Volume 97A, number 1,2

PHYSICS LETTERS

8 August 1983
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Several integrable systems of nonlinear ordinary differential equations of the Lotka~Volterra type are identified
by the Paindevé property and compietely integrated, One such integrable case of ¥ first order ode’s is found, with ¥ — 2
free parameters and & arbitrary, The concept of integrability of a general dynamical system, not necessarily derived from

4 hamiltonian, is also discussed.

Ever since the early days of classical mechanics,
the question of integrability of dynamical systems
presented physicists and mathematicians with a big
challenge. The main difficulty, of course, with inte-
grating the ordinary, differential equations (ode’s) of
any dynamdcal system, is that these equations are
generatly nonlinear and involve several “degrees of
freedom”, which are coupled to each other in a non-
trivial way [1,2]. Most of the progress, so far, has
been in the area of integrable hamiltonian systems,
where a number of rigorous results are known mainly
due to ingenious as well as fortuitous applications of
Lie algebraic methods [3], However, despite the long
history of the prohlem no general method is available
to date even for deciding whether a given dynamical
system is integrable, let alone integrating its equations
of motion explicitly. '

More recently, a direct method has been proposed
for identifying integrable dynamical systems by re-
quiring that their solutions possess no movable (e,
initial condition dependent) singularities other than
poles in the complex time plane [4]. This so called
Painlevé property was originally adopted by
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Kowalevskaya [5], in her celebrated integration of a
special case of rigid body motion, and was employed
by Painlevé and co-workers [6] in their exhaustive
studies of integrable (i.e. sclvable) ode’s of second order.

The Painlevé property has already been used suc-
cessfully to identify new, integrable hamiltonian sys-
tems [7,8], as well as some integrable cases of the
Lorenz equations [9]. It is the purpose of this letter
to demonstraie the usefulness of the Painlevé property
on non-hamiltonian systems by completely integrat-
ing certain generalized FLotke—Volterra systems of &
first order ode’s. We also arrive, as a result of our anal-
ysis, at a definition of integrability of dynamical sys-
tems described by ode’s, which are not necessarily de-
rived from a hamiltonian,

Before presenting our results for arbitrary N, we
illustrate our approach on asystem of 3 first order ode’s

3
JEk:}\kxk+xk_Zicijj, k=1,2,3, 1)
pe

(")=d( )/dr, where the coefficient matrix C3) = (¢

in (1) is taken, as in several models of physical interest
[10], to be antisymmetric, Le.

=G, 1E=1,2,3. ®)
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The general leading order behavior of the solutions
of (1) near a (movable) singularity ¢ = ¢, is of the
form
xp~arTl, T 0 (FEr—ty), 3

1y being the first free constant of the asymptotic ex-
pansions. Substituting (3) in (1), with (2}, we find
that one of the g, say ¢, is the second free constant
provided

a3 — €13 tep=0. (4)

Expressing now ¢y 4 in terms of ¢,4, ¢4, from (4)
and scaling xy, > x;/cq3 the coefficient matrix €(3)
in {1) becomes

0 1
(g)=c@ = -1 0 g ; &)

~l-¢; ¢ O

].+C'1

~

where ¢| = e;,/eq5 is still an arbitrary parameter of
the problem, We also remark at this point that the
only “type” of singularity (3) of system (1) is the one
for which all the ¢, are non zero, Other singularity
“types” (where one of the solutions x; ~ 4577, with
p > —1) do occur in system (1) if ¢} is not antisym-
metric and lead to other new integrable cases discussed
at the end of this letter.

Looking for the third free constant in cur asymptotic
expansions we insert x, = akT*I +hpr” 1474y (1) and
solve for the by from linear equations at order T*_'ZW .
A free constant arises if the determinant of the coef-
ficients of the by in these equations vanishes [4,7—9],
which in the present case finally reduces to

F+Dr@r—-1)=0. (6)

The two-free-constants;atr=-=10;are-already-known:-

they are #;, and ay respectively. Hence, the third (and
last) one enters at ¥ = 1, provided a cormpatibility con-
dition is satisfied there by the nonhomogeneous part
of the b equations:

?\1=7\2=}\3£7\. (7)

If (7) is not satisfied, logarithmic terms will enter
in the asymptotic expansions of the solutions [11] and
the Painlevé property will be viclated.

Thus, system (1) with (5) and (7) has been shown
to have the Painlevé property and is, therefore, ex-
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pected to be integrable [12]. Instead of verifying,
however, that (1) is integrable, we prefer to integrate
below the Mth order anlogue of (1) [with (5) and (7)]

N
ik=Mk+ka:1€ijf, k=1,2,..N. )
=

with the elements of V) = (¢; ;) written as

(8a)

Chj =C-—2—"Cr—2:

where c_y = —1,¢p=0,and ¢), ¢q, ..., Cpp_ o are
arbitrary parameters of the problem. Egs. (), with
(8a}, reduce to (5) for N =3, and can also be shown
to possess the Painlevé property for ¥ =4 and ¥ =5
by a similar analysis [13]. Here we integrate eqs. (8),
(8a) explicity for arbitrary .

First note that by a simple scaling of the time we
can set A = 1. Note also that the linear terms on the
right-hand side of (8) can be removed by changing
to new variables

v=ef, ©)

whence egs. (8) become

X Sxifv,

N, (10)

N
|- =
X, =¥ gcijj . k=1,2, ..
where prime denotes differentiation with respect to
v. By virtue of the antisymmetry of the ¢z, cf. (8a),
qgs. (10) have the simple integral

N
EX =D = const. 11
= A (11)

Using (11) to express X, in terms of the other X} and
substitute it in the firgt N — 1 of eqs. (10) with (8a)

vields

X =XpDley o —c_3)

N—-1
+Xp 20 (g —en_)X;, k=1, N1,
= | a2
Eqgs. {12) are a special case of 4 system of Riccati
equations of the projective type, for which there
exist nonlinear superposition principles, and which
can be linearized, provided one particular solution
of (12) is known [14]. We can, however, solve egs. (12)
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explicitly in the following way:

Since the sum on the rhs of (12) is independent
of k, we combine consecutive pairs of egs. (12) and
easily obtain the integrals

Xk+1/Xk =Ak exp(Bku) )
where
BkED(Ck#Z_ck—lL (13&)

and the 4, are N — 2 arbitrary constants of integra-
tion. With (13) it is now easy to show that eqgs. (12)
all reduce to the same equation for X :

X1 =X Diey_o + 1) +F)XE, (14)

where

k=1,2,.,N—2,(13)

N-1
fwy= E (¢j_3—cy_9)

j—1
x (k[ll Ay Jomploan v (142)

This is a simple Riccati equation which can be inte-
grated by elementary methods [7] to yisld

X, =7EUK(fferK dp -I-Aof)ul s (15

where K=D(1 +¢p_,)and A is the (N — 1) st in-
tegration constant (the Ath one is D).

Thus, with the 3 (k =2,3, ..., N — 1) all related
to Xy by (13) and X, obtained from (11) the Lotka—
Volterra system (8), (8a) has been completely solved.
The specific behavior of each X}, i.e. whether it will
approach a finite constant or go to infinity as r — o=,
will depend on the values of the parameters of the
problem. Clearly, however, no matter what these
values are, all solutions of (8), (8a) will behave in a
regular and predictable way; there will be no chaos,
strange attractors or any other of the exotié phenom-
ena of non-integrable systems [1,2].

We also remark that the linear term in (8) has a
particularly simple form. More general linear terms
can also lead to integrable systems having the Painlevé
property. This point is discussed in more detail else-
where [15,16] en somesecond and third order models.
Finally, we point out that new integrable systems (1)
can be found when one drops the antisymmetry con-

PHYSICS LETTERS

§ Angust 1983

dition (2).

Taking again for simplicity the case of equal “*growth
rate” (7), and scaling the x; we may write the coefli-
cient matrix €43 in the form

01 C
()=cB3r =14 0 1] ' 16
ki

1 B0 '

cf. (5). Performing the singularity analysis on this
system we find four cases with the Painlevé property
[13,16]: in three of them A, B, C have fixed, complex
values, while the fourth one has again one free param-
eter, C, with

A=—(1+0)C, B=_1/1+C). . (17)

The only difference between the analysis of (16) and
that of (5) is that now more singularity “types” [where
some of the ¢ in (3) are zero] must be examined [13,
16].

We have confirmed the integrability of (1) with
(16), (17) and (7) by removing first the linear terms
via (9) and then integrating the equation explicitly
in terms of the new variables

S=X; +CX/CH 1)+ CXy, PEXX;. (18)
For PC/D > 0 the result is [13,16]

S=+/Dcothu, P=D/ACsinhy),
u=23v/Div —vy), (19)

where D, vy are two integration constants (and sirm-
ilar results for the PC/D > 0 case). Using now (18),
(19) X, is solved from a Riccati equation

X5 =(C+1)P@)/C - X35()/C+X3, (20)

which can be transformed with X = —W'/W to a
linear second order ode in W, with variable coefficients.
We end with some comments on the concept of in-
tegrability of a generally non-hamiltonian dynamical
system. Clearly, one may start by defining as integrable
(or completely integrable) suck a system, if it can be
integrated step by step down to a final integral (or
quadrature) as in the case (8), (8a), ending with (15).
This definition, however, by itself would be too nar-
row; it must be extended to include systems which
can he transfermed to a (higher than first order) set
of linear ode’s with variable coefficients, as was the
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case with (1), (7) and (10) above.

Still this does not complete the list. Our singularity
analysis leads us to distinguish yet a third possibility,
which we may also call integrable: this is the case
where a dynamical system, identified by the Painlevé
property, reduces to ane of the second (or possible
higher) order Painlevé transcedents [7] as it happens
e.g. with the Lorenz equations at some special values
of their parameters [9]. These Painlevé transcedents
are nonlinear equations, whose solutions are analytic
(module poles) in the complex f-plane. Families of
particular solutions of these equations are known
[17], while more general solutions can be obtained
by analytic continuation. Painlevé transcedents, how-
ever, are neither integrable by quadratures, nor can
they be transformed to linear ode’s. Still, they may
be considered linearizable in the sense that they can
be solved in terms of linear integral equations [18].

We do not pretend, of course, that the Painlevé
property can identify all integrable dynamical systems.
In fact, some examples are known [58,15] which can
be integrated by quadratures and yet their solutions
have (movable) singularities “worse” than poles. Still,
the Painlevé property appears to be a very useful cri-
terion for identifying integrable dynamical systems.
More than that, it may also fead to a better under-
standing of integrability of nonlinear ode’s as it did
in the case of nenlinear pde’s [19,20].
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B. Grammaticos and P. Winternitz are acknowledged
here. This work was part of the research programme
of the “Stichting voor Fundamenteel Onderzoek der
Materie” (FOM) and was supported by the
“Nederlandse Qrganisatie voor Zuiver Wetenschappelijk
Onderzoek” (ZWO).
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