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We study a generic model of coupled oscillators. In the model there is competition between phase
synchronization and diffusive effects. For a model with a finite number of states we derive how a phase transition
occurs when the coupling parameter is varied. The phase transition is characterized by a symmetry breaking and
a discontinuity in the first derivative of the order parameter. We quantitatively account for how the synchronized
pulse is a low-entropy structure that facilitates the production of more entropy by the system as a whole. For
a model with many states we apply a continuum approximation and derive a potential Burgers’ equation for a
propagating pulse. No phase transition occurs in that case. However, positive entropy production by diffusive
effects still exceeds negative entropy production by the shock formation.
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I. INTRODUCTION

The biological world offers many instances of systems
where identical oscillators synchronize their phases due
to a coupling. Examples include large groups of flashing
fireflies [1], pacemaker cells in the heart [2], ensembles of
neurons [3], a large number of pedestrians on a bridge [4],
and metabolic oscillations of yeast cells in a suspension [5]. In
these kind of systems analytical treatment commonly becomes
manageable only when the coupling is small and can be
mathematically treated as a perturbation [5–7]. Going from
incoherent behavior to synchronized oscillators often takes
the form of a phase transition as the coupling parameter is
increased in value [6].

In this article we study the cyclic, four-state system that
is depicted in Fig. 1. We assume a large total population N

in the system and pi(t) = ni(t)/N , where ni(t) represents the
population in state i at time t . This means that pi(t) can be
associated with the probability to be in state i at time t . As the
transitions are irreversible, the system is far from equilibrium.
For the rates ki = ki→i+1 we take

ki = k0 exp[α(pi+1 − pi−1)], (1)

where α is a non-negative parameter that couples the proba-
bilities (i.e., populations) in the different states.

The competition between diffusion and synchronization in
the system depicted in Fig. 1 can be understood as follows.
For α = 0 there is no coupling and the stochasticity in the
exponentially distributed transition times will result in a
relaxation to p1 = p2 = p3 = p4 = 1/4 whatever the initial
conditions are. However, if α > 0 and if we have p1 = p2 =
1
4 (1 + ε) and p3 = p4 = 1

4 (1 − ε) (see Fig. 2) and at the same
time k4 > k2 (see Fig. 1), then the diffusive effects can be
counteracted. In that case the speeded up rate out of state 4
and the slowed down rate into state 3 will make the pulse in
states 1 and 2 keep its shape.

How the coupling strength in Eq. (1) provides the counter-
action to the diffusion can be seen as follows. Assume a pulse

(high probability) concentrated in one state. If there is a more
populated state ahead of the pulse as compared to behind, i.e.,
pi+1 > pi−1, then the exponent in Eq. (1) is positive and the
forward-moving-rate of the pulse is speeded up. The pulse
will then swallow the state ahead. If, on the other hand, a less
populated state is ahead and a more populated state is behind,
i.e., pi+1 < pi−1, then the forward rate of the pulse is slowed
down and the population behind can merge with the pulse.
In both cases there is a pull towards the pulse and the pulse
acts like an absorber. The mechanism is somewhat mindful
of the well-known Burgers’ shock [8]. Ultimately, in a steady
state, diffusion and accumulation balance each other out and
the pulse travels around the cycle like a soliton in a time of
approximately 4/k0.

A three-state version of the setup in Fig. 1 was numerically
and analytically studied in Refs. [9–13]. In these works a mean-
field approximation was applied and a Hopf bifurcation to
synchronized behavior was found. It was furthermore analyzed
how the system responds to disorder introduced on the level
of the transition rates, demonstrating the rise of synchrony in
a population of nonidentical units.

Four-state cycles occur frequently in biological systems.
They are seen, for instance, in the ligand-gated and voltage-
gated ion channels that maintain homeostasis and facilitate
signal transduction [14]. A four-state system similar to the one
in Fig. 1 was derived and studied in Ref. [15].

Interestingly, it has been described how different states of
an ion channel involve different shapes that imply different
stress and strain on the surrounding membrane [16]. Channels
that operate in close proximity to each other could thus chemo-
mechanically couple their kinetics. Our coupling parameter, α,
could then reflect the strength of this interaction. We will come
back to this idea in Sec. VI.

The setup of Fig. 1 gives rise to a three-dimensional system
of coupled ODEs. A linear analysis [7] around the fixed point
p1 = p2 = p3 = p4 = 1/4 leads to eigenvalues

λ1 = −2k0 and λ2,3 = 1
2k0{(α − 2) ± i(α + 2)}. (2)
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FIG. 1. The four-state system that is the subject of this article.
The j → j + 1 transition rate depends on the populations in the
states j − 1 and j + 1. We find a phase transition to a synchronized
state as the coupling strength α is increased.

So, in the λ1 direction, the fixed point p1 = p2 = p3 = p4 =
1/4 is an attractor. In the plane perpendicular to this axis,
the real part of the complex eigenvalue changes sign, from
negative to positive, at α = 2, i.e., there is a supercritical Hopf
bifurcation at α = 2.

It is possible to rigorously derive how the amplitude ε

depends on α with an expansion of the aforementioned 3D
system of coupled ODEs. But here we give a simple and
intuitive derivation to come to the same end result. Further
on, we will use the idea behind our simple derivation as a
guide to draw conclusions about entropy flow in the system.

Consider the scheme drawn in Fig. 2. For the pulse to stay
compact and to not change shape, we need the flow J4→1

into the pulse to be equal to the flow J2→3 out of the pulse,
i.e., J4→1 ≈ J2→3. Writing this as p2k2 ≈ p4k4, substituting
p2 = (1 + ε)/4, p4 = (1 − ε)/4, and taking the expressions
for the rates k2 and k4 given in Eq. (1), we obtain:

1
4 (1 + ε)k0 exp[α(p3 − p1)] ≈ 1

4 (1 − ε)k0 exp[α(p1 − p3)],

(3)

FIG. 2. For a sufficiently large value of the parameter α synchro-
nization occurs in the setup of Fig. 1. (a) The ensuing pulse maintains
its shape as it travels around the loop. (b) In the bottom graph the
height of the bar indicates the probability to be in the corresponding
state.
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FIG. 3. The order parameter r as a function of the coupling
strength α. The solid line shows the theoretical prediction [cf.
Eq. (10)]. The black dots derive from the numerical solution of the
system of ODEs that is associated with the kinetics of the system
depicted in Fig. 1. We used k0 = 1 and a time step of �t = 0.001. The
stars represent the results of stochastic simulations with N = 1000
units. For each value of α the stochastic simulation ran for t = 150
units of time. Error bars indicate the standard deviation.

which leads to

(1 + ε)

(1 − ε)
≈ eαε. (4)

Solving for α, we find α ≈ (1/ε) ln [(1 + ε)/(1 − ε)]. Next,
expanding this expression in ε, we get α ≈ 2 + 2

3ε2 + O(ε4).
Neglecting the higher-order contributions, we express the
pulse amplitude ε in terms of the coupling strength α as:

ε ≈
√

3

2
(α − 2). (5)

In other words, there is a phase transition to a synchronized
state at α = 2. In Fig. 3 the order parameter, which will turn
out to be linearly related to the amplitude ε, is depicted as a
function of α. Equation (5) appears to be in good agreement
with the results of simulations. The square-root or pitchfork
shape at the bifurcation is found in a simple system such as
ẋ = x(μ − x2), but it also appears more generally in more
complicated dynamical systems [17,18].

In Sec. II we study the order parameter that is associated
with the transition to the synchronized state. In Sec. III we
account for the entropy and the entropy production of the
system.

Going back to the setup depicted in Fig. 1, we can identify
the sequence . . . 1234123412 . . . with a continuous coordinate
x. We let one unit of x correspond to the distance between two
neighboring states.

Suppose that the counterclockwise transition rates in the
system in Fig. 1 were all equal to a constant k0. The transition
time from one state into the next state then follows an
exponential distribution with an average time and a standard
deviation both equal to 1/k0. To take n steps around the four-
step cycle takes an average time of n(1/k0). For subsequent
steps, the variances (1/k2

0) add up. So with n steps we have
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a standard deviation of
√

n(1/k0). In other words, if in time
T the system takes an average of n steps, then there is an
accompanying standard deviation of

√
n steps.

In a time T (�1/k0) the pulse thus travels an average
of about k0T units of distance with a standard deviation of
σ = √

k0T units of distance. For sufficiently many steps we
have, by the central limit theorem, a spreading Gaussian for
the probability density that travels in the positive direction:

φ(x,t) = 1√
2πk0t

exp

[
− (x − k0t)2

2k0t

]
. (6)

With a constant drift velocity k0 and a linearly increasing
variance σ 2 = k0t = 2Dt , we can consider this spreading
Gaussian to be the solution of the following diffusion equation
with diffusion coefficient D = k0/2.

φt = −k0φx + Dφxx, (7)

where φ = φ(x,t) and the subscripts denote partial differenti-
ation, i.e., φt = ∂tφ, φx = ∂xφ, and φxx = ∂2

xφ. Dedimension-
alizing the time, Eq. (7) can be brought to the simple form
φt = −φx + 1

2φxx .
The speeded up transition behind the pulse and the slowed

down transition right ahead of the pulse is what counteracts
the diffusive spread. In Sec. IV, we will show how the
synchronization adds a nonlinearity to Eq. (7) and how the
equation then effectively reduces to a Burgers’ equation.
In Sec. V we will derive the order parameter and entropy
production associated with this partial differential equation
(PDE). In Sec. VI we discuss our findings.

II. ORDER PARAMETER AS A FUNCTION
OF COUPLING STRENGTH

In, for instance, the study of the Kuramoto model, the degree
of synchronization is commonly described with the help of an
order parameter [19]. In our case the order parameter takes the
following form:

reiψ =
3∑

n=0

pie
iπn

2 . (8)

Obviously, r grows from 0 to 1 as the degree of synchronization
increases. For the situation in the top panel of Fig. 2, it is easily
inferred that

reiψ =
(

ε

2

√
2

)
eiπ/4. (9)

As the pulse moves around the loop depicted in Fig. 1, reiψ

moves around the complex plane with the same time period.
With Eqs. (5) and (9) we derive for the order parameter as

a function of α

r =
{

0 if α < 2
1
2

√
3
√

α − 2 if α > 2.
(10)

Figure 3 shows two simulation results and the theoretical
prediction of Eq. (10). For one simulation we numerically
solved the ODEs that describe the kinetics of the setup shown
in Fig. 1. For the second simulation we performed stochastic
simulations using a total of N = 1000 coupled units in the
entire system and following a Gillespie algorithm [20,21]. In

a Gillespie algorithm two random numbers are drawn at each
time step. These numbers are used to select (i) the unit that
changes its state according to the scheme from Fig. 1 and (ii)
the time this transition would take. New values of transition
rates [cf. Eq. (1)] and order parameter r are calculated after
each time step. The simulations affirm the presence of a phase
transition at α = 2.

If the total population in the system in Fig. 1 is a finite
number N , then we will not find r = 0 at α < 2. This
is due to the stochasticity in the transitions. We will next
estimate what the bottom line value for r is, i.e., the value
that we expect for 0 < α < 2. Taking a total population of
1, we see that a measurement will, on average, give the
value p = 0.25 for each state. In that case the associated
variance and standard deviation are σ 2

1 = p(1 − p) = 3/16
and σ1 = √

3/4, respectively. With a total population of N ,
we have N/4 for the average population in each state. For
the result of many subsequent and independent draws, the
variances add up. So we have σ 2

N = Np(1 − p) = 3N/16 and
σN = √

3N/4. For the order parameter we thus expect an
outcome:

reiψ =
3∑

n=0

1

4

(
±

√
3

4
√

N

)
eiπn/2. (11)

The n = 0 and n = 2 contribution to the sum are multiplied
with, respectively, e0 = 1 and eiπ = −1. Adding up the
averages and the variances of these contributions, we obtain
zero for the average real part and σ̃ 2

N = 3/(8N ) for the
associated variance. This leads to σ̃N = √

3/(2N )/2 for the
standard deviation. The n = 1 and n = 3 contributions in
Eq. (11) give the same result for the imaginary part. The
average value of both real and imaginary part is zero. But
the average norm of both real part and imaginary part is
not. With a zero-average Gaussian distribution, the average
norm is:

ρRe = ρIm =
∫ ∞

0

2x√
2πσ̃N

exp
[−x2/

(
2σ̃ 2

N

)]
dx = 2σ̃N√

2π
.

(12)

For the average value of r we thus come to the result

〈r〉 ≈
√

ρ2
Re + ρ2

Im =
√

3

2πN
. (13)

We performed a Gillespie simulation with N = 10000 and α =
0. It led to r = 0.0090 (±0.0047). This is in good agreement
with the r = 0.0069 that Eq. (13) predicts. Also for N = 100
and N = 1000 we obtained values for r at α = 0 that confirm
Eq. (13). The values observed in Fig. 3 for α < 2 are well
above the r = 0.022 that Eq. (13) predicts for N = 1000. This
is because stochastic fluctuations die out ever more slowly as
α is brought from 0 to 2. Simulations closer to the N → ∞
and t → ∞ limits should give results closer to the theoretical
value of Eq. (13). The Gillespie simulations, however, require
a lot of computation time.
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III. ENTROPY PRODUCTION OF THE MOVING
SYNCHRONIZED PULSE

Following Shannon [22], we take as the entropy per unit in
the setup of Fig. 1 and Eq. (1):

S = −
4∑

i=1

pi ln pi. (14)

It is obvious that the situation with the pulse, as shown in
Fig. 2, has a lower entropy than the p1 = p2 = p3 = p4 = 1/4
situation for which the entropy is maximal. When going from
the situation on the left-hand side of Fig. 2 to the situation
on the right-hand side of Fig. 2, there is no entropy change
according to Eq. (14). However, the pulse has moved forward
and what we have effectively done is performing a chemical
cycle to move the pulse forward by one unit. We have converted
chemical energy into mechanical work and there should be an
associated entropy production. In this section we will account
for the different entropy contributions.

Realizing that
∑

ṗi = 0 as
∑

pi = 1 at all times, we infer
from Eq. (14):

Ṡ = −
4∑

i=1

ṗi ln pi. (15)

This sum will not generally turn out equal to zero. This is
because the term ln pi adds weights to the flows ṗi and,
ultimately, the flows for small pi are weighted more heavily.

We take the situation on the left side of Fig. 2, i.e.,
p1 = p2 = (1 + ε)/4 and p3 = p4 = (1 − ε)/4. We next take
ṗi = Ji−1→i − Ji→i+1 = ki−1pi−1 − kipi and substitute into
Eq. (15) the values for the rates ki [cf. Eq. (1)]. We also
substitute the α ≈ (1/ε) ln [(1 + ε)/(1 − ε)] that we found in
the Introduction after Eq. (4). Summing over the four states and
after some algebra it is then readily derived that Ṡsynchr = 0.
This result is expected as the mechanism leading to Eq. (4)
was formulated to lead to a pulse that stays intact.

In the derivation in the previous paragraph leading to
Ṡsynchr = 0, we did not yet take the stochasticity into account.
Each individual transition is a stochastic event and the result
of a draw from an exponential distribution. Even with the
irreversible transitions in Fig. 1, there is diffusion. The
stochasticity in the transitions is giving us the spread of
the distribution described in the Introduction and it produces
temperaturelike behavior.

In the Introduction we saw that our system has an effective
diffusion coefficient of D = k0/2. Taking Fick’s diffusion
law (∂tP = D∂2

xP ) and writing it in the discrete form that
is appropriate for the system in Fig. 1, we have

ṗi = k0

2
(pi+1 − 2pi + pi−1). (16)

When this equation is applied to the situation depicted in Fig. 2,
it is found that ṗ1 = ṗ2 = −εk0/4 and ṗ3 = ṗ4 = εk0/4.
With again p1 = p2 = (1 + ε)/4 and p3 = p4 = (1 − ε)/4
and applying Eq. (15), the entropy production by the diffusion,
at the lowest order in ε, is found to be

Ṡdiff = k0ε
2 = 3

2k0(α − 2) = 2k0r
2. (17)

We thus see that, for α > 2, the moving pulse is associated
with a net production of entropy. The entropy production
increases with the pulse amplitude ε and the associated order
parameter r . It needs to be emphasized here again that the
entropy production of the moving pulse is not associated with
a deterioration of the moving pulse. The pulse stays intact.
But as was already explained in the Introduction, it is the
fluctuations in the speed of the pulse that make the process
nondeterministic and expand the available phase space. Of
course, with p1 = p2 = p3 = p4 = 1/4 there is no pulse and
no such phase space expansion occurs.

For 0 < α < 2 we have p1 = p2 = p3 = p4 = 1/4 and
an associated entropy of S = 2 ln 2 [cf. Eq. (14)]. With the
distribution shown in Fig. 2, the entropy is obviously smaller.
Taking ln(1 ± ε) ≈ ±ε − ε2/2 for the lowest orders in ε, we
find that for α > 2 and small ε

S ≈ 2 ln 2 − ε2/2. (18)

In other words, the formation of the pulse represents a
symmetry breaking and a self-organized establishment of
order. However, as we will show in the next paragraphs, the
pulse allows the system as a whole to produce more entropy.

The transitions in Fig. 1 dissipate energy and produce
entropy. This is obvious for the case of chemical transitions;
the more irreversible such a transition, i.e., the larger the ratio
of the forward and backward transition rate, the more entropy
the forward transition produces.

If p1 = p2 = p3 = p4 = 1/4, each transition rate in Fig. 1
equals k0 and the average turnover of the system equals
�4

i=1pik0 = k0. For the situation sketched in Fig. 2 there are
two transition rates that take on the value k0 exp [αε/2] and
two transition rates that take on the value k0 exp [−αε/2].
This leads to an average transition rate of 〈k〉 = k0 cosh [αε/2].
The functions f (x) = ex and f (x) = e−x have positive second
derivatives, i.e., they are concave up. It is essentially because
of Jensen’s theorem (〈f (x)〉 > f (〈x〉) if f ′′(x) > 0, see
Ref. [23]) that we have 〈k〉 > k0. More importantly, also the
average turnover for the entire system, i.e., �4

i=1piki , evaluates
to k0 cosh [αε/2] with the synchronized pulse as in Fig. 2.

We observe that not having a flat (maximal entropy)
distribution helps the open system to ultimately achieve a
higher turnover. The lower-entropy synchronized pulse is
essentially an investment; eventually it acts like a catalyst for
an enhanced turnover and increased entropy production rate.
In this sense the pulse is a self-organized dissipative structure
as described by Prigogine [24].

IV. SYNCHRONIZED PULSE AS A BURGERS’ SHOCK

When increasing the number of states in a cycle as in
Fig. 1, we encounter ever larger systems of equations. Instead
of taking this route with all its analytical and numerical
complications, it may be more fruitful to examine the other
end. We thus take a cycle with a large number of states n and
go to the continuum limit that we already briefly discussed in
the Introduction.

In the cycle depicted in Fig. 4 there are n states. In the
vicinity of the phase transition we have φ(j,t) = O(1/n), for
the probability in each state j . For a smooth, small-amplitude
pulse (in the next section we explore a sinusoidal modulation)
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FIG. 4. An n-state generalization of the system shown in Fig. 1.

we have (φmax − φmin) = O(1/n) for the maximal and mini-
mal φ. For the horizontal distance between the maximum and
the minimum, we, moreover, have |xmax − xmin| = O(n). This
leads to φx = O(1/n2) and φxx = O(1/n3).

Next we enter the φ dependence of k as given in Eq. (1).
For the continuous equivalent of Eq. (1) it is found that

k = k0 exp{α[φ(x + 1,t) − φ(x − 1,t)]}. (19)

For a slowly varying φ(x,t) a simple, 1st order approximation
is justified and gives φ(x + 1,t) − φ(x − 1,t) = 2φx(x,t).
After exp {α[φ(x + 1,t) − φ(x − 1,t)]} ≈ 1 + 2αφx(x,t), we
are thus led to the following nonlinear PDE:

φt = −k0φx − 2k0αφ2
x + 1

2k0φxx + k0αφxφxx. (20)

We first notice that φxφxx = O(1/n5). The φxφxx term is
smaller than the other terms on the right-hand side and we
therefore neglect it. With a Galilean transformation the k0φx

term can be removed. To go to ψ(x ′,t) = φ(x,t), where
x ′ = x − k0t , we formally take

x ′ = μ(x,t) = x − k0t t ′ = ν(x,t) = t. (21)

With the standard Jacobian matrix approach we then have:(
φx

φt

)
=

(
μx νx

μt νt

)(
ψx ′

ψt ′

)
,

where μx = ∂x ′/∂x = 1, νx = ∂t ′/∂x = 0, μt = ∂x ′/∂t =
−k0, and νt = ∂t ′/∂t = 1. From here it is inferred that
φx = ψx ′ and φt = ψt ′ − k0ψx ′ . Substituting this, dropping
the primes, and absorbing 2k0 into the timescale, we obtain for
the new equation in the new inertial frame

ψt = −4αψ2
x + ψxx. (22)

This is actually a well-known equation. It is generally known
as the potential Burgers’ equation [25]. By taking the partial
derivative with respect to x on both sides and next taking ψx =
ϕ, the original Burgers’ equation is retrieved for ϕ = ϕ(x,t):

ϕt = −8αϕϕx + ϕxx. (23)

FIG. 5. The top graph shows the propagating Burgers’ shock
[Eq. (24)]. The speed of the shock front depends on the shock
amplitude and on the parameter α. The bottom graph shows the
antiderivative with respect to x of the Burgers’ shock [Eq. (25)],
which represents the soliton solution of the equations associated with
the system depicted in Fig. 4. A robust synchronized pulse travels
around the cyclic setup.

The potential Burgers’ equation, Eq. (22), is actually lineariz-
able. The linear diffusion equation ηt = ηxx turns into the
above Eq. (22) after taking η(x,t) = exp [−4αψ(x,t)].

Equation (23) supports soliton solutions (cf. Fig. 5):

ϕ(x,t) = ϕ− + ϕ+
2

− ϕ− − ϕ+
2

tanh[2α(ϕ− − ϕ+)(x − vt)],

(24)

where we have for the speed of the soliton, as indicated in
Fig. 5, v = 4α(ϕ− + ϕ+). The quantity [2α(ϕ− − ϕ+)]−1 is
known as the thickness of the shock. A good explanation of
these dynamics is also found in Ref. [26].

Integrating the solution for ϕ(x,t), we obtain ψ(x,t):

ψ(x,t) =
(

ϕ− + ϕ+
2

)
x − 1

4α
ln{cosh[2α(ϕ− − ϕ+)

× (x − vt)]} + ψ(0,t), (25)

where ψ(0,t) is the constant of integration.
It is important to notice that the phase transition that was

identified in the discrete system is not present in the above
continuous version. There is no phase transition or bifurcation
associated with the soliton depicted in Fig. 5 and described
in Eqs. (22)–(25). For α = 0, Eqs. (22) and (23) reduce to
an ordinary diffusion equation. As α is increased from zero,
what we see is the development of an ever steeper shock
front in the top panel of Fig. 5 and an ever more pronounced
synchronization hump in the bottom panel of Fig. 5. With an
increasing α, also the speed of the pulse increases. Unlike for
the case of the three-state and four-state system, the continuous
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case offers no relation between the amplitude of the pulse,
(ϕ− − ϕ+), and the coupling parameter α.

V. ENTROPY PRODUCTION AND ORDER PARAMETER
AS THE SOLITON PROPAGATES

For ordinary diffusion without drift, we have for a particle
that starts at x = 0 at t = 0:

�(x,t) = 1√
4πDt

e− x2

4Dt . (26)

For this case the entropy S(t) is readily evaluated as

S(t) = −
∫ +∞

−∞
�(x,t) ln �(x,t) dx

=
∫ +∞

−∞

e− x2

4Dt√
4πDt

(
x2

4Dt
+ ln

√
4πDt

)
dx

= 1

2
[1 + ln(4πDt)], (27)

which leads to Ṡ(t) = 1/(2t) [27]. That the diffusion entropy
follows S ∝ 1

2 ln t can also be understood from more intuitive
arguments. Boltzmann’s definition of the entropy, S = k ln �,
tells us that the entropy is proportional to the logarithm of
the volume � of the available phase space. If we identify this
available phase space volume with the standard deviation of the
Gaussian, then � ≈

√
〈x2〉. As 〈x2〉 ∝ t for normal diffusion,

we have S ∝ ln
√

t = 1
2 ln t .

It should be realized that Eqs. (14) and (15) come with
a little caveat when we go to continuous x. For a periodic
ψ(x,t) (period L) the entropy is maximal when the probability
distribution is flat, i.e., �0 = 1/L. Our definition of the
entropy is the commonly used Kullback-Leibler distance,
which effectively measures how far away we are from this
flat distribution [28]:

S(t) = −
∫ x0+L

x0
�(x,t) ln

(
�(x,t)

�0

)
dx. (28)

By normalizing the period, i.e., x → x/L and � → L�, we
can work with entropy as simply S = − ∫

� ln �dx, where
the integration runs over the unity period.

Equation (22), the potential Burgers’ equation, was arrived
at after a linear Galilean transformation. It is easy to show that
no entropy production is involved in a linear traveling wave.
Take the PDE �t = �x . To obtain the rate of change for the
entropy we perform

dS

dt
= − d

dt

∫
� ln �dx = −

∫
�̇(ln � + 1) dx, (29)

where the integration runs over one period. For � periodic in x

we obviously have
∫

�̇ dx = 0 when the integration runs over
one spatial period. For the other term in Eq. (29) we derive∫

�̇ ln �dx =
∫

�x ln �dx =
∫

ln �d�

= �(ln � − 1)| = 0. (30)

So the Galilean transformation that removed φx from the right-
hand side of Eq. (20) is without consequence for the entropy
analysis.

Next we take Eq. (22) and write down for the entropy
production

dS

dt
= − d

dt

∫
ψ ln ψ dx

= −
∫

ψ̇(ln ψ + 1) dx

=
∫ (

4αψ2
x − ψxx

)
ln ψ dx. (31)

We will evaluate both terms.
The integrand ψ2

x ln ψ is associated with the shock forma-
tion. The integrand ψxx ln ψ is associated with the diffusion.
The shock term is supposed to give a negative contribution to
the entropy production as it accumulates probability density
and drives the system away from the homogeneous spread. As
we saw before, diffusion produces entropy. So ψxx ln ψ should
be positive.

The integral
∫

ψ2
x ln ψ dx cannot be further simplified. So

we have

Ṡshock = 4α

∫
ψ2

x ln ψ dx. (32)

The diffusion term can be simplified through integration by
parts

Ṡdiff = −
∫

ψxx ln ψ dx =
∫

ψx d(ln ψ) =
∫

ψ2
x

(
1

ψ

)
dx.

(33)

As ψ2
x and (1/ψ) are both positive, the integral (33) will indeed

always be positive.
The most obvious approximation for the shape of the

synchronized pulse in the continuous domain would be a
harmonic one. We take a unit period and a small ε for the
amplitude of the pulse in the vicinity of the phase transition.
For the t = 0 situation we take

ψ(x,0) = 1 + ε cos(2πx). (34)

With Eq. (34) we have at the lowest order for the pertinent
terms [cf. Eqs. (32) and (33)]:

ψ2
x ≈ 4π2ε2 sin2(2πx),

ln ψ ≈ ε cos(2πx) − ε2

2
cos2(2πx),

and
1

ψ
≈ 1 − ε cos(2πx). (35)

With these approximations we are led to

Ṡshock ≈ −απ2ε4 and Ṡdiff ≈ 2π2ε2. (36)

We thus observe that for the propagating pulse the negative
entropy production occurs at a higher order in the small
parameter ε than the entropy production. The propagation of
a synchronized pulse, we conclude, is associated with a net
production of entropy. This is what we would expect as the
irreversible chemical transitions that drive the cycle in Fig. 4
dissipate energy and imply a production of entropy.

Recently Nordenfelt applied similar reasoning and tech-
niques to evaluate the entropy production for a synchronizing
system described by a PDE [29]. His system, however, is more
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FIG. 6. The density ψ(x,t) can exhibit multiple synchronizations.
The cusps in ψ(x,t) can be identified with solitons (this is obvious
upon considering ψxx when the cusps become pulses). These solitons
can have different velocities. The velocity of a soliton is proportional
to the sum of the slopes to the left and right of the cusp (see Fig. 5).
Directions thus obtained are indicated by arrows. The dashed vertical
lines indicate one period, i.e., one cycle in Fig. 4.

complicated as it also involves a continuum of characteristic
frequencies.

The order parameter in case of a harmonic approximation
as in Eq. (34) is easily evaluated. We find it to be linear in ε:

r =
∫ 1/2

−1/2
(1 + ε cos[2πx])ei2πx dx = ε

2
. (37)

The continuous case that we studied in this and the previous
section differs from the finite-state model in that there is
no emerging simple relation between the amplitude of the
pulse and the coupling parameter α. There is also no phase
transition for the continuous case. In the case of α = 0 there is
no synchronization and the system in Fig. 4 moves in the
counterclockwise direction making on average k0 transitions
per unit of time. After the Galilean transformation that we
performed [cf. Eq. (21)], the frame moves around the circle
with the same speed k0. It is in that frame that we were led to
Fig. 5 and Eqs. (22) and (23).

The variable ψ(x,t) [cf. Eq. (22)] represents a probability
density and therefore has to be positive everywhere. The
variable ψ(x,t) must, furthermore, give unity when integrated
over the entire cycle in Fig. 4. But within these restrictions it
is still possible, for α > 0, that multiple synchronizations are
present. Figure 5 and the solution Eq. (25) make clear how
the cusps can be identified with moving solitons. Figure 6
shows how these solitons can propagate at different speeds
and in either direction. In other words, the coupling can both
speed up and slow down the turnover rate in Fig. 4. Because
of the nonlinear character of Burgers’ equation, no simple
superposition of solutions applies. Different solitons interact
when they collide. If the diffusive part of Burgers’ equation
is small relative to the nonlinear term, the solitons appear
to collide inelastically and mimic the behavior of sticky gas
particles [30].

Schemes with subsequent conformational changes as in
Fig. 1 are, of course, simplifications. Going back to the ion
channels that we mentioned in the Introduction, we have
to realize that an ion channel is a big complicated protein
and that what we take to be a discrete transition is, in
actuality, continuous diffusive motion through a corridor in
a many-dimensional conformational space. An 18-state model
has been applied to describe the activity of the α1β glycine
receptor [31]. At that point discrete models have lost their
computational simplicity and intuitiveness. It may well be

that biological reality is ultimately better described with a
continuous-type model as presented in Secs. IV and V.

VI. DISCUSSION

In this article we first studied how diffusion and accumu-
lation compete in a four-state system as described in Fig. 1
and Eq. (1). Like in a three-state system [9–13], a sharp phase
transition is observed as the coupling parameter α is varied.
We next went to an n-state system and studied an n → ∞
continuum limit.

There is an ongoing and intense research interest in the syn-
chronization behavior of systems like the one in Fig. 1 [32,33].
We chose our rates ki to depend on the populations pi as in
Eq. (1), because in chemical kinetics energies commonly are
linearly related to logarithms of rates. But other dependencies
are possible. Linear dependencies, ki ∝ (1 + bpi+1), have
been explored with a smaller population [34]. Combinations
of rates and fixed waiting times have also been explored [35].
In Ref. [36] the replication that is found in biological systems
is modeled through an increasing population.

In most works on coupled oscillators the focus is on
the bifurcation structure of the system. Much of our focus
here has been on the thermodynamics of the synchronizing
oscillators and in particular on the production and the flow
of entropy. Commonly the mathematics of synchronizing
oscillators can get very convoluted. Through approximations
we have attempted to keep the formulas concise and intuitive,
while still describing the phenomena.

As the transitions in Fig. 1 are irreversible, there is a
net production of entropy as the system is cycling. The
net production of entropy should also emerge from the
synchronization kinetics of the system depicted in Fig. 1. The
formation of a phase-synchronized pulse actually involves an
increase of the order parameter. However, we have shown that
in the vicinity of the phase transition there is still a net positive
production of entropy. We have furthermore shown that the
phase synchrony can be thought of as a dissipative structure:
accumulation of units actually leads to a higher rate for the
entropy-producing transitions in Fig. 1.

When a cycle as in Fig. 1 consists of a continuum of states
(cf. Fig. 4), the PDEs that are the focus of Secs. IV and V
constitute the proper way of description. It is remarkable
that the Burgers’ equation that we derive as the appropriate
continuization no longer exhibits the phase transition as the
coupling parameter α is varied. No relation between the pulse
amplitude ε and the system parameters is apparent from the
theory.

It may be surprising that the phase transition is no longer
present in the continuum limit. When, for instance, the similar
and well-known Kuramoto model is taken to its continuum
limit [19], a phase transition as in our Fig. 3 remains
present. But there is a difference between the continuum
Kuramoto model and our ultimate Burgers’-like model. From
the governing equation of the Kuramoto model,

θ̇i = ωi + K

N

N∑
j=1

(θj − θi), (38)
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it is obvious that every single one of the N units is coupled to
every other unit on the circle. In our setup a unit in state i is
coupled only to units in neighboring states i − 1 and i + 1. For
the four-state system these two neighbor states still constitute
half of the total number of states and interactions can then
still be considered global in nature. But as the number of
states increases to a large n (cf. Fig. 4), the neighbor-neighbor
interactions take on an ever more local character. It is possible
to get global phase transitions with just local interactions. Ising
models provide a well-understood example of this. But this is
not what happens in Burgers’ equation [37].

In Sec. V we derived how the propagating soliton produces
entropy. We see that for a small pulse amplitude ε, the
production of negative entropy associated with the shock-
formation term in the PDE is of a higher order in ε than the
positive entropy production diffusion term.

Soliton propagation is not necessarily always associated
with entropy production. Apply, for instance, the transforma-
tion t → −t to Burgers’ equation (23). In that case the soliton
depicted in Fig. 5 will simply move in the reverse direction
and with the same speed. Such a soliton, however, would also
be a solution to a PDE with antidiffusion (a minus sign in front
of the second partial derivative with respect to x) and shock
dissolution (negative α). For such a soliton the propagation
involves the production of negative entropy.

The moving solitons that we derive are still entropy-
producing structures. However, they may slow down the
turnover rate (cf. Fig. 4) as compared to the setup that has
no coupling (i.e., α = 0). So these synchronization solitons
are no longer the catalysts for enhanced turnover that they
were in the finite-state case.

It is instructive to examine the relation of our analysis to
the aforementioned conformational coupling of nearby ion
channels in a membrane. Multistate models, such as the
one introduced in Fig. 1, are commonly used to describe
the kinetics of ion channels [15]. Collective action of such
channels has been observed in numerous experiments [38–
40], but the underlying mechanism by which the membrane
proteins communicate is still not obvious.

It has been suggested that information about a channel’s
state is transmitted via the membrane between the channels.
It is indeed not hard to imagine that the different states of a
channel are geometrically different. If channels are sufficiently
close and if the lipid-bilayer membrane and the cytoskeletal

structures in which they are embedded are sufficiently stiff,
then channels could, in principle, be coupled chemomechan-
ically and kinetics as in Fig. 1 could ensue [16,41–44].
Of course, such conformational coupling through membrane
deformation only works for short distances.

Another possible way to couple closely spaced channels is
through the electrochemical gradient between the two sides of
the membrane. An open ion channel results in a local change
of the transmembrane potential. The more open channels in a
small area, the bigger the resulting change in the electric field.
As electrochemical potentials can affect opening and closing
of a channel [45], feedback loops can be established. This is
how action potentials arise and propagate [46]. It is also how
kinetics like in Fig. 1 can emerge.

Clusters of ion channels, where the action of one channel
is amplified by the actions of the neighboring ones, have been
found in many cell types. It has even been observed how such
clustering is regulated during cell development [47,48]. Proper
clustering of different kinds of channels in Ranvier nodes of
myelinated nerve fibers appears to be essential for achieving
a good propagation of action potentials [49]. In experimental
studies on synaptic transmission it has been shown that having
receptor clusters of variable sizes optimizes the response to
small stimuli and the sensitivity to signal amplitude [50]. In
their analysis of a theoretical model of the action of inositol
1,4,5-triphosphate receptors in a plasma membrane, Shuai and
Jung found that channel clustering can dramatically enhance
a cell’s capability of creating a large Ca2+ response to a weak
stimulation [51].

The coupling parameter α that we introduced could be
associated with the density of channels in a cluster and with
the average distance of channels in a cluster. Experimental
studies to establish an explicit quantitative relation between a
coupling parameter and a signal amplitude should be feasible.
Our results can be a guideline when performing such studies of
the collective action of ion channels. It would be particularly
interesting if something as dramatic as a phase transition could
be experimentally established.
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