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Stepping molecular motor amid Lévy white noise
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We consider a model of a stepping molecular motor consisting of two connected heads. Directional motion
of the stepper takes place along a one-dimensional track. Each head is subject to a periodic potential without
spatial reflection symmetry. When the potential for one head is switched on, it is switched off for the other head.
Additionally, the system is subject to the influence of symmetric, white Lévy noise that mimics the action of
external random forcing. The stepper exhibits motion with a preferred direction which is examined by analyzing
the median of the displacement of a midpoint between the positions of the two heads. We study the modified
dynamics of the stepper by numerical simulations. We find flux reversals as noise parameters are changed. Speed
and direction appear to very sensitively depend on characteristics of the noise.

DOI: 10.1103/PhysRevE.91.042713 PACS number(s): 87.10.−e, 05.40.Fb, 05.10.Gg, 02.50.−r

I. INTRODUCTION

Since the late 1980s it has become possible to follow and
manipulate moving motor proteins at a molecular level [1].
More recently, such motor proteins have become the moving
parts in actual nanotransport machines [2]. In eukaryotic cells
the motor protein kinesin is responsible for the transport of or-
ganelles and vesicles filled with chemicals. This motor protein
literally walks along a biopolymer called “microtubule” as it
is fueled by the conversion of adenosine triphosphate (ATP)
into adenosine diphosphate (ADP) and inorganic phosphate.
The microtubule filaments are periodic structures of a distinct
polarity, different at each end.

In a minimal model it is possible to reconstruct the motion
of a motor protein on a biopolymer as just the motion
of a Brownian particle on an array of dipoles. In such
a minimal model the ATP hydrolysis causes the motor to
have a fluctuating charge and/or charge distribution. If the
array of dipoles is anisotropic, then these nonequilibrium
fluctuations will make the motor drift through a “ratchet”
mechanism [3–11]. Typically, one assumes that the overall
force acting on the particle is a superposition of the Gaussian
thermal noise with another periodic or stochastic force due
to the ATP hydrolysis [9]. In those cases all moments of
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the distribution of the noisy force exist, and the existence
of moments of the distribution of the particle’s velocity is
guaranteed.

However, as it has been documented in numerical and
analytical studies [12–14], the minimal setup for directed
transport can also be obtained when taking just the periodic
anisotropic potential (see Fig. 1) with added symmetric Lévy
noises. Here the term Lévy noise, L(t), is used to denote a
natural extension of a standard (Gaussian) Brownian-Wiener
process [15–17], which includes (a) a general family of
stochastic processes with stationary independent increments
whose (b) probability distribution belongs to the class of
infinitely divisible distributions and satisfies the stability (self-
similarity) criterion, i.e., L(σ t) ∼ σ 1/αL(t) with the stability
exponent α ∈ (0,2]. The latter property reflects invariance of
the probability density of a random variable under convolution
and can be easily rephrased in terms of the Fourier transform of
the corresponding probability density function. In analogy to
the white Gaussian noise, which is formally represented as the
time derivative of the Wiener process, the general Lévy white
noise can be defined as the time derivative of the symmetric
Lévy process, ζL(t) = L̇(t). Asymptotic (tail) properties of
the probability distribution function (PDF) of the increments
�L(t) = L(t + h) − L(t) are governed by the stability index
α, i.e., p(l) ∼ 1/(|l|α+1). Unlike Gaussian noises, Lévy pro-
cesses may contain random jump discontinuities of arbitrary
size (loosely, the intensity measure of its Poissonian jumps [14]
is proportional to |l|−α−1dl) and therefore are well adapted to
account for pulsatory or discrete behavior of natural signals.

It is now known that Lévy noise is useful in understanding
the behavior of many biological systems, like bacteria [18],
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(a) (b)

(c)

FIG. 1. (Color online) Model system: The heads are subject to an external potential (a) from the filamentous track (e.g., microtubule) and
an internal potential (b) due to sterical interactions within the motor. The internal potential is the sum of a harmonic and a Lennard-Jones
potential [cf. Eqs. (2) and (3)]. In the absence of a constraint on the distance |y − x| and in the presence of “bursting fluctuations,” the two heads
can be pulled apart to an unphysically large distance, i.e., a catastrophe as shown in (c) can occur. Parameter values are a = 0.25, ε = 0.1,
τ = 5, k = 0.8, L = 1, dt = 0.01.

predatory fish [19], spider monkeys [20], or human beings [21].
But it came as a great surprise that Brownian diffusion—until
recently a model of choice for describing any subcellular
processes—was unable to explain a huge amount of exper-
imental data on intracellular motion. Anomalous diffusion,
i.e., an unusual nonlinear time dependence of the mean-
square displacement (MSD) accompanied by an anomalous
scaling behavior [22–25], has become a commonly observed
phenomenon in intracellular transport [26–30].

In cell biology, molecular diffusion is recognized as a
main form of transport within the cells. Random motion in
cytoplasm is usually attributed to thermal fluctuations, which
contribute to the dynamics of objects as irregular forcing
occurring randomly in time. The latter are commonly modeled
as a Gaussian noise source. In a Gaussian distribution the tails
of the probability density fall off exponentially and the MSD
in the passive motion grows linearly with time.

In contrast to the aforementioned canonical Brownian
ratchet powered by Gaussian white noise, we here investigate
transport under the action of white Lévy noise. The “heavy” or
“fat” tail of the distribution of Lévy noise amplitudes means
that large jumps occur more likely than for the Gaussian
case. As a consequence, we face a challenge when trying
to characterize the ensuing directed motion on the ratchet.
This is because the statistical moments of the examined flux
of particles can be divergent. In particular, for α ∈ (0,1]
neither the dispersion nor even the mean of the corresponding

displacements exist. Therefore, the statistical analysis of the
induced flux is no longer possible in terms of standard
notions such as mean velocity, standard deviation, and Péclet
number [31–33]. New measures to characterize the transport
must be introduced [12,13,34].

The α-stable Lévy noise is associated with systems that are
out of thermal equilibrium, and it can occur when conditions
leading to the standard fluctuation-dissipation theorem are
violated [35–38]. In particular, the Lévy-type statistics is
observed in various scientific areas where scale-invariant
phenomena take place or can be suspected (for a recent short
review see Ref. [16] and references therein). This statistics
allows one to describe real situations in which the evolution
shows abrupt jumps, called Lévy flights.

The interplay of deterministic dynamics and perturbative
Lévy-type noises has been addressed in the literature in
various scenarios, including several noise-induced effects
like resonant activation [36,37], stochastic resonance [39,40],
noise-enhanced stability in Josephson junctions [37], and
dynamical hysteresis [39,41]. It has also been studied in the
context of population dynamics [40,42], escape from bounded
intervals [38,43], barrier crossing problems [44–47], stationary
distributions and steady states in confining potentials [48–51].
Also, noise-induced directed motion in spatially periodic
potentials has been investigated, although mostly in the
presence of Gaussian noise [3,4,7]. In contrast, relatively
few research efforts [12,13,34,52,53] have been undertaken
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to understand motion in a ratchet potential under the action of
jumpy Lévy fluctuations.

On the other hand, increasing experimental evidence
has been gathered over the last few years documenting
that particles in a living cell perform not only thermal
diffusion [23,24,26,27] and significant understanding of the
nonequilibrium processes that underlie anomalous diffusion
has been gained. It has become possible by developing
new microscopy techniques which allow us to follow and
identify [54,55] the responsible random forces. According to
those studies the cytoskeleton appears to be a very dynamic
viscoelastic structure [56] that is subject to a lot of mechanical
activity through, for instance, the motor proteins that are
connected to it. This nonequilibrium activity has been found
to generate random fluctuating forces large enough to literally
“stir” the cytoplasm [54,57]. The use of Lévy noise in motor
protein models is then warranted by the ample evidence
of relatively frequent large fluctuations. Their presence, as
previously observed, is in fact a signature of Lévy noise.

Here we present a study on a two-headed motor model
subject to action of the external Lévy random forcing. We
start out, in Sec. I, with the characterization of the noise and
formulation of a basic ratchet model. In Sec. II we describe the
systems response to external forces. Summary, conclusions,
and a discussion of our results are the contents of Sec. III.

II. METHODS

We let our Lévy noise [15,58,59] consist of subsequent
random kicks ζ (t). We restrict ourselves to a case of symmetric
stable noises, Lα(t) = ∫ t

0 ζ (t ′)dt ′, where for the characteristic
function we have

φ(k,t) =
〈
exp[ik

∫ t

0
ζ (t ′)dt ′]

〉
= exp[−σα|k|αt]. (1)

Here the parameter α (α ∈ (0,2]) denotes the stability index
of the distribution whose “fat” power-law tails of the PDF
are characterized by |ζ |−(1+α) asymptotics. The parameter σ

stands for a scale parameter that measures the intensity of the
noise. For the special case α = 2, the Gaussian noise is re-
trieved with σ 2 representing the variance of the corresponding
fluctuations. In what follows we will use σ ∈ [0.1,0.5], i.e., we
consider symmetric, strictly stable distributions for different
scale parameters σ [60]. We used the Weron algorithm [61]
to generate the Lévy distributed variables in our simulations.
The time step in all the simulations is set to dt = 0.01.

A. The model

We consider the following overdamped Langevin system:

dx

dt
= −z1(t)V ′(x) + k(r − a) + U ′

LJ (r) + ζ1(t)

dy

dt
= −z2(t)V ′(y) − k(r − a) − U ′

LJ (r) + ζ2(t). (2)

The coordinates x and y represent the positions of the two
heads of the motor and r = |x − y| stands for the distance
between them. The two heads are coupled by a harmonic
spring of a natural length a and an elasticity constant k. The
functions ζi(t), where i = 1,2, are the independent random

forces modeled by white Lévy noises. As was explained in the
Introduction, this non-Gaussian white noises can be thought
of as a result of nonequilibrium activity in a viscoelastic cy-
toskeleton. In order to prevent the two heads from overlapping
their positions, we introduce a Lennard-Jones potential as in
Refs. [62,63],

ULJ(r) = 4ε

[(
s

r

)12

−
(

s

r

)6]
, (3)

which becomes strongly repulsive when the heads are too
close. Here s = 2−1/6a, where a is the location of the minimum
of ULJ(r). The alternating action of the heads is represented
by a dichotomous variable z(t), as proposed formerly by Dan
et al. [63],

zi(t) =
{

0 for 0 � t < τ/2
1 for τ/2 � t < τ.

(4)

Here i = 1,2 denotes the two heads and τ is the period of
the periodic functions zi(t). The variables z1 and z2 are in
antiphase: If one of the heads is active (e.g., z1 = 1), then
the other one is turned off (e.g., z2 = 0). The two heads of
the motor interact with the underlying structure of the track
(reminiscent of a microtubular trail for kinesins) via a “ratchet”
potential V (x) [see Fig. 1(a)]

V (x) = 1

2π

[
sin

(
2πx

L

)
+ 1

4
sin

(
4πx

L

)]
. (5)

In Eq. (5) we set the period L = 1. It is easily seen that
this potential is anisotropic: Going from left to right the
slope is characterized by a steeper increase and a slower
decrease. According to Curie’s principle [64], net directed
flux in a particular direction can only occur if there is a
symmetry-breaking feature in the setup. In our case that
symmetry-breaking feature is the anisotropy of the potential
V (x).

The motor protein heads take turns in being attached to
the track. In Eqs. (2) this is represented by V (x) and V (y),
which alternately take the form of Eq. (5). When a head is
unattached, the potential is zero. This switch between heads
thus involves an energy difference �E = V (x) − V (y). Had
the system been at equilibrium, �E would have determined
the ratio of the switching rates. In that case there would have
been a Boltzmann relation:

γ (x → y)

γ (y → x)
= exp[�E/kBT ] (6)

between the switching rates γ . Here the rate γ (x → y) is
for the transition where the y head attaches and the x head
detaches. The rate γ (y → x) is for the transition where
the x head attaches and the y head detaches. Furthermore,
kB is Boltzmann’s constant and T represents the absolute
temperature. Note that the harmonic potential 1

2k(r − a)2 and
the Lennard-Jones potential ULJ(r) do not affect Eq. (6) as
these energies depend on r = |x − y| and do not change when
a switch occurs. Equation (6) describes the detailed balance
that we ought to have at thermal equilibrium. However, in
a processive motor protein the attachment-detachment cycle
is coupled to ATP hydrolysis. The role of ATP hydrolysis is
to break detailed balance and bring the system from Eq. (6)
to a situation where the forced switching of Eq. (4) applies.
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Equation (4) is a good approximation if the energy that is
released in the ATP hydrolysis is significantly larger than
�E [65]. It is valid if the ATP hydrolysis “overwhelms” the
�E that rules the equilibrium behavior.

The forced switching of Eq. (4) would have been the only
energy input into the system, if the noise, ζi(t) [i = 1,2, cf.
Eqs. (2)], had been thermal, equilibrium noise. In that case,
ATP hydrolysis would be 100% accountable for the net motion
of the motor. A nonthermal ζi(t) is a complication since it
represents another energy input into the system. Below we
will examine the effects of such a ζi(t), adhering, however, to
the situation when the increments of random forces �ζi(t) are
stationary and statistically independent (i.e., ζi has a character
of white noise perturbing the system’s dynamics). It should
be noted that this approach stands in a clear difference to
viscoelastic subdiffusion discussed in a series of papers [66,67]
and described by generalized Langevin equation with the
memory kernel satisfying the fluctuation-dissipation theorem.

Initially, the two heads of the motor are located so that
the distance between them is equal to a. For time t > 0, the
distributions of the positions x,y evolve due to the presence
of the stochastic forces and the deterministic potentials. As
was mentioned before, the mean may diverge when Lévy
noise is involved. We therefore characterize the motion of
the center of mass of the heads, i.e., Xc(t) = [x(t) + y(t)]/2,
with the median q0.5, defined as Prob[Xc(t) � q0.5(t)] = 1/2.
Accordingly, the time derivative of the median,

v(t) = dq0.5(t)

dt
, (7)

may serve as an estimate of the group velocity of the
particle “packet” [12,13,34]. With v(t) we have a quantity
that allows us to characterize ensemble transport even in case
of unbounded average currents.

III. STRUCTURAL AND FUNCTIONAL CUTOFFS
OF THE FLUCTUATIONS

A. Response to bursting fluctuations

With decreasing α, the probability of longer jumps in-
creases. Consequently, a “bursting fluctuation” may occur that
pulls the coupled heads apart over a very long distance [see
Fig. 1(c)]. The model is supposed to describe a prototypical
nanomotor and it is obvious that constraints must exist to
secure the motor’s integrity and function.

The variables x and y [cf. Eq. (2)] represent the positions
of the two heads of the motor protein. It is the relative
distance |y − x| that has to be limited in course of the action.
In order to prevent a “rupture,” as depicted in Fig. 1(c), a
response to catastrophic fluctuations has to be imposed in the
model.

The elastic properties of a linker structure in typical
molecular motors, like kinesins, have been formerly addressed
in experimental studies and molecular dynamics simulations
using GROMACS software [68,69]. Based on accumulated
evidence, it is unlikely that a molecular machine would
respond instantaneously to an elongation with an elastic
counteraction that resets the linker structure to its equilibrium
conformation of length a or shorter (see Fig. 2).

FIG. 2. (Color online) A sketch illustrating the model for the
system’s response to bursting fluctuations. If there were no constraint,
the leading head would have been in the dotted position. For
explanation, see the main text.

Following these observations, we simply “freeze” the
distance between the heads when it reaches |y − x| = dmax,
i.e., we leave it at |y − x| = dmax until a next iteration reduces
the distance |y − x| again. Simulations following this scenario
are shown in Figs. 3(a) and 3(b).

Parameters of our model can be categorized as those
describing the inner structure and mechanics of the molec-
ular motor and those associated with its chemical activity.
Processive motility of molecular motors like kinesin depends
on the mechanical transmission of stress through a neck linker
which connects the two heads of the molecule. This tension-
transmitting element is an unstructured protein segment. In
case of kinesin it is 30 amino acids long. It is a simple
flexible polypeptide polymer and it is responsible for the
internal potential in our model [1,68–70]. In particular, the
equilibrium length a and elasticity constant k can be seen as
characteristics of a neck linker polymer. The distance dmax

represents that maximum allowable extension of the neck
linker. The oscillations zi(t) [cf. Eq. (4)] are associated with
the chemical activity of the motor protein. The mechanical
stepping cycle is coupled to the hydrolysis of ATP. The
parameter τ [cf. Eq. (4)] controls the time for the pertinent
conformational changes to occur.

B. The effect of noise intensity on the motor’s velocity

We have checked how changing the noise intensity σ

affects the motor’s velocity. Figure 4 shows the results of the
simulations. The maximal group velocity of the independent
motors notably drops for noise departing from Gaussianity.
However, the higher the stability index α of the noise, the lower
the intensity σ for which the velocity reaches its maximum
value. Also, for α = 1.5 the peak around the maximum is
significantly broader than for α = 2.0, thus reflecting that the
maximum velocity range is wider for lower α. This could be
interesting when we use noise as a possible control mechanism
for an artificial molecular motor.

C. Varying the inner structure

As was pointed out in the Introduction, motor proteins carry
cargo, like organelles and vesicles with chemicals, from the
cell’s interior to its periphery. Speedy delivery is important for
the cell’s survival and it is likely that speed has been optimized
in the course of evolution. The linker length dmax is a variable
that is subject to natural selection and likely to have been
subject to such optimization.
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(a) (b)

FIG. 3. (Color online) Simulated trajectories [cf. Eq. (2)] showing the displacement of the median q0.5 of the midpoint between x and y

for 1000 motors. The distance between the heads x and y has been limited to |y − x| = dmax = 2a. The noise parameter is σ = 0.1 in panel
(a) and σ = 0.5 in panel (b). The other parameter values are a = 0.25, ε = 0.1, τ = 5.0, and k = 0.8. The time step is dt = 0.01.

Figure 5 shows the results of simulations in which the
velocity of the median q0.5 was determined for different values
of dmax. We took 1000 independent motors acting under the
constraints of the model and recorded their velocity in the
course of 100 time units.

In line with findings discussed in Secs. III A and IIIB
there is a clear nonmonotonic relation between the velocity
of the stepper and the maximum linker length dmax. With
an increasing linker length, the group velocity drops rapidly,
assumes a minimum, and eventually tends to zero. For an
equilibrium linker length a = 0.25 (left panel of Fig. 5) and for
Gaussian noise, i.e., stability index α = 2, the induced current
does not change direction as dmax is varied. In this case derived
velocities of the median remain positive within the domain of
change of dmax ∈ (0,8). In contrast, for approximately twice

FIG. 4. (Color online) Velocity of the median q0.5 of 1000 inde-
pendent walkers after 100 time units as a function of noise intensity
σ . The parameter values are a = 0.25, dmax = 0.5, ε = 0.1, τ = 5.0,
k = 0.8, and dt = 0.01.

shorter length a = 0.1 (right panel of Fig. 5) the current
becomes inverted in the negative direction (cf. Fig. 6).

What is most remarkable about Fig. 5 is that it shows the
possibility of current reversal when a parameter describing
noise or internal structure is changed. At small values of dmax,
the directionality can be reversed with a mere change of the
stability index α. On the other hand, for transport subject to
non-Gaussian noises of α = 1.5 and α = 1.8, the current can
reverse its direction as the maximum elongation of the linker
dmax is varied. This is a current inversion induced by non-
Gaussian Lévy noise, which is akin to that found with non-
Gaussian colored noise [71,72]. It is furthermore observed that
at a = 0.1 (right panel of Fig. 5) the transport is slowed down
and eventually stopped at increasing linker length dmax. For a
longer equilibrium distance between the heads, a = 0.5, the
curves are similar to those observed for a = 0.25, although
velocities are significantly smaller (data not shown).

Altogether, described currents v(t) = dq0.5(t)/dt are
higher for motors subject to Gaussian noises (see Fig. 6)
than for steppers influenced by impulsive Lévy fluctuations.
The movement depends also on allowable extension of the
linker with respect to its equilibrium elongation and becomes
suppressed at excessive extensions.

D. Varying the enzymatic rate

To examine the impact of the chemical activity on the
motor’s velocity, we have simulated the motion of 1000
independent walkers under different noise parameters and for
different values of τ . We have next analyzed the displacement
of the median and calculated the group velocity.

In Fig. 7 the normalized velocity as a function of the period
τ for different values of the stability index α = 1.5,1.8,2
is displayed. To estimate the group velocity, the maximum
reached by the median q0.5 in course of 100 steps has been
divided by the time in which it has been achieved. Furthermore,
for each value of the index α separately, the derived velocity
has been normalized with respect to its maximum value. Such
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FIG. 5. (Color online) Velocity of the median q0.5 of 1000 independent walkers after 100 time units as a function of dmax for different
values of the stability index α = 1.5, 1.8, 2.0 and for different lengths of the fully relaxed linker: a = 0.25 (a) and a = 0.1 (b). The variable
dmax represents the maximum allowable distance |y − x| between the heads. The parameter values are ε = 0.1, τ = 5, k = 0.8, dt = 0.01, and
σ = 0.5. The duration of the individual motor trajectories has been set to t = 100. Lines are drawn to guide the eye.

analysis shows (cf. Fig. 7) a clear maximum in the normalized
velocity as a function of τ , thus indicating an optimal value
for the chemical activity rate. As it has been discussed in
the existing literature [2,28], fast intracellular transport is
important for a living cell and in the course of evolution the

motor protein is likely to have sought out a maximum, similar
to the one depicted in Fig. 7. Apparently, the location of the
maximum is very sensitive to the noise type: As it can be
deduced from Fig. 7, for smaller values of the stability index
α, i.e., when more bursting fluctuations act on the system, the
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FIG. 7. (Color online) The velocity of the median q0.5 of 1000
independent walkers as a function of the period τ , for different values
of the stability index α, namely α = 1.5,1.8,2. The parameter values
are a = 0.25, ε = 0.1, dmax = 0.5, k = 0.8, σ = 0.5, and dt = 0.01.
Lines, obtained by curve fitting, are drawn to guide the eye.

optimum value of the velocity shifts towards longer turnover
times τ .

IV. DISCUSSION AND CONCLUSIONS

In this paper we have considered a simple model for a
stepping motor protein acting under the influence of white
stable noises. The model contains parameters that represent
the structure and the chemical activity of the motor system.
Structural features are denoted by the parameters k, a, and dmax

of the system and have been preliminary analyzed in different
dynamic responses, as proposed in Sec. III A. In order to study
noise-induced flux, we have focused on the dynamic response
of the model (cf. Fig. 2).

It is further shown that noise characteristics and motor
parameters control the speed and even the direction of the
stepper motion in a nontrivial way. Our results can be
significant for understanding of the evolution of motor proteins
and for the design of artificial molecular machines.

Dimers, like kinesin, are commonly described by a system
of two coupled equations like Eq. (2). The coupling between
x and y in Eq. (2) should be a reflection of the structure of
a real protein. For kinesin the two heads are linked through a
polymeric chain that is commonly known as the neck linker.
We can examine the model for different equilibrium lengths a

and for different maximum lengths dmax of the fully extended
linker. There is an optimal equilibrium length a for which the
processivity and speed of the motor are maximized. In the
case of our motors, that optimal length is around a = 0.25. A
similar result has been reported for Gaussian noise [62].

Results presented in Figs. 4 and 5 document a rich scenario
of behaviors emerging when Gaussian noise is replaced by
Lévy noise with α < 2. Specifically, in Fig. 5 current reversals
are shown to occur when noise parameters are changed.
Additionally, for motors working under the action of impulsive
Lévy noises, multiple current reversals are observed when the
structure parameter dmax is varied.

The parameters dmax and a characterize the elastic proper-
ties of the linker that connects the two heads of the motor. The
induced current appears to depend very sensitively on dmax

and a. This suggests the possibility of a control mechanism
through the linker. Experimental results on natural kinesin
motors appear consistent with this idea [70].

In a changing environment such as a living cell, it is possible
to imagine that noise parameters, such as α, may differ for dif-
ferent metabolic stages. This leads to an interesting possibility:
by changing α in the course of development, the direction
of motor motion may reverse. Natural cytoskeletal molecular
motors, like dynein, kinesin, or myosin, walk one way without
ever changing direction. However, there are mutants that
switch the direction of their motion stochastically [73]. Noise
as a possible control mechanism for the motor’s flow may also
be an important feature for those trying to synthesize artificial
molecular motors.

We have shown how motor motion, as described by Eq. (2),
depends on chemical properties. Figure 7 shows that there is
an optimal time after which the heads should interchange their
activity. This value depends on the noise characteristics—the
closer the noise is to Gaussian, the faster the reactions should
be.

After 20 years of intensive research in the field of molecular
transport, we know a lot about the structure of molecular
motors [1]. We also know a lot about rates, speeds, step sizes,
and load-velocity characteristics [2,4,28,31,69,73]. Yet we
have only a limited knowledge of how molecular motors work,
especially under the action of nonequilibrium, non-Gaussian
noises. The ultimate goal of studies like ours is therefore to
find and understand relations between motor structure and
function. Such insight would be invaluable in, for instance,
drug design or constructing artificial molecular motors.
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