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Breaking of time-reversal symmetry for a particle in a parabolic potential that is subjected to Lévy
noise: Theory and an application to solar flare data
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The noise in nonequilibrium systems commonly contains more outliers as compared to equilibrium systems
and is often best described with a Lévy distribution. Many systems in which there are fluctuations around a
steady-state throughput can be modeled as a Lévy-noise-subjected particle in a parabolic potential. We consider
an overdamped particle in a parabolic potential that is subjected to noise. Microscopic reversibility and time-
reversal symmetry apply if the particle is subject to Gaussian distributed noise, but are violated if the noise is
Lévy. A parameter to detect this violation is formulated. We, furthermore, develop an understanding for how the
time-reversal asymmetry depends on the time �t between the sample points and on the stability index, α, of the
Lévy noise. With solar flare data it is shown how the time-reversal asymmetry parameter of a signal can be used
to obtain the α of the underlying noise.
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I. INTRODUCTION

For a system to be at equilibrium, there should be no
identifiable arrow of time. In other words, when a movie is
made of the system, it should afterwards not be possible to
determine whether the movie is played forward or backward.
In the 1930s Onsager gave mathematical rigor to the idea
when he conceived the notion of microscopic reversibility
[1,2]. Microscopic reversibility occurs when every trajectory
in the state space is traversed equally often in both directions
and it is the defining characteristic of equilibrium.

Below we will consider the following Langevin equation:

ẋ = −dV (x)

dx
+ ξα (t ). (1)

This equation describes the overdamped motion of a noisy
particle in a potential V (x). The coefficient of friction and the
amplitude of the noise term ξα (t ) have been absorbed in the
timescale and length scale. The meaning of the subscript α

will be explained below.
The function ξα (t ) represents the noise. In many contexts

such noise is the result of collisions of the particle with the
molecules of a fluid medium. The term ξα (t ) thus describes
subsequent “kicks” that the particle is subjected to. In 1953
Onsager and Machlup showed how, for a certain class of
trajectories, microscopic reversibility ensues when the ampli-
tudes of these kicks have a Gaussian distribution [3–5]. Such
a result makes sense in the light of the central limit theorem.
This theorem states that if the outcome of a process is the
combined result of N independent stochastic processes, then
in the limit of N → ∞ these outcomes have a Gaussian distri-
bution [6]. The Gaussian distribution can thus be considered
an attractor as N gets larger. The net displacement of a particle

in a fluid medium is the result of Brownian collisions and
over a timescale that is much larger than the time between
subsequent collisions that net displacement is expected to be
Gaussian distributed. Convergence to a Gaussian is generally
fast as N increases. The Gaussian distribution is therefore
commonly found in nature and it is to go-to distribution for
theoreticians when they wish to describe the effect of noise on
a dynamical system.

However, the Gaussian is an attractor only if each of
the constituent independent stochastic processes has a finite
variance. About a century ago mathematicians derived the
attractor for when the underlying stochastic processes have
an infinite variance [7–10]. The result is called a Lévy distri-
bution or α-stable distribution. For the characteristic function
of the symmetric, zero-centered Lévy distribution, there is a
concise expression:

p̃α (k) = exp [−σα|k|α], (2)

where 0 < α < 2. Here σ is a scale parameter and α is the
so-called stability index. The scale parameter, σ , is also the
amplitude of the noise term that we scaled away in Eq. (1).
The characteristic function is similar to a Fourier transform
[ p̃α (k) ≡ ∫ ∞

−∞ pα (z) exp[ikz] dz, where pα (z) is the original
α-stable distribution]. Central in this article is a Langevin
equation in which the “kick magnitudes,” ξα , follow a Lévy
distribution. We furthermore must assume throughout that
the subsequent “kicks” are independent and identically dis-
tributed, i.e., that a kicksize is not correlated to a previous one
and that there is no drift in the distribution of the kicksizes
[11].

From Eq. (2) it is readily inferred that for α = 2 the Gaus-
sian is reobtained. In that case σ

√
2 is the standard deviation

of the Gaussian. The case of α = 1 leads to the well-known
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Cauchy distribution, i.e., p1(z) = σ/(π (σ 2 + z2)). It can fur-
thermore be derived from Eq. (2) that the asymptotic behavior
of pα (z) follows a power law:

pα (z) ∼ σα sin (πα/2)�(α + 1)

π

1

|z|α+1
as|z| → ∞, (3)

where �(.) denotes the gamma function. The power-law tail
implies a slower convergence to zero as compared to the ex-
ponential tail of the Gaussian. The power-law tail is ultimately
what leads to the outliers and to the divergent variance.

In Appendix A it is shown how Eq. (3) is derived. The
scale parameter for ξα (t ) [cf. Eq. (1)] depends on the �t
of the discretization. The details of this dependence are also
explained in Appendix A.

Over the past few decades it has become ever more clear
that Lévy distributions are more than just a mathematical con-
struct. In 1963 Mandelbrot found that the day-to-day changes
of the prices of cotton stocks followed a Lévy distribution with
α = 1.7 [12,13]. In 1993 Peng et al. noticed that time intervals
between subsequent heartbeats are also Lévy distributed [14].
Lévy distributions have been identified in solar physics [15],
in climate data [16], plasma turbulence [17], etc. Very recently
simulations and theoretical analysis showed that a tracer par-
ticle in a solution with active microscopic swimmers exhibits
displacements with a power-law tail [18]. The common de-
nominator for systems that exhibit Lévy distributions appears
to be the nonequilibrium nature of these systems. Noise with
a fat, power-law tail and the corresponding “extreme events”
appear to be inherent to systems that convert, transport, and/or
dissipate energy.

In this article we consider a noise-subjected particle in a
parabolic potential (cf. Fig. 1). This setup can be taken as
a model for processes where a constant driving force or a
constant flux leads to a throughput, but where the system is
such that fluctuations occur. A good example is a resistor
through which a constant current I is maintained. But due
to random motion of charge carriers, the voltage across the
resistor will fluctuate around IR, where R is the resistance of
the resistor [19].

For a system with a steady-state throughput, we can think
of the steady state as representing a minimum of a continuous
potential U (x). The Taylor series around such a minimum
at x = x∗ is U (x) ≈ U (x∗) + 1

2U ′′(x∗)(x − x∗)2 + . . . . After
setting U (x∗) = 0, we have a quadratic lowest-order term.
For small perturbations, the cubic and higher-order terms will
generally be negligible. In short, near the steady state almost
any system will be driven back to the steady state by a linear
restoring force.

Consider first the case where the particle in Fig. 1(a) is
subjected to Gaussian distributed noise. Suppose that sub-
sequent kicks make the particle “climb” to a height V (x0).
The most probable trajectory from x0 back to the vicinity of
x = 0 is a trajectory where all the subsequent kicks have zero
magnitude. This is because it is at ξ = 0 that the distribution
has its maximum. Microscopic reversibility next implies that
the most probable trajectory to “climb” to x0 is the reverse of
this deterministic downslide. Such an ascent would involve a
“Brownian conspiracy,” i.e., a number of subsequent “kicks”
that are all in the same direction and of an appropriately in-
creasing strength. Figure 1(b) shows the position as a function

FIG. 1. (a) A noise-subjected particle in a parabolic potential
V (x) ∝ x2. Equation (1) describes the dynamics of such a particle.
(b) The positions as a function of time for when the particle is sub-
jected to Gaussian noise, i.e., α = 2. (c) The positions as a function
of time for when the particle is subjected to Lévy noise with α = 1.5.
Further details are given in the text.

of time for the particle following Eq. (1) with V (x) = x2/40
and time steps of �t = 1. For the zero-average Gaussian
noise we took σ = 1 (i.e., a standard deviation of

√
2). Four

thousand time steps were simulated.
When, however, the particle is subjected to Lévy noise,

the situation is very different. Microscopic reversibility no
longer applies. The most likely way to downslide is still the
deterministic trajectory. But the most likely way to ascend
from the vicinity of x = 0 to x0 is now one kick from the
fat tail [20]. Figure 1(c) shows how this “shooting up and
sliding down” scenario is followed: The large peaks represent
extreme events from the tail of the distribution and involve
just one time step. For each large fluctuation the subsequent
relaxation back to the bottom of the parabola is much slower
and involves multiple time steps. To generate Fig. 1(c) we
again took V (x) = x2/40 and time steps of �t = 1. For the
noise term, α = 1.5 is the value of the stability index and
σ = 1 is the value for the scale parameter. Again, 4000 time
steps were simulated.
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This “shooting up and sliding down” can be used to detect
a deviation from time-reversal symmetry. Consider a sequence
of time steps as in Figs. 1(b) and 1(c). We take the step from j
to j + 1 to be a “climbing step” if |x j+1| > |x j |. Let Ntot be the
total number of steps in the sequence and let Nf be the number
of climbing steps in the sequence when the sequence is read
in the forward direction. In that case the number of climbing
steps in the sequence read backward is Nb = Ntot − Nf . This
means that Nb is also the number of descending steps if the
sequence is read in the forward direction. As a measure of the
time-reversal asymmetry we next adopt:

r = Nb − Nf

Nf + Nb
. (4)

The quantity r is the quotient of a difference and a sum.
As such, Eq. (4) has a structure that is similar to that of
expressions used in optics for polarization ratio and emission
anisotropy [21]. Because we are dealing with a stochastic
process, we expect r in our case to differ from zero even in
case of microscopic reversibility [cf. Fig. 1(b)]. For N tosses
with a fair coin, the number of heads has an expectation value
of 1

2 N and a standard deviation of 1
2

√
N . From this we infer

that, for the case of time-reversal symmetry, the value of r
comes with a coefficient of variation (the ratio of standard
deviation and average) of 1/

√
Ntot. Only if r comes out signif-

icantly larger than 1/
√

Ntot can we conclude that time-reversal
symmetry is violated. The supplemental material contains two
Mathematica programs to generate graphs like Figs. 1(b) and
1(c) [22]. For each run the value of r is given at the end of
the program. The reader can readily verify that the criterion
|r| > 1/

√
Ntot discriminates very efficiently between Gaus-

sian and Lévy noise.
If we can decisively conclude that the noise is Lévy, then

we have also ascertained that the system is nonequilibrium.
Standard equilibrium features like microscopic reversibility
[20] and a Boltzmann distribution [23,24] no longer apply in
that case. Nonequilibrium furthermore means that the system
is not isolated and is facilitating an energy transfer. If we do
find the noise to be Lévy, then we also wish to be able to
establish the value of α. Below we elaborate and establish
relations between α, r, and the length of the time step. We will
illustrate on a real-time, solar-output signal how the parameter
r can be used to readily determine the stability index α of the
underlying Lévy noise.

II. NUMERICS AND SCALING ISSUES

For α = 2, numerical simulation of Eq. (1) is straightfor-
ward. After discretization, subsequent iterates are obtained
through the application of

xi+1 = �xi + xi, where �xi =
[

F (xi ) + θ2,i√
�t

]
�t . (5)

Here F (x) = −dV (x)/dx and θ2,i is the ith random number
drawn from a Gaussian distribution with a zero average and
a scale parameter of σ = 1. Essentially, Eq. (5) represents
a Euler scheme where the value of the force F (xi ) is made
to apply to the entire segment from xi to xi+1. Equation (5)
could become inaccurate if there is an appreciable curvature
of V (x) between xi and xi+1. For the case of Gaussian noise,

this problem can be overcome by taking �t sufficiently small.
The exponential tail of the Gaussian distribution practically
guarantees that there are no outliers and that �xi can be kept
small by choosing �t correspondingly small.

However, no such guarantee exists if α �= 2. Figure 1(c)
shows several large peaks that are due to the extreme events
that are characteristic of Lévy noise. These Lévy jumps ob-
viously involve significant curvature of V (x) in the course of
one time step. Assume, for instance, that xi < 0 and that the
particle is near the bottom of the parabola where it spends
most of its time. If the particle then next does a large jump
to the right, i.e., ξα (ti )�t > 0, then the Euler scheme would
have the force due to the potential unrealistically pushing in
the same direction as the kick for the entire duration of the
jump.

One may be tempted to think that the problem can be over-
come by taking a smaller value of �t , but a small derivation
shows that this is not the case. We first realize that ξα (ti)�t =
θα,i�t1/α , where θα,i is a random number drawn from a zero-
centered, symmetric Lévy distribution with stability index α

and scale parameter σ = 1. A large kick κα (ti ) = θα,i�t1/α

can be made smaller by a factor λ (λ > 1) and possibly
allow for Euler’s linear-segment approach by taking a new
�t : �t ′ = λ−α�t . In the first paragraph of Appendix A it is
shown how the scaling of the kicksize (which ensues from the
scaling of the time interval) affects the probability distribution
for the kicksizes. With the formula that is derived there, it
is seen that for the tail of the distribution, where Eq. (3)
applies, we have p(κα ) ∝ (�t )p(θα ). So taking smaller time
steps following �t → λ−α�t , we have for the probability
density for a large kick of size κ0

α in the tail of the distribu-
tion p(κ0

α ) → λ−α p(κ0
α ). If one simulates Eq. (1) over a time

interval of length T with a time step that is smaller by a factor
λ−α , it implies that the number of time steps is increased by a
factor λα . So over the entire simulation, the expected number
of kicks with a size between κ0

α and κ0
α + �κα remains the

same and appears independent of the length of the time step.
From Eq. (3), we infer that for the probability of a kick above
a certain magnitude ξ0 in the positive tail, we have:

Pα (ξ > ξ0) ∝ ξ−α
0 . (6)

Suppose that the original simulation with �t led to n kicks
above a size ξ0. It is readily derived that the new simulation
with time steps of �t ′ and a factor λα more time steps will
on average have the same number n of kicks that are larger
than λξ0. Ultimately, it is because of the tail’s scaling property,
i.e., Pα (ξ > μξ0) = μ−αPα (ξ > ξ0), that the problem cannot
be overcome by picking the right �t for a discretization. All
in all, for α �= 2 Euler’s procedure is deficient.

For the parabolic potential of Fig. 1(a), there is a
straightforward solution to the “large kick problem.” We
scale such that V (x) = 1

2 x2 and come to ẋ = −x + ξα (t ).
If we let the kick at t = ti have a value ξα (ti ) = K , then
we can take the curvature of the potential into account by
simply taking the solution of ẋ = −x + K as describing what
occurs between x(ti ) = xi and x(ti+1) = xi+1. We then find

xi+1 = (xi − K )e−�t + K. (7)

It is readily verified that for sufficiently small �t and K ,
the above equation reduces to the Eulerian �xi = xi+1 − xi ≈
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(−xi + K )�t . Figures 1(b) and 1(c) were obtained using
Eq. (7) at every time step.

When numerically simulating any dynamical system, it is
important that the time step �t is chosen to be smaller than
any characteristic timescale of the system. For the Lévy-noise-
driven particle in a parabolic potential, we have before any
scaling operation:

ẏ = −Ay + σξα (t ), (8)

where A > 0 and σ is the amplitude of the noise. Without the
noise term, Eq. (8) would describe a simple exponential relax-
ation with a relaxation time trel = 1/A. The noise term, ξα (t ),
does not feature a characteristic timescale; it is self-similar
and has the same structure on all scales. The discretization of
Eq. (8) thus looks as follows: �yi = −A �t yi + σ θα,i �t1/α .
Suppose we had A �t ≈ 1 in the latter equation. This would
lead to �yi ≈ −yi, even in case of θα,i not yielding an outlier.
If in that case a Lévy kick were to bring the particle to a large
y, then the downslide would not take multiple steps. Instead,
the return to the bottom of the potential would generally
require just one step. Taking a dimensionless time, i.e., �τ =
A �t , and taking y = (σ/A1/α )x, we come to a completely
dedimensionalized equation: �xi = −xi �τ + θα,i �τ 1/α . Of
course, �τ � 1 is required for realistic simulation.

Finally, it is worth noting that for �t → ∞, Eq. (7) yields
xi+1 = K . This means that the location xi+1 is completely
independent of the location xi at the previous time step. The
ensuing symmetry would lead to r → 0 for �t → ∞.

III. THEORY FOR THE TIME-REVERSAL ASYMMETRY
PARAMETER r

A. The fractional Fokker-Planck equation

In the previous sections we analyzed an ordinary differen-
tial equation with a stochastic input. However, it is possible to
formulate an equivalent partial differential equation for how
the probability distribution, P(x, t ), evolves in time. For the
case of Gaussian noise, it is well known how a Langevin Equa-
tion can be turned into a Fokker-Planck Equation [25]. That
traditional Fokker-Planck Equation has a first derivative with
respect to the position x to describe drift terms and a second
derivative with respect to x that describes the diffusion. For the
case of Lévy noise, a noninteger value of the stability index α

leads to a so-called fractional Fokker-Planck equation, i.e., a
Fokker-Planck equation with, instead of a second derivative, a
noninteger derivative. The fractional Fokker-Planck equation
corresponding to Eq. (8) is [26]

∂P(x, t )

∂t
= A

∂[xP(x, t )]

∂x
+ σα ∂αP(x, t )

∂|x|α . (9)

After setting the left-hand side equal to zero, a station-
ary solution can be obtained. Fractional derivatives become
multiplicative factors in Fourier space, i.e., ∂α

∂|x|α f (x) =
− ∫ ∞

−∞
dk
2π

eikx|k|α f̃ (k), where f̃ (k) is the Fourier transform of
f (x). The factor x in the numerator of the first term on the
right-hand side of Eq. (9) leads to the factor ∂

∂k in Fourier
space. So at steady state we have the following equation in

FIG. 2. (a) The time-reversal asymmetry parameter, r [cf.
Eq. (4)], versus the stability index, α, that characterizes the noise.
The curves result from stochastic simulations of ẋ = −x + ξα (t )
through the ensuing Eq. (7). Curves are drawn for different values
of the time interval �t . Values of α were taken in increments of 0.1
and each point is the result of a simulation with Ntot = 107 time steps
[cf. Eq. (4)].

Fourier space:

−Ak
dP̃st (k)

dk
− σα|k|αP̃st (k) = 0. (10)

This equation is readily solved:

P̃st (k) = exp

[
−σα|k|α

Aα

]
. (11)

We see that for α �= 2 the probability density function for the
position in the parabola is not the Boltzmann distribution that
would ensue at equilibrium. Instead it is again an α-stable
distribution. The stability index α is the same as it is for the
distribution of the kicks, but the scale parameter has changed:
from σ to σ ′ = σ/(Aα)1/α . For a fully scaled system, i.e.,
A = 1 and σ = 1, we have

p̃(k) = exp[−|k|α] (12)

for the kicksize distribution and

P̃st (k) = exp[−|k|α/α] (13)

for the position distribution. Relating the latter equation to
Eq. (2), we see that P̃st (k) comes with a scale parameter
σ ′ = (1/α)1/α .

It is important to be aware that the distributions (12) and
(13) will only emerge from a simulation with an infinitesi-
mally small time interval, i.e., �t → 0. As was noted already
at the end of last section, the other limit, i.e., �t → ∞,
leads to the position distribution being identical to the kick
distribution and thus P̃st (k) = p̃(k) for all values of α.

The α in the denominator of the exponent of Eq. (13)
translates into the kicksize distribution, p(ξ ), and the position
distribution, Pst (x), differing solely by a scaling factor σ ′ (see
Appendix A), i.e.,

Pst (x) = 1

σ ′ p
( x

σ ′
)
. (14)
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Figure 2 shows how the time-reversal asymmetry parame-
ter, r, depends on the stability index, α. The curves are derived
from stochastic simulations [cf. Eq. (7)] of a scaled (A = 1
and σ = 1) Langevin equation. It is obvious that reality bears
out what was explained in the last section: for higher values of
�t , the curves move toward r = 0. It is furthermore observed
that the r-vs.-α curves are sigmoids where r goes from an
r = 1-plateau to an r = 0-plateau as α increases. The inflec-
tion points appear close to α = 1. For �t → 0 the sigmoid
converges to a step function.

B. The α = 2 case

For α = 2, the statistics are not “polluted” by Lévy jumps.
We take �t to be sufficiently small for the Euler scheme ap-
proximation to Eq. (1) to apply. The piecewise-linear solution
that the Euler scheme gives will be more accurate as �t is
taken smaller. For the increments we have

�xi = −xi�t + θα=2,i

√
�t, (15)

where θα=2,i is the ith random number drawn from a dis-
tribution with σ = 1. From Eq. (15) it is obvious that, for
one particular time step, the deterministic part of the motion
becomes negligible if �t → 0. In that case (�x)2 and �t
are of the same order, i.e., (�x)2 ∼ �t . We take two nearby
points, x and x + �x, where x > 0 and �x > 0. We next focus
on the particles that move between these points in exactly �t .
If microscopic reversibility applies, then the traffic in both
directions should be equal. From Eq. (15) we find that in
order to move from x to x + �x in time �t , a kick θα=2,i =
x
√

�t + �x/
√

�t is required. In order to move from x + �x
to x in �t , we need θα=2,i = (x + �x)

√
�t − �x/

√
�t . Tak-

ing into account the different probability densities, Pst , at x
and x + �x, we find for the difference, r̂, between descending
and ascending traffic:

r̂ = Pst (x + �x)p[(x + �x)
√

�t − �x/
√

�t]

− Pst (x)p(x
√

�t + �x/
√

�t ). (16)

Note that r̂ is different from r [cf. Eq. (4)] in that it is local and
has a dimension of square density. Next substituting Pst (x) =
1/

√
2π exp[−x2/2] and p(x) = 1/(2

√
π ) exp[−x2/4] for the

position distribution and the kicksize distribution, respec-
tively, we infer after some algebra:

r̂ ∝ exp

[
−1

2
x2 − 1

4

(�x)2

�t
− 1

2
x(�x) − 1

4
x2(�t )

]

×
{

exp

[
− 1

4
(�x)(�t )(2x + �x)

]
− 1

}
. (17)

For (�x)2 ∼ �t , only the first two terms in the exponent in
the prefactor are finite. The second exponential term, the one
in the round brackets, has terms in the exponent that can all
be made arbitrarily small by picking �x and �t sufficiently
small. We thus find that r̂ approaches zero as �t → 0 and
�x → 0. Every trajectory between any two points (t1, x1) and
(t2, x2) can be constructed from small linear steps that each
have r̂ → 0. It can be concluded that microscopic reversibil-
ity applies for Gaussian noise. We thus also have r = 0 [cf.
Eq. (4)] for α = 2.

C. Lévy flights

In case of a Lévy flight, the particle “shoots up” from
a basin of attraction near x = 0, and subsequently “slides
down” [20]. These “flights” occur for 0 < α < 2, they break
microscopic reversibility, and they lead to r > 0.

Consider the following one-dimensional (1D) situation.
Particles are moving from a reservoir A to a reservoir B at
a speed that is 10 times as large as the speed with which
they are moving from B to A. The number of particles in the
reservoirs A and B stays constant. The latter fact implies for
the fluxes: JA→B = JB→A. The identical fluxes and tenfold dif-
ferent speeds can only be achieved if, at any time, the number
of particles that is moving along in the B → A direction is 10
times the number of particles moving in the A → B direction.

So with a stationary Lévy distribution in the parabolic
potential, there are, at any time, more descending steps taking
place than climbing steps.

D. The case of α �= 2

Let Pclimb(x) be the probability that, for a particle at posi-
tion x, the next step brings the particle to a higher position in
the parabola. For the fraction of steps that are climbing steps,
ϕclimb, we then have

ϕclimb =
∫ ∞

−∞
Pclimb(x)Pst (x) dx, (18)

where Pst (x) is the stationary probability-density distribution
for which P̃st (k), cf. Eq. (11), is the generating function. The
parameter r is related to ϕclimb through

r = 1 − 2ϕclimb. (19)

The argument presented in the previous paragraph makes clear
that, for 0 < α < 2, we should have 0 < ϕclimb < 1/2 and,
consequently, 0 < r < 1.

For positive xi, the probability Pclimb(xi ) can be split out
as follows: Pclimb(xi ) = P(xi+1 > xi ) + P(xi+1 < −xi ). With
Eq. (7) this means that the kicksize, K , has to follow either
K > xi, or K < −sxi, where

s = e�t + 1

e�t − 1
. (20)

Generalizing to any real x, it is thus found that

ϕclimb =
∫ ∞

−∞

[∫ −sx

−∞
p(ξ ) dξ +

∫ ∞

x
p(ξ ) dξ

]
Pst (x) dx.

(21)

The inner integrals can be replaced by their respective
cumulative distribution functions (which are available in
Mathematica). The symmetry in x, furthermore, allows us to
integrate over half the domain and double the result:

ϕclimb = 2
∫ ∞

0
[cdf(sx) + cdf(x)]Pst (x) dx. (22)

We affirmed the validity of our derivations by successfully
replicating Fig. 2 using, instead of the Monte Carlo approach,
Eqs. (19), (20), and (22) (not shown).

There are no simple and general analytic formulas to
describe the curves in Fig. 2. However, there are some approx-
imations that can help understand and intuit the curves. There
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appears to be a “transition” at α = 1. This can be understood
as follows. For the probability of a kick that makes the particle
reach into the tail between positions at x and x + �x we
have �P ∝ x−α−1�x. Through integration we find how far
the average extreme event reaches: 〈x〉 ∝ ∫ ∞ x x−α−1 dx ∝
x−α+1|∞. This integral is infinite for 0 < α < 1 and finite for
1 < α < 2.

E. The α = 1 case

Only for α = 1 are the kicksize distribution, cf. Eq. (12),
and the position distribution, cf. Eq. (13), identical. For this
case it is easily proven that r = 1/2 if �t → 0. Taking f (x) =∫ ∞
ξ=x p(ξ ) dξ and next realizing that f (0) = 1/2 and f (x →

∞) = 0, we see how the integral Eq. (21) reduces:

ϕclimb = 2
∫ ∞

x=0

[∫ ∞

ξ=x
p(ξ ) dξ

]
p(x) dx

= 2
∫ ∞

x=0

[∫ ∞

ξ=x
p(ξ ) dξ

][
− d

dx

∫ ∞

ξ=x
p(ξ ) dξ

]
dx

= −2
∫ ∞

x=0
f (x) f ′(x) dx = − f 2(x)|∞x=0 = 1

4
. (23)

With Eq. (19), this result leads to r = 1/2.
Through Eqs. (21) and (22) it is even possible to obtain

an analytic result for ϕα=1
climb for a finite �t . The Mathematica

package readily gives the analytic result:

ϕα=1
climb = 1

8
+ �

(
1
s2 , 2, 1

2

)
4π2s

+ log(s) coth−1(s)

π2
, (24)

where �(., ., .) represents the so-called Lerch transcendent,
i.e., �(z, s, β ) = �∞

n=0zn/(n + β )s. In agreement with what
Fig. 2 shows, this analytic result has r going down from
r = 1/2 to r = 0 as �t gets larger.

F. The α → 0 case

For α = 0 the generating function is a constant and this
implies that the probability distribution is a Dirac delta func-
tion. In the α → 0 limit the probability distribution looks like
a sharp spike at x = 0 with power-law tails. From Fig. 2 it
appears that the climbing fraction ϕclimb approaches zero in
the α → 0 limit. Going back to Eqs. (13) and (14), we see
that the α in the denominator of the exponent in P̃st (k) [cf.
Eq. (13)] translates into a scaling factor σ ′ = (1/α)1/α for
Pst (x). This means that for α → 0, the position distribution
Pst (x) is wider than the kicksize distribution p(ξ ) by a very
large factor. How this leads to ϕclimb → 0 can be understood
from a Langevin perspective by realizing that after a large
Lévy jump that drives the particle high up the parabola, it will,
at �t → 0, take an infinite number of time steps to slide down
again. In the context of Eqs. (21) and (22), the ϕclimb → 0
result can be understood after realizing that cdf(x) decreases
from 0.5 to 0 as x increases from x = 0. If Pst (x) is much wider
than p(ξ ), then cdf(x) will be effectively zero for most of the
relevant domain of Pst (x) and ϕclimb = 0 will result.

FIG. 3. An approximately 6-h record of solar x-ray fluxes sam-
pled at 2-s intervals. Data were recorded by the Geostationary
Operational Environmental Satellite series and are published online
[33]. x-rays were recorded in a window between 1 and 8 Å, the “soft”
regime.

IV. PRACTICAL APPLICATIONS

Different methods are available to estimate the parameters
of the α-stable distribution that best fits a set of observed
data [27,28]. The maximum likelihood method is popular and
easy to understand [29]. However, it is not a realistic option
for very large data sets as the matrices involved in the com-
putation become unmanageably large. The quantile method
is also relatively straightforward: It compares observed-data
histograms to prior tabulations [30]. It is fast and appropriate
for large data sets. In Ref. [31] a Fast Fourier Transform is
used to generate a characteristic function of the observed data.
Fitting parameters is next done in Fourier space where the α-
stable distributions are mathematically more easily expressed.
Reference [27] compares these methods. For a very large data
set there may be sufficiently many extreme events that the
power-law tail [cf. Eq. (3)] can be used to estimate α. In
Ref. [32] this idea is applied to solar soft x-ray emission data
(cf. Fig. 3).

We propose that establishing the value of r from the ob-
served data and next using the patterns observed in Fig. 2 to
determine the value of α is in many cases a simple, robust,
and effective method. Our method is suitable in case of a
data stream as in Fig. 1(c), i.e., a data stream that exhibits
large jumps. These jumps are to have power-law-distributed
magnitudes and are to be followed by a slower relaxation
back to the baseline. This is indicative of Lévy noise in
a parabola [cf. Fig. 1(a)] being the appropriate model. As
was pointed out before, with a parabolic potential the α that
characterizes the position distribution Pst (x) is the same as
the α that characterizes the noise term ξα (t ). In determining
the value of r, we are taking differences between subsequent
numbers in a time sequence. So in our method the order of
the sampled data points is essential. The methods described
in the previous paragraph also apply to the ξα of Eq. (1). To
assess ξα , numbers can then be taken in any order as they are
presumed to be independent and identically distributed.

In Figs. 1(b) and 1(c) it is the value of x that constitutes
the signal that is followed over time. It should be noticed that
if the value of x2 is followed instead, climbing steps remain
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climbing steps and nonclimbing steps remain nonclimbing
steps, i.e., the value of r is not affected. As a matter of fact,
for any odd or even f (x) where f (x) is increasing for x > 0,
the same value for r ensues.

With a simulation as in Fig. 1 it is unambiguous whether a
step is a climbing step or not. After all, we know that x = 0
represents the bottom of the parabolic potential. In a real-life
sequence of noisy data, however, it may be difficult to estab-
lish the precise location of the point x∗ where the potential has
its minimum. The particle spends the vast majority of its time
near the bottom of the parabola and a small variation in the
estimate of the x = x∗ point, i.e., moving the horizontal axis
in Figs. 1(b) and 1(c) a little up or down, will for many steps
affect the assessment whether the step is “climbing” or not.
Taking the average value of the data sequence as the x = x∗
point is not a solution even if the number of data points is
very large. This is because the average converges slowly or
not at all if data have an α-stable distribution. An additional
problem occurs when there is a tiny shift in the value of x∗ in
the course of the data collection.

No vagueness in the estimate of x∗, however, occurs when
working with a data stream that can be identified with values
that are proportional to z = (x − x∗)2 + Z0, where Z0 is a
constant. In that case the lowest value of the signal in the
entire sequence can be safely taken as representing the bot-
tom of the parabola. Any increase of the signal value from
one sample point to the next can then be unambiguously
counted as a climbing step. Obviously this applies for any
z = f (x − x∗) + Z0 where f is a function that monotonically
increases on (x − x∗) > 0 and monotonically decreases on
(x − x∗) < 0. As a first example to illustrate this, think of a
room with a thermostat. If the room gets too cold, then an
air conditioner is turned on. If the room gets too hot, then a
heater is turned on. The power consumption, as given by the
electric meter, will always be positive. As a second example,
think of an airplane with mass m for which gravity and the
lift force are in balance when the plane flies at an altitude h0

at a horizontal velocity v0. There is a restoring force toward
h0; if the plane increases (decreases) altitude, the decreased
(increased) air density will decrease (increase) the lift force.
Let �v be the vertical velocity due to the altitude fluctuations
and the restoring force. The kinetic energy of the plane relative
to a point on the ground is Ekin = 1

2 m(v2
0 + �v2) and has the

form presented in the first sentence of this paragraph.
Figure 3 shows 6 hours of solar soft x-ray flux as captured

by satellite. X-ray fluxes are central in the study of solar flares
[34]. A record of solar soft x-ray fluxes going back many
years is publicly available through the website of the Na-
tional Oceanic and Atmospheric Administration. Outliers and
a characteristic “shooting up and sliding down” are evident in
Fig. 3. It is also clear that the sampling rate is fast compared
to the rate of relaxation as the relaxation after a spike lasts a
few thousand seconds. This allows for an analysis related to
Fig. 2 in Sec. III.

The differential rotation of the Sun and the convective
flows in the Sun’s interior stretch and wrap the magnetic field
lines. As the solar cycle progresses the field-line pattern gets
more twisted. Solar flares occur as a result of magnetic recon-
nections, i.e., the field reconfiguring itself and transitioning to
a lower energy structure [35,36]. The peaks in Fig. 3 can be

FIG. 4. The values of r calculated by undersampling. The top
figure (a) shows theoretical results following Eqs. (18)–(22) for dif-
ferent values of α with 1 < α < 2. The bottom figure (b) derives
from solar soft x-ray data as shown in Fig. 3 and computed in
intervals of 10 s.

associated with solar flares. The distributions of observable
quantities that are connected to solar flares have been found
to follow power laws [37].

A solar flare’s x-rays are in fact bremsstrahlung and
thermal radiation (at >106 K). These are emitted directly
following the explosive release of the reconnection energy.
As the energy disperses and dissipates there is ultimately a
return to the nonequilibrium steady-state. Figure 3 shows the
watts per square meter that the detector receives. It is not
unreasonable to identify the jump and subsequent relaxation
in Fig. 3 with a Lévy jump and a subsequent decrease of
V (x) in Fig. 1(a). But, as was mentioned before, the same
value for r is obtained for any signal that is proportional to z
where z = f (x) + Z0 with f ′(x) > 0 on x > 0 and f ′(x) < 0
on x < 0. What matters is that the underlying process giving
rise to the movement of x is the noisy particle in the parabolic
potential, i.e., Eq. (1) and Fig. 1(a).

The relaxations that are apparent in Fig. 3 indicate that
Eq. (1) and Fig. 1(a) are the right model. The power laws
associated with solar flare occurrence tell us that we have
Lévy jumps, i.e., α < 2.

In Fig. 2 it is apparent that for α > 1 the value of r does not
change monotonically with the time step length �t . There ap-
pears to be a peak for �t ≈ 0.1. Here we further explore this
feature to establish α for solar soft x-ray fluxes. Figure 4(a)

014119-7



STEVEN YUVAN AND MARTIN BIER PHYSICAL REVIEW E 104, 014119 (2021)

derives from the theoretical analysis using Eqs. (18)–(22) and
shows r as a function of �t for different values of α. The
apparent maximum can be intuited as follows. To the right of
the maximum the number of time steps in a relaxation back
to the baseline after a peak, i.e., the number of descending
steps, decreases as �t is made larger. To the left time steps
get smaller when moving away from the maximum. The dis-
placement �x during a time step is the result of both drift and
diffusion. The contributions due to drift and diffusion are

�xdrift ∝ �t and �xdiff ∝ �t1/α, (25)

respectively. With 1 < α < 2 it is obvious that for an in-
dividual step the diffusive contribution takes on a greater
significance if �t is brought closer to zero. So for �t → 0
diffusion overwhelms drift and the probabilities to be climb-
ing and descending both approach 1/2. A complete relaxation
from a peak back to the baseline will contain more descending
steps than climbing steps, but for decreasing �t that differ-
ence will be an ever smaller fraction of the total number of
steps involved in the relaxation. As a consequence Eq. (4)
will yield a smaller value for r. It should also be realized that
information about steplength is erased when merely counting
ascending and descending steps. When relaxing back from a
peak to the baseline, the required net descent also occurs when
descending and climbing steps are equal in number, but with
descending steps being on average longer than climbing steps.
Finally, we mention that the above Eq. (25) also explains
why the method described in this section no longer applies
if α < 1.

The α parameter for solar soft x-ray fluxes has also
been estimated through scaling properties associated with the
power-law tails for α < 2 [32]. A block of data that is twice
as long will on average yield a maximum value that is a factor
21/α larger [38]. The slope in a log-log plot of the average
maximum value against the block size, next gives the value of
1/α. We took the data for the years 2011–2016. These years
represent a solar maximum during which the flare activity
appears fairly constant [32]. Because lengths of data blocks
must be powers of two, we ended up cutting off seven months
at each end. Using the method of Ref. [32] we thus reproduced
the α = 1.22 that was also in Ref. [32] for prior solar cycles.

Figure 4(b) shows results from measurements of solar soft
x-rays. The figure derives again from the 2011–2016 solar
maximum with seven months cut off at each end. The shape is
visually congruent to shapes seen in Fig. 4(a). The location of
the maximum also corresponds well—it occurs at a timescale
close to a tenth of the observable relaxation time after a peak
(cf. Fig. 3). An interpolation of this maximum between the
curves of Fig. 4(a) leads to an estimate of α = 1.38 for the
solar soft x-ray flux. In Appendix B we present a step-by-step
algorithm to extract the value of α from a stream of sampled
data. Our α = 1.38 appeared very robust; the same value was
found when shorter slices of data (single years or months)
were taken. Other methods appeared less robust in their α-
estimate when subsets of the entire record were taken (data
not shown).

Applying the quantile method [39] to the 2011–2016 solar
maximum with seven months cut off at each end, it is found
that α = 1.26. Quantile-method-estimates for shorter slices of
the data appear quite variable. This is likely a reflection of fact

that the quantile method estimates more than just the α; the
scale parameter, baseline level, and skew of the distribution
are also involved and these may drift over time.

Both our r value method and the power-law-tail method
of Ref. [32] are aimed at the value of the stability index
α. Nevertheless, a drift in the scale parameter σ affects the
ultimate estimate for α. For the power-law-tail method it is
obvious from Eq. (3) that a change of σ during the data stream
will “contaminate” the estimate for α. For our r value method
the parameter A that characterizes the parabolic potential [cf.
Eq. (8)] is ultimately incorportated in the scale parameter for
Pst (x) (see Sec. III). But A also gives the relaxation time trel =
1/A. A drift in the relaxation time will shift the maximum in
Fig. 4(b) to the left or right and can thus affect the estimate
for α.

Finally, it is interesting to note that the power-law-tail
method of Ref. [32] derives its estimate from the numerical
values of the outlier data. The vast majority of the data is ef-
fectively not utilized. The order in which the numbers occur is
also not used. Our r method exploits the entire data sequence,
but discards exact numerical values and focusses on just the
sign of the difference between two subsequent data points.

V. RESULTS AND DISCUSSION

It has long been understood that microscopic reversibil-
ity does not apply for a system that is out of equilibrium.
Violation of microscopic reversibility means that forward-
and backward time are distinguishable. Different approaches
have been tried to understand, detect, and quantify the “Arrow
of Time.” Very recently a method involving the Fluctuation
Theorem was presented [40]. Much work on nonequilibrium
and irreversibility has focused on entropy. For two probability
distributions p(x) and q(x), the Kullback-Leibler divergence
(KLD), or relative entropy, is expressed as D[p(x)||q(x)] =∫

dx p(x) ln(p(x)/q(x)). Because the KLD is always positive
and vanishes if p(x) = q(x) for all x, it can be intuited as a
“distance” between the two probability distributions [41,42].
For our noisy particle in a parabolic potential, it can be used
to put a scalar value on the difference between the Boltz-
mann distribution at equilibrium (i.e., α = 2 and r = 0) and
the Lévy distribution [cf. Eq. (13)] at nonequilibrium (i.e.,
0 < α < 2 and 0 < r < 1). In this way the KLD is like the
r and a more explicit connection could possibly be derived. In
this context it also needs to be pointed out that the nonequilib-
rium for 0 < α < 2 involves continuous input of energy and
production of entropy.

In this paper we took a basic and generic system: a noisy,
overdamped particle in a parabolic potential. The nonequi-
librium feature consisted in the particle being subjected to
Lévy noise instead of Gaussian noise. With the parameter r
[cf. Eq. (4)] we developed a way to quantitatively assess the
deviation from time-reversal symmetry. The stability index α

characterizes the Lévy noise. For α = 2 the noise is Gaus-
sian. In that case we have time-reversal symmetry and r = 0.
Figure 2 shows how r goes to one as we break time-reversal
symmetry and go from α = 2 to α = 0. The figure also shows
how the value of r depends on the choice of the time interval
�t for the simulation.
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It is remarkable and useful that the value of r stays the
same when the time signal that is being followed is not the y
in Eq. (8), but an odd or even function f (y) where f ′(y) > 0
for y > 0. The value of r readily leads to the stability index
α that characterizes the underlying Lévy noise term ξα (t ) [cf.
Eq. (8)]. A good estimate for α is essential in identifying the
physics taking place at the source of a signal. The method
that we developed in Sec. IV of this article yields a reliable
estimate of α from a real-life time series. Our method could
more generally be helpful in the analysis of nonequilibrium
systems, not just in astrophysics, but also in geology, physiol-
ogy, climate science, economics, etc.
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APPENDIX A: SCALING ISSUES WITH THE α-STABLE
DISTRIBUTION

When a stochastic variable ζ is multiplied with a factor
λ (λ > 1), the distribution for ζ ′ = λζ is wider and has a
scale factor (or standard deviation) that is λ times larger. How
the probability distributions p(ζ ) and p′(ζ ′) are related is
easily derived from p′(ζ ′) dζ ′ = p(ζ ) dζ . We find p′(ζ ′) =
(1/λ) p(ζ ′/λ). This result makes sense after the realization
that the horizontal stretching by a factor λ (the dividing by λ in
the argument) must be accompanied by a vertical compression
(the 1/λ prefactor) to maintain normalization.

For k → 0 the characteristic function p̃α (k) =
exp[−σα|k|α] [cf. Eq. (2)] can be approximated by:

p̃α (k) ≈ 1 − σα|k|α. (A1)

The probability distribution pα (z) is related to
the characteristic function p̃α (k) through pα (z) =

1
2π

∫ ∞
−∞ p̃α (k) exp[−ikz] dk. For k → 0 the product kz in

the exponent will only differ significantly from zero if
z → ∞. It is therefore that the k → 0 limit corresponds to
the z → ∞ limit. The second term in Eq. (A1) readily leads
to the power-law Eq. (3).

Consider an overdamped free particle. When subject to
Lévy noise, the particle’s motion is described by ẋ = σξα (t ).
The Lévy noise term, ξα (t ), has structure on all scales. Be-
cause of this, the discrete time steps �t that are necessary for a
simulation include a scale factor for ξα (t ) that depends on �t .
We have ξα (ti ) �t = θα,i(�t )1/α , i.e., ξα (ti ) = θα,i(�t )(1−α)/α .
Here θα,i denotes the ith random number drawn from a zero-
centered, symmetric Lévy distribution with stability index α

and unity scale parameter. It is obvious from here that the am-
plitude (�t )1/α is like the scale factor λ in the first paragraph
of this Appendix.

For an α-stable distribution with a unity scale factor we
have for large |θ |:

pα (θ ) ∼ sin
(

πα
2

)
α�(α)

π

1

|θ |α+1
as|θ | → ∞. (A2)

FIG. 5. The value of r exhibits a maximum on variation of �t (or,
equivalently, the sampling rate). The exact value of r at the maximum
depends on the stability index α [cf. Fig. 4(a)]. The above curve leads
from the observed r-maximum to a corresponding estimate for α

for 1.1 � α � 1.95. The points were obtained through Eq. (22). The
curve is a cubic-polynomial fit to these points.

In a simulation with a time step �t , we have κα (ti ) =
ξα (ti )�t = θα,i(�t )1/α for the random kicks. Realizing that
�t1/α is the scale factor that connects κα (ti ) and θα,i, and next
applying the result that was derived in the first paragraph of
this Appendix, we infer for the asymptotic behavior of the
distribution pα (κ ):

pα (κ ) ∼ �t sin
(

πα
2

)
α�(α)

π

1

|κ|α+1
as|κ| → ∞. (A3)

This implies that the term σα in Eq. (3) can be identified with
�t . For the scale factor σ we thus have σ = (�t )1/α .

APPENDIX B: ALGORITHM TO EXTRACT α FROM A
STREAM OF SAMPLED DATA

As discussed in Sec. IV, the value of r is enhanced for
sampling rates just above the characteristic scale of a system.
For series that encompass this range, an estimate for α can be
obtained by comparison with theoretical values computed via
Eq. (22), which are unique for 1.1 � α � 1.9 (cf. Fig. 4). Nu-
merically calculated maximum-r values are shown in Fig. 5,
along with a polynomial fit. For a series X with a zero value
corresponding to the position at the bottom of the parabolic
potential, the estimation is done as follows:

(i) Create a set of undersampled series Xn’s by taking every
nth value for n = 1, 2, 3, . . . .

(ii) For each Xn, calculate rn according to Eq. (4), i.e.,
(a) Take the absolute value of each element.
(b) For each element, subtract the subsequent element.
(c) For the ensuing differences, subtract the number of

negative values from the number of positive values.
(d) Divide by the length of Xn minus 1.
(iii) Find the maximum rn, which should correspond to a

peak in the trend of the ordered rn values (as in Fig. 4).
(iv) Determine the corresponding α through the curve and

formula in Fig. 5.
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