrix, 
equals the exponential factor in (3.2) exactly. This 
E(x,  y) is a solution of the linear partial differen- 
tial equation 

f l ( a E / O x )  +f2(OE/ay)= - E ( T r D f ) ,  (3.11) 

as can be easily verified by differentiating 
l~( t )=E(x,y) lx= ~ w.r. to t, using d / ~ / d t =  
- /~(TrDflx=,~ ). The analyticity of E(x, y) then 
follows by applying the Cauchy-Kovalevskaya 
theorem to (3.11), and then the extension of 
Ziglin's theorem to general non-Hamiltonian sys- 
tems (3.1), with analytic f and g, is complete. 
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individual orbits, on the other hand, it appears 
that it is mainly the singularities closest to the Re t 
axis, which indicate whether the orbit is in a 
chaotic region, approaches asymptotically a sim- 
ple attractor, etc. 

In order to systematically study singularity pat- 
terns in dynamical systems, we have decided to 
concentrate first on their significance in periodi- 
cally driven, simple anharmonic oscillators, with 
and without damping. To this end, we have 
studied, in some detail, Duffing's equation 

+ ~3c + Ax + X 3 = 7COS tot, (4.1) 
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using the very efficient algorithm ATOMCC of 
Chang and Corliss [2, 3, 19]. This program calcu- 
lates the first thirty terms in a Taylor expansion 
from which a radius of convergence is obtained. It 
then goes on a distance of one radius via a pre- 
scribed path and repeats the procedure. The inter- 
section of the circles indicates the presence of a 
singularity. We located singularities of the solu- 
tion of (4.1) for a wide variety of parameter values 
and initial conditions. We have found that non- 
integrability-in the sense of the presence of a 
second frequency co in (4.1), at V v~ 0 -  was always 
associated with a "chimney pattern" in the com- 

Fig. 4. Accumulation of singularities into "chimney-patterns" 
for eq. (4.1) at A = - 1  and $ = 0.25 for (a) V = 0.2; and (b) 

7 = 0 . 4 .  

4. Accumulation of singularities in the complex 
t-plane 

Let us now turn from the analysis of the type of 
singularities present in the solutions of a dynami- 
cal system to their actual location in the complex 
t-plane. We will discover that they form there 
certain characteristic patterns from which we can 
infer a number of fundamental properties of the 
system, e.g. its non-integrability and tendency to 
become more chaotic "globally", as some of its 
parameters are varied. Concerning the behavior of 
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Fig. 5. Typical singularity pattern for eq. (4.1) in the absence 
of a driving force ( y = 0 )  at A =0 ,3  and 8 = 0 . 4 .  Note the 
"sparsity" of the pattern compared with fig, 4. 
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plex t-plane, on which the (logarithmic) singulari- 
ties accumulated densely near the top of every 
chimney (see fig. 4). Moreover, each of these chim- 
neys seemed to close completely, extending to 
finite o r -  for 8 = 0 -  infinite distances in the Im t 
direction. 

A second result of our investigations was the 
fact that these chimney patterns are observed to 
get "denser" and gradually "collapse" towards the 
Re t axis as the value of 3' in (4.1) is increased, cf. 
fig. 4a, b. In other words, the accumulation of 
singularities appears to increase as the system is 
driven harder and then global motion becomes 
more chaotic. On the other hand, when the forcing 
is completely removed [setting y = 0 in (4.1)] the 
singularity patterns become, by comparison with 
fig. 4, distinctly more sparse (see fig. 5), showing 
no accumulation whatsoever in the complex t- 
plane. 

The formation of these chimneys in the 3' 4:0 
case, may be explained by the following argu- 
ment: Expanding the solution of (4.1) near one of 
its (movable) singularities at t = t. ,  say, we obtain 
a series of the form 

iv~- 
= + a 0 + al~" + a2 ~'2 x(t) 

+bl¢31n~+a3~'3+O(~3(ln~')2), (4.2) 

where r = t - t . ,  a 3 
(the other one is t .)  
logarithmic term is 

is the second free constant 
and the coefficient of the first 

ivY- -2{ 232 ) bx=---~-o ~--~--A +~-~coswt .  

3'~d 
5 sin ~ t . .  (4.3) 

Clearly, as the IIm t.I increases, the magnitude of 
b 1 grows exponentially, by virtue of the 
exp(o~llmt.I ) contribution of the trigonometric 
terms in (4.3). This would progressively decrease 
the radii of convergence of (4.2) in that direction 
and thus account for the observed accumulation 
of singularities and the formation of chimneys, as 
in fig. 4. By the same token, the absence of the 

driving force (3' = 0) would not have such an effect 
on the radii of convergence, and no accumulation 
should be observed in that case, as indeed none 
was seen in fig. 5. 

The above argument can be made more rigorous 
by a careful analysis of the so-called ~p-series 
expansion of the solution of (4.1) containing the 
most divergent terms, one from each power of T 
in (4.2) [2, 3]. This analysis will be presented in 
detail elsewhere [25]. The main result is that the 
distance between two nearest singularities on the 
chimneys of fig. 4 is directly related to the radius 
of convergence of a Taylor series about the singu- 
larity, given by [25]. 

p 0c Iyoa sin 60t.[ -1, (4.4) 

which supports the more heuristic argument given 
above in connection with (4.2) and (4.3). More- 
over, besides explaining the chimney structure, 
(4.4) shows also w h y - w i t h  increasing 3'- the sin- 
gularity accumulation on them gets "denser" and 
the chimneys are gradually seen to "collapse" 
towards the Re t axis, as was numerically observed 
in fig. 4. 

Singularity chimneys in the complex t-plane are 
not new. Other researchers have also observed 
them in the study of non-integrable two-degree- 
of-freedom Hamiltonian systems [3]. What we wish 
to stress here is that they are quite ubiquitous in 
non-integrable, nonlinear oscillator systems and 
need to be studied further, as they seem to with- 
hold information about the solutions, which is to a 
large extent independent of particular parameter 
values and initial conditions: For example, if we 
number by n the "rows" of singularity pairs of 
each chimney, and compute the distance d n, be- 
tween the two singularities of each row, and the 
separation sn, between the nth and (n + 1)st row, 
we find 

s , -  n -~, d ,  - n-t~, n "large". (4.5) 

Our computations show that the exponents a,/3 
appear to converge, as n increases, to positive 
values, which are surprisingly insensitive to specific 
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Table I 
Values of a , /3  in (4.5) for chimneys 6f eq. (4.1) 

Eq. pa ramete r s / In ,  cond. a fl 

6 = 0 ,  A = 0 . 3 ;  
6 = 0.5: quasiperiodic orbits 0.93 + 0.01 0.77 +_ 0.01 
6 = 2.8: chaotic orbits 

6 = 0 . 2 5 ,  A = - 1 . 0 ;  
"r = 0.05: regular orbits, no 1.08 + 0.01 0.83 + 0.01 

intersecting separatrices 

3' = 0.2: regular orbit attracted 1.07 + 0.02 0.81 + 0.02 
by fixed point 

3' = 0.2: irregular orbit trapped 1.05 _+ 0.01 0.80 +_ 0.01 
temporarily by 
intersecting 
separatrices 

y = 0.4: irregular orbit on the 1.04 _+ 0.01 0.81 + 0.01 
strange attractor 

= 1.0: regular orbit attracted 1.06 + 0.02 0.78 _+ 0.02 
by fixed point 

choices of parameters and initial conditions (see 
table I). The fact that a > 0 and fl > 0, on the 
other hand, indicates that, as n ~ ~ ,  the singular- 
ities accumulate infinitely densely, and each chim- 
ney, becomes infinitely thin, extending to finite 
(or, if a < 1, infinite) distances in the complex 
t-plane. 

Returning, briefly, to the examples of sections 2 
and 3 of this paper we make the following re- 
marks: First, the Hamiltonian system of section 2, 
eg. (2.6), (2.7), being separable and linearizable, 
has a very simple singularity structure: x(t) and 
y(t)  have a single vertical column of evenly spaced 
singularities at t .  = t o + (2k + 1)Dr. In the case of 
x(t), these are movable poles, cf. (2.8), while for 
y(t), they are fixed logarithmic singularities 
imposed by substituting the solution x(t) of the 
first equation of (2.7) in the second, linear equa- 
tion for y(t). 

The non-Hamiltonian system of section 3, on 
the other hand, being apparently non-separable 
(and non-linearizable) for e 4= 0, possesses a much 
more complicated singularity structure: There are 
three distinct types of singularities t ,  here, having 

leading behaviors (as t ~ t .)  

1 -~6 - I  
(i) x ~ - ,  y - (ii) x, y , 

r 3 ' 2r  

1 
(iii) x - r  3, Y - 7 '  

(4.6) 

r = t - t , ,  corresponding to motions on the com- 
plex time extensions of separatrices OA, AB and 
OB respectively [see fig. 2a, (3.7) and the discus- 
sion below it]. It is interesting to note that loga- 
rithmic terms enter only in the higher orders of 
singularities (i) and (ii) in (4.6). Singularity type 
(iii) has no logarithms, for all e, which may be 
related to the fact that separatfix OB has no 
transversal intersections for e 4= 0, cf. fig. 2c. 
Searching numerically in the complex t-plane, we 
also saw "chimney"-looking structures here -  only 
not as clearly as with Duffing's equat ion-  mainly 
because of the entangled presence of more than 
one type of singularities. 

Finally, we also observed, in agreement with 
other studies [1-3], that the oscillation amplitudes 
and quasi-periods of individual orbits, in real time, 
are directly related to the locations of the complex 
t-plane singularities doses to the Re t axis. Ana- 
lytical formulas describing these connections pre- 
c i se ly -a t  least in the case of certain periodic 
orbits of (4.1) - will be given in future publications 
[25]. 

5. Concluding remarks 

Considerable progress has been made recently 
in the identification and study of new completely 
integrable dynamical systems, starting from the 
requirement that their solutions have the Painlev6 
property, i.e. that their only movable singularities 
in the complex t-plane are poles [9-13]. In par- 
ticular, in Hamiltonian systems, the Painlev6 
property has been associated with a whole class of 
so-called algebraically completely integrable sys- 
tems, which possess a full set of rational integrals, 
and whose motion is linearizable on complex tori 
[21,261. 
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But if poles are related to complete integrabil- 
ity, what then is the singularity structure of chaos, 
in non-integrable systems? This is the question we 
have asked, and made a first attempt to answer, 
analytically as well as numerically, in the present 
paper. More specifically, we have concentrated on 
one characteristic phenomenon, occurring in non- 
integrable dynamical systems: the transversal in- 
tersections of invariant manifolds (separatrices), 
near which "most" orbits are known to exhibit 
chaotic behavior, at least in problems of low di- 
mensionality [16-18]. 

What we have tried to show in this work is that 
there exists now the theoretical foundation for a 
comprehensive singularity analysis of intersecting 
separatrices in non-integrable dynamical systems. 
This foundation is provided by a theorem of Ziglin 
on two degrees of freedom Hamiltonian systems, 
which we have extended and applied here to peri- 
odically forced, generally n o n - H a m i l t o n i a n  flows 
in the plane. According to this theorem, transver- 
sal intersections of separatrices necessarily imply 
the existence of solutions which are multi-valued, 
with infinitely many branches in complex t. 

So far, these results apply to low-dimensional 
systems and can be rigorously proved only in the 
near-integrable case, with the aid of first order 
perturbation theory. We have found, however, that 
the singularities they predict, can be explicitly 
constructed and shown to retain their form, even 
for larger values of the perturbation parameter. 
Thus we may formulate, for example, the follow- 
ing conjecture: Dynamical systems, Hamiltonian 
or not ,  possessing the Painlev6 property, can have 
no  intersecting separatrices and hence no regions 
of chaotic behavior or strange attractors, both 
known to be intimately related with that phenom- 
enon [16-18]. 

Moreover, we have discovered that complemen- 
tary to this analysis, a numerical investigation of 
the "pattern formations" of these singularities in 
the complex t-plane, can be quite useful in the 
study of chaotic motions in dynamical systems. In 
particular, we have observed that, as the periodic 
driving force on a non-linear oscillator increases, 

and the system becomes more chaotic, its associ- 
ated "chimneys" of singularities in the complex 
t-plane get denser, and progressively "collapse" 
further towards the Re t axis. The singularities 
closest to Re t follow quite accurately the real time 
oscillations of each orbit. On the other hand, those 
furthest away from Re t accumulate infinitely 
densely, in a manner apparently independent of 
specific parameter values or initial conditions, sug- 
gesting that they may perhaps be related to a 
mathematical property of the more general solu- 
tions of the problem. 

Of course, not all infinitely branched multi-val- 
ued solutions have logarithmic singularities. They 
may involve instead irrational or complex powers 
of ~'( = t - t,), as is the case with certain Hamilto- 
nian systems, where these singularities are some- 
times seen to accumulate on self-similar natural 
boundaries [3-5]. Thus the occurrence of such 
structures, compared with that of chimney pat- 
terns, requires further investigation. 

Another interesting question is the quantifica- 
tion of the growth of chaotic regions according to 
the progressively more dense accumulation of 
singularities, observed already in the first few 
chimneys in the complex t-plane. The need and 
potential usefulness of such results, of course, 
becomes greater the higher the dimensionality of 
the system. And since singularity analysis relies on 
relatively short integration paths in the complex 
t-plane it is there that its importance will be 
ultimately judged, i.e. in the qualitative and 
quantitative study of chaos in higher-dimensional 
dynamical systems. 
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