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A shearing zonal flow of viscous fluid near a boundary perturbation can generate vortices that either remain
attached near the boundary or detach to be abruptly carried downstream. At low speed a stationary attached
vortex develops downstream from the perturbation. At higher speeds an array of traveling vortices forms, with
successive rolls rotating in opposite directions. This report presents a quantitative explanation of vortex gen-
eration. We consider a setup that leads to a straightforwardly analyzable, Schrödinger-type equation. In the case
of bloodflow through arteries the aforementioned traveling vortices are detectable as oscillations in the 1–100
Hz range. The detection of such oscillations is simple and is used to diagnose arterial stenosis.
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Numerous studies have examined the genesis and evolu-
tion of vortices near a bluff body or boundary perturbation.
There remains an interest in understanding vortex streets,
turbulence and noise in fast moving fluids for applications to
astronomy, engineering and medicine �1–3�. Numerical mod-
eling of pulsatile flow in arteries reveals qualitative differ-
ences between harmonically-forced flows and the unidirec-
tional flow produced by the heart. Indeed, Liao et al. �4�
have shown that since the aortic heart valve acts as a diode to
the flow, new vortices can only travel downstream from a
boundary perturbation. These fluid disturbances, when acting
inside a distensible tube, will create traveling pressure waves
that hold important information on the arterial-boundary per-
turbation �5�.

In this paper we study 2D laminar flow through an ana-
lytic narrowing �stenosis� in a channel. We analyze a setup
that, depending on parameter values, exhibits stationary as
well as traveling vortices. Stationary vortices remain at-
tached to the stenosis. Traveling vortices flow down the
channel and form an oscillatory “street.” The key step in our
analysis is the transformation of the fluid equations to a
Schrödinger-type equation. Subsequent spectral analysis then
reveals both the traveling and the stationary vortices. We
derive conditions for the occurrence of both types of vortices
in terms of geometry, boundary shear stress and Reynolds
number. We will show that a sufficiently large boundary vor-
ticity layer is required for stationary vortices and that a suf-
ficiently high Reynolds number with a boundary shear stress
is required for traveling oscillatory solutions.

We consider 2D, viscous, incompressible, quasi-uniform
vorticity flow �1�,

�t� + ���,��/��x,y� = �0�x,y� , �1�

�x,y� � �x
2� + �y

2� = � , �2�

where �0 is the kinematic viscosity. The velocity field q�
= �u ,v� is computed from the stream function ��x ,y , t� as
u�x ,y , t�=−�y� and v�x ,y , t�=�x� �6�. The stream-vorticity
Jacobian in Eq. �1� is defined as

���,��/��x,y� = �x��y� − �y��x� = q� · �� . �3�

The �complex� flow domain is

Dx,y � �x + iy:− � � x � �, �	�x,y�� � 1� , �4�

where 	�x ,y� is a harmonic function, defined below.
To simplify the flow domain, consider the conformal

transformation from z=x+ iy to 
=�+ i	, defined by


�z� =
z

h
exp	−

m

1 + z2/p2
 , �5�

which is singular only for �x ,y�= �0, ± p�. If h�0 is the half-
width of the channel, then for m�0, �	��1 and �y�� p, the
region contains a single pair of bumps �stenoses� near the
origin, located at �x ,y�= �0, ±y0� where

y0 = h exp�− �m�p2/�p2 − y0
2�� . �6�

In the case of shallow perturbations, py0, we can use the
approximation y0�he−�m��� p2 / �6�m��, where � is the cur-
vature of the perturbation at �x ,y�= �0, ±y0�. An examination
of the boundary geometries in Fig. 1 shows that 2h is the
width of the channel, and m and p set the depth and the
broadness of the stenosis, respectively.

In Ref. �4� a simple Gaussian “hump” was put inside a
cylindrical tube. The resulting equations were such that they
could only be studied numerically. Our “Gaussian inspired”
conformal transformation �5� may appear more complicated.
However, after carrying simple laminar flow through this
transformation, we will face analytically manageable equa-
tions. Unlike the ones in �4�, our boundaries return to the
reference width, �y�=h, at finite positions, cf. Fig. 1. The
transformation �5� has a Jacobian J���� ,	� /��x ,y� given by

1

J
=

h2�p2 + z2�4 exp	2mp2�p2 + x2 − y2�
�p2 + z2�2 


�p4 + 2�1 + m�p2z2 + z4�2
. �7�

So J is real-analytic in both the x and y coordinates, and J
=h2+O��x�−2� as �x�→�. The Jacobian J is used to transform
the operators in Eqs. �1� and �2� as follows:

q� · �� = J
���,��
���,	�

, �x,y = J��,	. �8�

From Eqs. �4� and �5�, the new channel region, D�,	, has
width 2, defined so that −����� and −1�	�1. With the
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geometry simplified, a spectral analysis over the flow domain
becomes an easier problem to handle.

Vorticity, which is a measure of local rotation in the fluid,
is assumed to be immersed in a zonal flow with mean speed
U0. The Reynolds number is defined as R0=hU0 /�0. We look
for a simple-harmonic vortex time response, with angular
frequency �0� �similar to the pressure amplitude p0 in equa-
tion �12.26� of �3��, and include an exponential-translation
factor:

��x,y,t� = ei�0�te�R0/2��W��,	,t� . �9�

The vorticity amplitude W�� ,	 , t� vanishes very quickly
along the channel ���→� and is assumed to be a sufficiently
smooth function on D�,	� �0,T� for some time period T
�0. Substituting �9� into Eq. �1� gives the equation for the
vorticity amplitude,

1

�0J

�W

�t
+

i�

J
W − ��,	W

=
− e−�R0/2��

�0

���,e�R0/2��W�
���,	�

+ R0
�W

��
+ �R0

2
2

W .

�10�

Note that, via Eq. �2�, the first term on the right-hand side
gives a quasilinear coupling to the flow field. This coupling
also constitutes an unavoidable nonlinearity.

To examine Eq. �10� on D�,	, first consider a uniform
background zonal flow in 
-coordinates,

q�0 = �− �y�0,�x�0�,�0��,	� = − U0h	�x,y� , �11�

where the magnitude of the mean flow speed U0 is constant.
Substituting �0 for � in Eq. �10� and taking W�� ,	� to be
time independent, we obtain a linear eigenvalue equation,

− ��,	W + �i�/J�W = − �R0/2�2W . �12�

This is a Schrödinger-type equation that we will hereafter
refer to as the Schrödinger-vorticity equation. The real part
of i� must be negative, by positivity of J. The real part of
�0� gives the frequencies that we will study below. Of
course, the vorticity amplitude W must satisfy boundary con-
ditions on �D�,	 and as �→ ±�.

To model the vorticity near a boundary layer we impose
the conditions �	W�� , ±1�=0 and �W�→0 as ���→�. To ob-
tain the modified flow field �0+�1 we also need to solve,
from Eqs. �2�, �9�, and �11�, the Poisson equation,

��,	�1 = �1/J�e�R0/2��W��,	� , �13�

with the imposed boundary conditions, �1�� , ±1�=0 and
��1�→0 as ���→�, to ensure that no new fluid flows into the
domain. In obtaining Eq. �13�, the time dependence ei��0t is
ignored, assuming that a steady state has been reached for W.

Consider i��R and define the bound-states potential,

Vb��,	� � 1/�h2J��,	�� − 1, �14�

which is smooth and short-ranged, i.e., �Vb�=O����−2� for
large ���. Substituting �14� into Eq. �12� the Schrödinger-
vorticity equation becomes

− ��,	W + �i�h2�Vb��,	�W = − �i�h2 + �R0/2�2�W . �15�

For square-integrable eigenfunctions W in Eq. �15�, i� must
be in the interval (−�R0 /2h�2 ,0). Then, by standard self-
adjoint operator theory, eigenvalues will exist for R0 and −i�
real, positive and sufficiently large �7�.

Solving for the eigenvalues of Eq. �15� with spectral
methods is now straightforward. To study basic physical
aspects of this equation, we assume a thin channel and
express the approximate eigensolution as W�� ,	�
=W*�b���sin��	 /2� with normalization condition:
max��b�=1. The midchannel double-well potential is de-
fined to be Ub����−Vb�� ,0�. Example profiles are plotted in
Fig. 2.

Equation �15� is now a 1D eigenvalue problem:

− �b���� + �bUb����b��� = Eb�b��� , �16�

where �b�−i�h2 and Eb��b− �� /2�2− �R0 /2�2. We solve
for the �symmetric� ground state, with �negative� eigenvalue
Eb, using matrix elements. The Reynolds number is then
given by the expression R0=2��b−Eb− �� /2�2. Determining
the coupling parameter �b from R0 is well-defined, but not
explicit.

From the Poisson equation �13� we obtain �1�� ,	�. It is
because of the translation factor e�R0/2�� that separation occurs
downstream. Figure 3 indeed shows how, after passing over
the stenosis, there is a separation of the vortex from the
downstream flow. Such separation occurs only for suffi-
ciently large W*. The parameter W*=max�e�−R0/2����x ,y ,0��
represents the maximal outer wall stress which occurs a little
distance downstream from the peak of the stenosis �6�.

Using a numerical shooting program �8� we simulated
Eqs. �1� and �2�. The spectral method, cf. Eqs. �13� and �15�,
was used to obtain stationary solutions. Results are depicted
in Figs. 3 and show good agreement.

FIG. 1. The shape of the channel boundaries
	�x ,y�= ±1 in the original domain, Dx,y, for the
cases of stenosis m�0 with semichannel width
h=1.0.
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Figure 2 represents the potential in the middle of the
channel. From Eq. �14� it can be seen that the wells get
deeper when moving away from the middle of the channel.
The ground state thus gets pushed towards the boundaries
and that is why a stable stationary vortex materializes.

For the study of traveling vortices we reconsider the
Schrödinger vorticity equation �12� with the assumption that
Re�i���0 and Im�i���0, and use a decomposition of the
vorticity amplitude in a neighborhood of the saddle point
�0,0� for the Jacobian J. Numerical solutions suggest a sepa-
ration of variables in the form W�� ,	�=�r���sinh�Br	�
+�W�� ,	� �9�. Here Br is a slip parameter for the perturbed
contribution to the flow, i.e., Br→0+ for nearly parabolic
profiles, whereas Br→ +� for negligible boundary shear
stress flows. Making the substitution into Eq. �12� and ne-
glecting �W leads to a 1D complex eigenvalue problem for
�r���. Indeed, for m�0, define the resonance potential:

Vr��,	� � 1/�h2J��,	�� − e−2�m�, �17�

with h2J�0,0�=e2�m�. We are led to the eigenvalue equation,

− ��,	W + i�h2Vr��,	�W = ErW , �18�

where Er�−i�h2e−2�m�− �R0 /2�2 is a complex eigenvalue.
Note that the resonance potential has a saddle-point at �0,0�
where Vr=0. In particular, the behavior near the origin is

Vr��,	� = Ar�
2 − Ar	

2 + O��4,�2	2,	4� ,

Ar � 6�m�h2/�e2�m�p2� . �19�

Here Ar is a concavity parameter for Vr. For the shallow
perturbations �cf. Eq. �6�� we have Ar� p2�2 / �6�m��
��h /e�m������y0��� for py0. The quantity y0��� character-

izes the perturbation in that it is the ratio of the cross-
sectional width and the radius of curvature.

To asymptotically solve Eq. �18� let �r����W**����,
where ���� solves the 1D eigenvalue equation:

− �� + i�h2Ar�
2� = �Br

2 + Er�� , �20�

with normalization �−�
� ���2d�=1, so that W** is the steady

state amplitude of the disturbance. The harmonic oscillator
problem in Eq. �20� has no solution if Im�i���0. To obtain
square integrable solutions we need to scale the spatial coor-
dinates: �→e��, ��→e−��� for complex � �10�. The function
� and its derivatives are changed from �, ��, and �� to
��=e�/2��e���, ���=e−�/2���e���, and ���=e−3�/2���e���, re-
spectively. To facilitate the discovery of solutions, write i�
=−�re

−i�r, where the quantities �r�R+ and �r� �0,2�� are
to be determined by the scaled eigenvalue problem. From
Eq. �20� we find

− e−2���� + i�h2Are
2��2�� = �Br

2 + Er���. �21�

An optimal choice for the complex-variable rotation is �
= i��r+�� /4. Indeed, multiplying Eq. �21� by e2���

* and then
integrating in � over �−� ,�� gives

�
−�

�

�����
2d� + �rh

2Ar�
−�

�

�����2d�

= i�ei�r/2Br
2 + �re

−i�r/2h2e−2�m� − ei�r/2�R0/2�2� . �22�

Here we normalize with �−�
� ����2d�=1. Requiring the imagi-

nary part of Eq. �22� to vanish and assuming cos��r /2��0
leads to an identity involving the eigenvalue, the Reynolds
number and the slip parameter:

�r = ��R0/2�2 − Br
2�e2�m�/h2. �23�

Hence the angular frequencies �0� in Eq. �9� are restricted to
a circle of radius �0�r in the complex plane.

Finally, define the parameter �r�0 so that �r
4= ��R0 /2�2

−Br
2�e2�m�Ar. Then the eigensolutions �� of Eq. �21� are Her-

mite functions with eigenvalues,

�r
2�2k + 1� = ��rh

2e−2�m� + �R0/2�2 − Br
2�sin��r/2� , �24�

with k=0,1,2,…, from which we can solve for sin��r /2� and
obtain, using Eq. �23�, the discrete family,

FIG. 2. The shape of the midchannel potential
Ub��� for a boundary with stenosis.

FIG. 3. Numerically computed stream function �8� for m=−0.5,
p=2, U0=1.0, R0=500, and Prandtl number=1.0 �top�. Theoretical
stream function from spectral method for m=−0.5, p=2, U0=1.0,
R0=500, and W*=0.22 �bottom�.
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�r → �r,k � 2 arcsin��Are
2�m��2k + 1�
2��rh

 . �25�

Note that there are no traveling vortices if �r is negative, or
if Ar�4�rh

2 /e4�m�. These restrictions, together with Eq. �23�,
lead to the condition R0��e2�m�Ar+4Br

2 for the formation of
traveling vortices. Thus, increasing the boundary slip Br sup-
presses the formation of fluid waves. In other words, in a
well lubricated channel no traveling vortices occur. Also, as
the curvature of the perturbation, measured in part by Ar, is
increased, the oscillations are initiated only for sufficiently
large R0. For the k=0 complex frequency we find

i� = − ��R0/2�2 − Br
2��e2�m�/h2�

�exp	− i2 arcsin� e�m�

2
� Ar

�R0/2�2 − Br
2
 . �26�

The imaginary part of this expression, Im�i��=Re���, is
found to be

Re��� =
e3�m�

2h2
�Ar

�R0
2 − 4Br

2 − e2�m�Ar. �27�

For the Strouhal frequency, f =�0 Re��� /2� �see, e.g., Ref.
�8��, we now have the following expression:

f =
�6

4�

U0
��m�e2�m�

p
�1 −

4Br
2p2 + 6�m�h2

R0
2p2 1/2

. �28�

The coefficient ��m�e2�m� / p is a shape-size parameter that
approximately equals �6�h. The coefficient �6/4��0.195
is called the Strouhal number and is typically obtained from
experimental observations. It is, for instance, found to be
0.212 for uniform flow around a cylindrical obstacle �8�. All
else being equal, the wave number f /U0 is constant at large
R0, cf. Fig. 4.

We conclude that oscillations will occur only for Ar�0
and R0��e2�m�Ar+4Br

2. In particular, for the case of no slip
�Br=0�, any R0�e�m��Ar will produce waves for any pertur-
bation Ar�0. However, the frequency vanishes as Ar→0+.
Conversely, in the case of negligible boundary shear stress,
i.e., near perfect slip �Br→ +��, a very high Reynolds num-
ber is required to initiate oscillations.

Cardiac physiologists have been aware for centuries that
murmurs �also known as “bruits”� occur in arteries with a
sufficiently large stenosis �11�. To our knowledge, the above
results constitute the first analytical description, based on
elementary fluid mechanics, for how such murmurs arise.
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FIG. 4. Wave number f /U0 versus Reynolds
number R0: theoretical—; from top to bottom:
numerical �m , p�= � �0.5,2.0�, � �0.5, 4.0�. For
Reynolds numbers smaller than about 500, it is
the stronger damping that affects the validity of
our approximations.
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