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Two decades ago Bak et al. (1997) [3] proposed a reaction–diffusion model to describe market 
fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents 
a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that 
the model well reproduces the square-root relation between traded volumes and price changes that is 
observed in real-life markets. The result is remarkable as this relation has commonly been explained in 
terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust 
under model modifications and we show how real-life bond market data exhibit the square-root relation.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The markets for stocks, bonds, and other financial instruments 
are quintessential complex systems that are ready-made for study. 
What goes into the market and comes out of the market are pub-
licly accessible numbers. Beneath the mere transactions there is a 
plethora of interacting parts.

Much of the search for patterns in markets has been done with 
a straightforward focus on price changes. But considerable research 
effort has also been directed toward understanding traded volumes 
and a relation between price changes and traded volumes. Many 
databases list traded volumes along with the price.

In 2002 Plerou et al. found an interesting pattern involving 
traded volumes after discriminating between buyer initiated traded 
volume, Vb , and seller initiated volume, V s [1]. As buyer initiated 
traded volume derives from demand it drives the price up. Like-
wise, seller initiated traded volume derives from supply and drives 
the price down. Plerou et al. took the difference �V = Vb − V s and 
next observed how in real market data the price change, �x, in-
creased monotonically with �V . What was perhaps not expected 
was that the curve was a sigmoid through the origin. A year later 
Gabaix et al. proposed a theory to lead to the apparent sigmoidal 
shape [2]. The theory involves traders making assessments and 
next following sophisticated buying or selling protocols to maxi-
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mize their acquired value. It eventually leads to �x ∝ √
�V for 

�V > 0 and �x ∝ −√−�V for �V < 0. In the Discussion section 
of this Letter we will reiterate the theory.

What we show below is a much simpler explanation for the 
sigmoid. In 1997 Bak, Paczuski, and Shubik proposed a model in 
which buyers and sellers are merely making random adjustments 
to the price at which they are willing to trade [3]. In that model 
buyers and sellers ultimately diffuse from opposite directions to a 
“price point.” Studies of the model have generally focused on fluc-
tuations of the price. Below it will be explained and numerically 
illustrated how the Bak model leads to the sigmoidal relation be-
tween �V and the price change �x.

Real-life stock markets appear to bear out the sigmoidal rela-
tion between price and volume [1,2]. We collect data from the 
bond market and we find that there too, the square root is a very 
good fit.

2. The model of Bak et al.

In 1997 Bak, Paczuski, and Shubik proposed the setup depicted 
in Fig. 1 to model fluctuations in the stock market [3]. Similar 
models had at that point already been considered in the study of 
reaction–diffusion systems [4], but Bak et al. were the first ones to 
propose such a setup as an agent-based, “zero-intelligence” model 
[5] for market dynamics.

Two species of particles, A and B, are diffusing. Time is discrete. 
At each timestep each particle moves by one unit to either the left 
or the right, both with a probability of 1/2. The interval is bounded 
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Fig. 1. The model of Bak et al. that is central in this letter. Particles (agents) A and 
B are diffusing on an interval with a reflecting barrier on each side. Whenever an A 
and a B “meet,” they annihilate, i.e. A + B → ∅. Immediately upon such annihilation, 
a new A and B are inserted at the left and right barrier, respectively.

by reflecting barriers. Whenever an A and B find themselves at the 
same position or when they cross (i.e. an A goes from i − 1 to i
and at the same timestep a B goes from i to i − 1), they annihilate 
each other. Immediately upon an annihilation a new A is inserted 
at the reflecting barrier on the left and a new B particle is inserted 
at the reflecting barrier on the right.

In the chemical context, A and B are two reactants that fol-
low Fick’s Law and diffuse towards a front from opposite direc-
tions. Whenever an A and a B meet, an irreversible reaction, i.e. 
A + B → ∅, occurs immediately. In the economic context, the setup 
represents a market with buyers and sellers that, at each timestep, 
are varying the price at which they are willing to trade. The A par-
ticles represent buyers and the B particles represent sellers. For 
each agent the position on the horizontal axis represents the price 
at which the agent is prepared to trade. Obviously, a trade occurs 
when the random motions put a buyer and a seller at the same 
position.

The system depicted in Fig. 1 is simple and involves no so-
phisticated trader tactics or strategies. Nevertheless, it realistically 
models a market in which trade is algorithmically driven by so-
called “limit orders.” A limit order is an instruction to a bank or 
broker to buy (sell) a set amount of a financial instrument if a 
price is below (above) a certain level. The random inputs in our 
model represent changes of this level. Models based on limit order 
trading have been analyzed with econophysics methods [6].

There are N possible positions between the reflecting barriers. 
As in Ref. [3], we take N = 500 in our numerical realizations. Of 
both A and B there are M particles and we take M = 1000.

The model of Fig. 1 is readily simulated. The behavior of the 
model can also in part be understood through analytic approxima-
tions.

Studies of models like in Fig. 1 have mostly focused on fluctu-
ations of the position of the front [7]. In the chemical context, the 
location of the front is commonly a visible feature of the reaction–
diffusion system. In the economic context the position of the front 
represents the all-important price of a financial instrument. In this 
work we focus on the economic context. In particular, we study 
the relation between the price change in a time interval T and the 
volume traded in that same time interval. In the chemical context, 
the volume represents a number of annihilations.

Traded stock volumes have been subject to considerable re-
search effort [8,9]. What will be shown in Section 3 of this article 
is that the simple mechanistic model of Fig. 1 reproduces a relation 
between price and volume that has been empirically established 
and previously explained in terms of more elaborate judgments, 
strategies, and tactics on the part of traders [2].

In the analysis that follows, we will use the terms “annihila-
tion” and “trade” interchangeably and pick the term that is more 
intuitive within the particular context.
Fig. 2. The steady state for the setup shown in Fig. 1. The rate at which particles 
are annihilated and reinserted is also the constant uniform flow towards the point 
of annihilation. Such constant uniform flow requires linear density profiles with the 
point of annihilation being the midpoint between the two reflecting barriers (cf. 
Eq. (1)).

3. The continuum limit

Section 2 describes a Langevin setup, i.e. rules are given to gen-
erate particle trajectories and there is stochastic input into these 
trajectories. In this section we provide an almost equivalent de-
scription in which we take a probability distribution of particles 
and use a diffusion equation to describe how this distribution 
evolves deterministically in time.

We let x be the continuous position coordinate and let ρ(x)
be the probability density function. Fig. 2 depicts the stationary 
state of the continuum version of the Model in Fig. 1. There is 
a constant flow J from the reflecting barriers to the annihilation 
point at x0 = N/2. On both sides we have Fick’s Law, i.e.

J = −D∂xρ. (1)

The value of the diffusion coefficient D is readily obtained. Ev-
ery unit of time, there is a “hop” to the position one unit to the left 
or right, i.e. �x = ±1 as �t = 1. We thus have 〈�x2〉 = �t . With 
the well-known 〈x2〉 = 2Dt for 1D diffusion we then find D = 1/2
for the diffusion coefficient. With Eq. (1) it is next easily verified 
that, in terms of N and M , we have

ρ0 = 4M/N | J | = 4M/N2, (2)

where ρ0 is the density at both of the reflecting barriers (cf. Fig. 2). 
It is important to realize that | J | is also the annihilation rate 
at N/2. In the econophysics context it represents the number of 
trades per unit of time.

The situation depicted in Fig. 2 is an attractor. Consider a fluc-
tuation such as depicted in Fig. 3a, i.e. a “bump” in the linear 
profile. The number of particles between x1 and x2 (

∫ x2
x1 ρ(x) dx) is 

the same as would be the case without the bump. Ultimately this 
bump will straighten out and a relaxation to a linear profile will 
occur: following Eq. (1) the steeper part between the red dots will 
speed up and thus fill the gap in front of x2 where there is a short-
age of particles. In the fluctuation depicted in Fig. 3b, the “price,” 
x0, is shifted away from the middle. As M A = MB , the slope on the 
right is steeper than the slope on the left. This leads to | J B | > | J A |. 
As the ultimate annihilation rate will be the same for both species, 
the B particles will “eat into” the A particles and the price will be 
driven back towards the middle. However, this relaxation is very 
slow.

On the intermediate timescale the price is seen to move subdif-
fusively with a Hurst exponent of H = 1/4, i.e. 

√
〈(�x)2〉 ∝ (�t)1/4. 

Because of the reflecting barriers and the small force driving the 
price to the middle of the interval, the diffusion terminates on the 
very long timescale. For an ordinary random walk where the in-
crements are drawn from a zero average Gaussian distribution, we 
have “normal” diffusion with H = 1/2. At first sight it appears re-
markable that we find anomalous subdiffusive behavior here. In 



S. Yuvan, M. Bier / Physics Letters A 382 (2018) 367–371 369
Fig. 3. The symmetric situation with linear probability distributions as shown in 
Fig. 2 is a stable attractor. In the text it is explained how an irregularity as shown 
in the (a) panel eventually “straightens out” and how there is a “force” pushing x0

back to the middle if an asymmetry as in the (b) panel arises.

Fig. 4. Stochastic fluctuations in the flows J A and J B will cause diffusive movement 
of the annihilation point x0, i.e. flow fluctuations translate into price fluctuations.

Ref. [7] there is a heuristic derivation of the H = 1/4 of our sys-
tem that we briefly reiterate below. In the remainder of this letter, 
we will build further on this explanation.

To derive H = 1/4 we refer to Fig. 4. Take the price to be close 
to the middle (x0 = N/2) and take buyer and seller distributions to 
be close to the steady state triangular ones as in Fig. 2. The “force” 
driving the system towards the steady state will then be minimal 
and we have | J A | ≈ | J B |. In a time �τ we find for the volume that 
reaches the annihilation point: 〈V A〉 = | J A |�τ . The setup in Fig. 1
behaves like a Poisson Process in the sense that the probability 
for a trade to occur in some small time interval remains roughly 
constant in time. For a Poisson Process the variance equals the av-
erage. So for the volume arriving at the annihilation point in time 
�τ , the average of 〈V A〉 = | J A |�τ comes with a standard devia-
tion of �V A ≈ √〈V A〉 ∝ √

�τ . If excess volume of such magnitude 
arrives at the annihilation point, it will “eat into” the B distribu-
tion (cf. Fig. 4). For a triangle with an area that is proportional 
to �V ∝ (�τ)1/2, the sides have lengths that are proportional to 
|�x| ∝ (�V )1/2 ∝ (�τ)1/4. It is thus that volume fluctuations with 
standard-deviation-magnitude lead to subdiffusive behavior with a 
Hurst exponent of 1/4.

4. Relation between price change and traded volumes

In 2003 Gabaix et al. published a study in which, for traded 
volume, they make a distinction between buyer-initiated volume 
(Vb) and seller-initiated volume (V s) [2]. It is intuitively obvious 
that seller-initiated traded volume drives the price down, whereas 
buyer-initiated traded volume drives the price up. In their much-
cited article [2], the authors find that the price change, �x, of a 
stock is proportional to the square root of the difference �V =
Vb − V s:

�x ∝ sgn [�V ]
√|�V |. (3)
Fig. 5. (a) The relation between the price change (�x) and the difference between 
buyer-initiated and seller-initiated traded volume (�V ) for data from the bond mar-
ket. The same pattern was found for data from the stock market [2]. (b) Bond 
market data (red triangles from Fig. 5a), results of a stochastic simulation of the 
model by Bak et al. (blue dots), and the theoretically predicted square root relation 
(dashed line, cf. Eq. (3)) appear in very good agreement. See the main text for how 
the data points were obtained. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

In Ref. [2] there is a “microfoundation” of this relation, i.e., a 
heuristic derivation involving tactical timing on the part of buy-
ers and sellers as they are trading. The relation is also observed in 
actual data. A square-root relation as Eq. (3) was already identified 
in the 1990s for the impact of a single trade on a stocks’ price (see 
Ref. [10] and references therein). With Fig. 4 we show that Eq. (3)
also ensues from the model by Bak et al.

The model presented in Fig. 1 readily leads to Eq. (3). The re-
lation |�x| ∝ (�V )1/2 is implicit in the subdiffusive behavior that 
we derived at the end of the last section. Fig. 5 shows the square 
root curve of Eq. (3) together with the results from a stochastic 
simulation of the system depicted in Fig. 1. Furthermore shown in 
Fig. 5 are data taken from the bond market.

For Fig. 5a we took data (years 2003–2016) for the 3481 most 
actively traded bonds during 2016. These data came from the 
Trade Reporting and Compliance Engine (TRACE) and are made 
available through Wharton Research Data Services (WRDS). To gen-
erate Fig. 5a, trade direction (buy or sell) was inferred by com-
parison to the price immediately before each time interval. We 
took time intervals of one week. Trades of more than one mil-
lion or five million dollars (depending on the type of bond) are 
reported at the threshold value of one or five million dollars. For 
these trades we took the reported threshold value. A week is dis-
carded if more than 5% of the trades during that week are reported 
as such “more than one/five million dollar” estimates. Such weeks, 
however, are very rare. The data points were binned in �V in-
tervals. The �x values represent the ultimate expectation value in 
each bin. For the graph, �x and �V were normalized to zero mean 
and unit variance. All points were included in the normalizations 
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with all bonds contributing equally. Our procedure for organizing 
these data is very similar to that used in Ref. [2] with stock market 
data.

Fig. 5b shows data from Fig. 5a, data from a simulation of 
the stochastic model by Bak et al., and the theoretical square-root 
curve (cf. Eq. (3)). For the simulation, the parameters used were 
N = 500 for the price range and M = 1000 for both the number 
of buyers and the number of sellers. We took time intervals of 
50 steps. We let each time interval start with two new random 
triangular distributions, one for the buyers and one for the sellers. 
The initial price is taken as x0 = N/2 (cf. Fig. 2). Initial and final 
prices are determined as the midpoint between the highest buyer 
or lowest seller. Additionally, any excess particles which diffused 
across the starting price, but had not yet annihilated at the end 
of the time interval, were counted as traded volume of their re-
spective type. Data shown represent the average over four million 
50-step intervals.

All in all, the stochastic simulations as well as the real-life 
bond-market data appear to closely follow the simple square-root 
relation that ensues from the continuum model.

5. Results and discussion

The original setup in Ref. [3] is slightly different from ours. Fol-
lowing a trade, Ref. [3] has the new seller and new buyer re-enter 
the interval not at the reflecting barriers, but at arbitrary points in 
the interval. For buyers the entry points are drawn from a flat dis-
tribution between the left barrier and x0 and for sellers the entry 
points are drawn from a flat distribution between x0 and the right 
barrier. It is easy to derive how this changes the situation. Con-
sider Fig. 2. Let J 0

A be the annihilation rate at x0 and let 0 < x < x0. 
With the distributed re-entry, only particles that enter to the left 
of x will pass through x on their way to x0. So with the flat re-
entry distribution we have for the net flow of particles at any x: 
J A(x) = (x/x0) J 0

A . With Fick’s Law, i.e. J (x) = −D∂xρ(x), it is next 
readily derived that ρ(x) = C(x2

0 − x2), where C is a positive con-
stant. So for the steady state probability densities (cf. Figs. 2, 3, 
and 4), instead of a linear profiles, we get parabolic ones. How-
ever, even if ρ(x) = C(x2

0 − x2) we can still approximate ρ(x) as 
being linear between x0 − �x and x0 as long as �x is sufficiently 
small. So Eq. (3), a Hurst exponent of H = 1/4, and the mechanism 
depicted in Fig. 4 will still be valid for the parabolic profile.

Equation (3) describes the actual data well. But the subdiffusion 
implied by H = 1/4 is not in agreement with what real-life mar-
kets exhibit. For real markets we see superdiffusion, i.e. H > 1/2, 
on an intermediate timescale and H ≈ 0.5 on a very long timescale 
[8]. In Ref. [3] features are added to the basic model and eventu-
ally the authors arrive at the superdiffusive behavior.

Reference [3] implements crowd behavior in the following way. 
After a trade the new buyer and the new seller randomly pick a 
buyer and a seller and copy the prices of their respective picks. 
With such imitation behavior, traders will naturally cluster and 
confinement by means of reflecting barriers is then actually no 
longer necessary. In the context of Fig. 4, this imitation behavior 
means that a |�V | fluctuation will grow on its way down. We still 
have (�x)2 ∝ |�V | when the fluctuations arrive at the annihilation 
point, but the augmentation of the Poisson-Process-fluctuations on 
the way down means that the relation �V ∝ (�τ)1/2 will no 
longer be valid. As �V will increase faster than (�τ)1/2, we ul-
timately get a Hurst exponent that is larger than 1/4. In Ref. [3]
Bak et al. observe H = 1/2 in their numerical simulations.

A so-called “volatility feedback” is the next enhancement that 
is researched in Ref. [3]. The authors write: “... if the price change 
during the last period of 50 time units is �P , an agent updat-
ing her price will increase or decrease her price randomly by an 
amount �P .” This added feature models the well-known fact that 
a large price fluctuation today increases the likelihood for a large 
price fluctuation tomorrow, where tomorrow’s fluctuation can be 
in either direction. It is obvious that we have a positive feed-
back mechanism here – a positive feedback mechanism where 
large fluctuations can cause large fluctuations in the near future. 
From the point of view of the continuum model that was dis-
cussed in Section 2, the variable stepsize that this enhancement 
introduces leads to a variable diffusion coefficient D . Varying D in 
this manner adds another source of variance on top of that of the 
augmented-Poisson variance that was described in the previous 
paragraph. With this enhancement the authors of Ref. [3] arrive 
at the superdiffusive behavior that is observed in real-life markets.

The enhancements described in the last two paragraphs do not 
change the mechanism that leads to Eq. (3). For sufficiently small �τ ’s 
and �x’s, the densities ρ(x) of buyers and sellers will still be well 
approximated as linear near x0. The enhancements can lead to 
larger values for |�V |, but the relation between �V and the price 
change, Eq. (3), will be very robust.

The article by Gabaix et al. [2] gives the following “microfoun-
dation” for Eq. (3). A trader is going to buy if he or she perceives a 
“real value” that is M above the market price. His or her working 
assumption is next that the market will correct the discrepancy 
at a linear rate μ. To acquire a desired volume �V , the trader 
needs, of course, to find sellers. To that end the trader offers 
a price that is �x above the market value, but still below the 
perceived “real” value. The time τ that it takes to get the nec-
essary sellers is proportional to �V and inversely proportional 
to �x, i.e. τ ∝ �V /�x. The trader minimizes his or her cost if 
M − μτ − �x is maximal. This means that he or she has to pick 
the �x that minimizes μτ + a�V /τ , where a is a positive con-
stant. This leads to τ ∝ √

�V . Combining this with τ ∝ �V /�x, 
we obtain �x ∝ √

�V , i.e. Eq. (3). More sophisticated microfoun-
dations involving, for instance, risk assessment were formulated 
in the wake of the article by Gabaix et al. [11,12]. All of these 
microfoundations start with a number of very specific model as-
sumptions about trader assessment and trader behavior.

It is worth pointing out that the relation τ ∝ �V /�x that is 
assumed in the derivation in the previous paragraph emerges from 
the model of Bak et al. in a straightforward fashion. In Fig. 4 we 
see that �V ∝ (�x)2. At constant flow speeds, J A and J B , the 
time τ that it takes to cover an interval �x (and “swallow” an 
excess �V on that interval) is proportional to �x. We thus obtain 
�V ∝ τ�x, i.e. the τ ∝ �V /�x that Ref. [2] postulates.

A “zero-intelligence” model for limit-order trading that is mind-
ful of the model by Bak et al. is presented in Ref. [13]. With that 
model the square-root relation for the price impact of a single 
trade can be accounted for. There has been increasing research in-
terest in zero-intelligence models and such models have commonly 
been successful [5]. The model by Bak et al. that we studied in this 
Letter can be considered to be the original zero-intelligence model. 
It is remarkable that already this simplest of models leads to the 
observed price-volume relationship. This price-volume relation, Eq. 
(3), moreover appears to be very robust under modifications to the 
model. As the stochastic model of Bak et al. is much simpler than 
any proposed microfoundation, it is, by Occam’s razor, the supe-
rior model. The implication is that traders do not strategize and 
optimize. They merely move randomly and “diffuse.”
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