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Matching a Di8'usive and a Kinetic Approach for Escape over a Fluctuating Barrier
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We study thermally driven escape over a dichotomously fluctuating barrier and present explicit formu-
las for the mean escape time in three limiting frequency domains. Our analysis is based on the chemical-
ly realistic case of large potential barrier, and modest fluctuation amplitude. When the fluctuation fre-
quency is small compared to the time scale for adiabatic adjustment, which includes the low and inter-
mediate frequency regimes, a kinetic approximation reproduces the Fokker-Planck results.

PACS numbers: 82.20.Mj, 02.50.—r, 05.40.+j

Recently Doering and Gadoua [1] reported results con-
cerning the escape rate over a fluctuating barrier such as
depicted in Fig. 1. They started from a Langevin equa-
tion and transformed it into a Fokker-Planck equation
(FPE), from which they derived an expression for the
mean first passage time (MFPT) as a function of system
parameters. A graph such as the solid line in Fig. 2 was
found for ln(MFPT) as a function of lny, where y repre-
sents the flipping rate of the Markovian fluctuation of the
barrier between Eo+hE and Eo —hE. The left, low fre-
quency limit could be identified with the average of the
passage times over the high (Ep+AE) and low (Eo /t E)
barrier. The right, high frequency limit could be
identified with the MFPT over the average (Eo) barrier.
The minimum that occurs in between was characterized
by Doering and Gadoua as "resonant activation. " This
result has generated some astonishment [2]. The above
authors [1] only obtained a manageable closed form ex-
pression for the single exceptional case where Eo=0.
This means that the potential was actually flipping be-
tween a barrier and a well. They also showed results for
another case where the barrier flipped between SkT and
0, and conjuctured that the results might be applicable to
a wider range of situations. Below we study the phys-
icochemically important case [3] where hE/Eo is small

V(x, r)+ 42pkT((x, r),

where P represents the coefficient of viscous friction and
g(t) stands for normalized white noise. The potential
V(x, t) is piecewise linear and dichotomously fiuctuating

2.90

2.85—
(5)

2.80

log(MFPT)

2.75

2.70

and we indeed find a similarly shaped curve (see Fig. 2).
An asymptotic analysis of the Fokker-Planck equation al-
lows us to obtain three simple limiting expressions for the
MFPT in three well defined frequency regimes. With
this analysis the presence of the minimum is all but mys-
terious and its location can be derived with astonishingly
simple mathematics. Additionally, we show that a for-
mulation in terms of a chemical kinetic model accurately
describes the behavior in the low and middle frequency
regions.

The original Langevin equation is
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FIG. 1. Setup for the problem. The height of the barrier
fluctuates between Ep+hE and Eo —hE.

FIG. 2. The log of the mean first passage time versus the log
of the barrier fluctuation rate for the case with Eo 11 and
hE 1. The solid line is a numerical computation of Eq. (8)
using Eq. (6) to calculate the eigenvalues 1;f and using Eq. (9)
to calculate the 8;. The dashed line is the result of computing
Eq. (11),which, as we discussed, is identical to the kinetic mod-
el Eq. (15) with the rate constants of Eq. (16).
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y—+(Ep+bE)a. +e..
(see Fig. 1). After absorbing P in the time scale, and taking kT as the unit of energy, the joint probability distribution
p+ (x, t) that the particle is at x and that the potential is in the up (+) or down ( —) configuration is given by the fol-
lowing FPE:

a p. y p+

ar p- y
—y+ (E,—bE)a„+a„„p (2)

where y denotes the flipping rate of the dichotomously
i

fluctuating barrier. We start with the particle at the bot-
tom (x = —I), so the initial condition is

p~ (x,O) = —,
' b(x+ I) . (3)

The boundary conditions for the reflecting (x = —I) and
absorbing (x =0) boundary, respectively, are

HEp+'bE)+8„]p~ (x,r) i„- i =0,
(4)

p+(o, r) =o.

Using standard methods described in Secs. 3.6 and
5.2.7 of Ref. [4] this system is reduced to a system of two
coupled ordinary differential equations, from the solution
of which the MFPT can be deduced:

Sp

S)
Dp

D)

0 1 0 0 Sp 0
0 Ep 0 hE S)
0 0 0 1 D + 0
0 hE 2y Ep D) 0

(6)

with Sp(0) =Sl( —1) =Dp(0) =Dl( —I ) =0 and (r)
=Sp( —I). This system decouples; we can solve for Sl,
Dp, and Di and obtain the MFPT as Sp( —1)
= —f'|S|(x)dx. The general solution of the Sl, Dp,
and Di system is

S 1 (x) g i e +/ 2e +/ 3e
Ep

'

Do(x) =~ie ' +&2e ' +&3e '
2yEp

'

Di(x) =Cue '"+C2e '"+C3e '",

(7)

where X~, X,2, and k3 are the three eigenvalues of the ma-
trix of the homogeneous part of the Si, Dp, and Di sys-
tem. After solving this system the MFPT can be ex-
pressed as

F"(x)—(Ep+bE)F'(x) —yF(x)+ yG(x)+ i =0,

G"(x) —(Eo bE)G'(x) ——yG(x)+ yF(x)+ —,
' =0.

Here, F(0) =G(0) =0 for the absorbing barrier and
F'( —I) =G'( —1) =0 for the reflecting barrier. The
MFPT (r) for a particle that starts at the bottom (x
= —I) is (r) =F(—I)+G( —1). Taking Sp=F+G,
Si =F'+G', Dp =F—G, and Di =F' —6' we derive

(i) = (e ' —I )+ (e ' —I )
A2

~1 A2

+ (e ' —1)—A3 1

A3 Ep

The boundary conditions along with the equality D] =Dp
provide relations between the free constants A;, 8;, and

C;. We obtain a linear algebraic system for Ai, A2, and
A3.

k2 A3e e e

(X, —Eo)/Xi (kz —Eo)/k2 (X3 Eo)/X

e '(Xl —Ep) e '(Xz —Ep) e '(k3 —Ep)

—I/Eo

bE/2 yE p . (9)
0

The three eigenvalues can be developed as a series in y:

2Ep 4Eo(Eo+bE )
y+

E bE —(E —bE )

A,2=(Ep bE)+ —
y . .1

(Ep bE)—
X3 = (Eo+AE ) + 1

~ ~ ~

(Ep+bE)

(lo)

For sufficiently small y (with large Ep and moderate bE)
we can drop all but the first term in each of these series.
For Ep=1 1, bE =I, and y=1 (in which case, as we will
see later, the flipping time is much smaller than the
MFPT over the low and high barriers and about the same
as the MFPT over a zero barrier) the second term in each
of the series is more than 50 times as small as the first
term. Further expansion just shows that the coe%cients
of the higher order terms, y" are decreasing as rapidly as
O(Eo "). Next, neglecting the bE in (Ep~bE) ex-
cept when (Ep ~ bE) appears in an exponent, we derive
manageable expressions for 8 ~, A2, and A3. We find that
under these conditions (small y, large Ep, and moderate
b,E) we can also neglect all but —(A2/Xz+A3/k3) in the
expression for the MFPT. %'e arrive at

EP &E+E 2 EP &E+4
( )

pe pe

2 IE 4 2EO+ (E 2 Eo+kE +—E 2
—Eo 6E)— —

(»)
Figure 2 shows the approximation (11) and a numeri-
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cal calculation based on (8) for Eo =11 and /t E =1. The
three important points on the lny axis are the points
where the flipping time equals the MFPT over the high
barrier, the MFPT over the low barrier, and the MFPT
over the zero barrier. These points are indicated in Fig. 2

and in Table I with the numbers (1), (3), and (4), respec-
tively. For the sets of parameter values that Doering and
Gadoua took (Eo =O, AE =8 and Eo =4,AE =4) the
ln(MFPT) of the low barrier was equal or very close to
the ln(MFPT) over a zero barrier, but for the parameter
values that we took these points are well spread out. The
domain where the Aipping time is of the order of the
MFPTs over the high and low barrier appears to be well

within the range of validity of approximation (11). The
minimum occurs for the flipping time being much larger
than these MFPTs and corresponds to the y ~ limit of
(11). Expression (11) is a sigmoidally shaped function of
y and for our values of Eo and hE the inAection point of
the sigmoid occurs when the average Aipping time of the
barrier is in between the MFPTs of the low and high bar-
rier (see Fig. 2 and Table I). Interestingly, the MFPT at
the inflection point is exactly the same as the high fre-
quency limit. Agreement between approximation (11)
and the actual solution starts to break down when the
Aipping time equals the MFPT over the zero barrier.

A similar expansion in powers of 1/y can be made to

allow evaluation of the very high frequency limit,

A,
&
=Eo —

2 EDUCE y '+

Xz =42y+ —,
' Eo+

X3= —J2y+ 2 Ep+

These series lead to an MFPT that for y ~ asymptoti-
cally approaches Eo exp(Eo) from below.

By setting y=O and AE =0 in Eq. (6) the MFPT over

a constant barrier of height Eo is found to be

(i 3)

For sufficiently large Eo the linear and the constant terms
can be neglected relative to the exponential and we have

(z) =En e '. For AE =1 and Eo) 10 the low barrier
MFPT is about a tenth of the high barrier MFPT and

can be neglected. This leads to some very simple formu-

las for the locations of important time scales of the sys-

tem, these formulas are given in Table I. The time scales
are also indicated in Fig. 2.

Kramers, in his classic 1940 paper [5], showed that un-

der certain circumstances diA'usion over a single potential
barrier can be modeled in terms of transitions occurring
between two states. This leads to a formulation that is

mathematically described by a single first order ordinary
diff'erential equation in which the escape rate is given in

terms of a rate constant multiplied by a concentration. In
our case (Fig. 1), this concentration is the probability
density integrated from —1 to 0. In many cases, the

For the MFPT
—2 Eo+M(5) Low frequency limit Eo e ' /2

(6) High frequency limit Eo e '
= MFPT (inAection point)

(7) Minimum MFPT 2EO 2e

eAects of fluctuations of the barrier height can be
modeled in terms of an extended kinetic scheme [6-8]
which explicitly includes the reactions over both high and
low barriers and transitions between the high and low
barriers.

Consider the kinetic scheme depicted below:

1)
7 7

R

where R+ denotes the "reactant" state in the well with
the barrier at En+BE, and where R —denotes the "reac-
tant" state in the well with the barrier at Eo —AE. Going
into P, the absorbing product state, corresponds to escape
after crossing the barrier. A kinetic description (which
assumes instantaneous adiabatic adjustment) leads to a
system of two coupled ordinary diA'erential equations:

—(y+k+)
—(y+k ) r (i4)

This system is easily solved; with r~(0) =r (0) = —,
' the

quantity (r++ r —) (t) describes the probability that a
particle that was in R+ or R —at time 0 (with a 50-50
probability distribution between R+ and R —) has not yet
entered the absorbing state at time t. The MFPT is

2[k+k —+(k++k —)y]
'

(15)
Relating this back to Fig. 1 and substituting for k+ and
k — the approximate transition rates over nonfluctuating
barriers at Eo —AE and Eo+hE, respectively [neglecting

TABLE I. Different time scales for our model. The formulas
are approximations for the case of suSciently small ttE/Ep and
su%ciently large exp(2AE). Our results for the MFPTs and
flipping times are for time units scaled by the viscous friction
and a potential well of unit length. To get back to the values
with physical dimensions (i.e., sec) we have to multiply our flip-

ping times and MFPTs by PL 2, where L is the length of the well
and P is the coelcient of viscous friction.

For the flipping time
(1) MFPT over high barrier Eo e 0

(2) lnAection point 2EO e '
(3) MFPT over low barrier Eo e 0

(4) MFPT over zero barrier
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1 ~ff1 2k+k-
(r) i„o "

— k++k — '

k++k
(17)

1 and Eo relative to exp(Eo) in the sum and neglecting
hE in the (Eo+ iJE) factor), i.e.,

(16)

gives us back formula (11) that we derived as a limit case
of the FPE. We have thus matched the Brownian motion
description with a kinetic description. From (15) we find

additional articles on "resonant activation" have ap-
peared from independent groups [10,11]. Both of these
papers treat a kinetic approach to the problem of
diffusion over a I]uctuating potential, and Ref. [10] also
gives a Fokker-Planck treatment to both a piecewise
linear and piecewise constant potential. Equation (2) of
Ref. [11] is essentially the same as Eq. (15) of the
present paper. Neither of these papers shows a direct
quantitative link between results obtained from solution
of the Fokker-Planck equation with equations derived
from a Markovian kinetic description.

We observe that the way the eff'ective transition rate, k',
is composed of k+ and k — at high and low frequency
mimics two electrical resistors in parallel and series con-
nection, respectively.

The agreement between the kinetic approximation and
the actual MFPTs breaks down when the flipping time of
the barrier is of the order of the MFPT over a constant
zero barrier. We conjecture that this is the time scale at
which adiabatic adjustment takes place.

In actual chemical reactions it takes about 10 ' to
10 sec to diffuse over a zero height barrier (i.e., the
frequency factor in the transition state theory [9]). This
means that for fluctuating or oscillating barriers in chem-
ical transitions it is legitimate to use a kinetic approach
so long as the frequency is less than about 10 Hz.
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useful discussions.

Note added. —Following submission of this paper, two

[1] C. R. Doering and J. C. Gadoua, Phys. Rev. Lett. 69,
2318 (1992).

[2] J. Maddox, Nature (London) 359, 771 (1993).
[3] R. Zwanzig, Acc. Chem. Res. 23, 148 (1990); J. Chem.

Phys. 97, 3587 (1992).
[4] C. W. Gardiner, Handbook of Stochastic Methods

(Springer, Berlin, 1985), 2nd ed.
[5] H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
[6] R. D. Astumian, P. B. Chock, T. Y. Tsong, and H. V.

Westerhoff, Phys. Rev. A 39, 6416 (1989).
[7] R. D. Astumian, P. B. Chock, T. Y Tsong, Y.-D. Chen,

and H. V. WesterhoA; Proc. Natl. Acad. Sci. U.S.A. 84,
434 (1987).

[8] Y.-D. Chen, Proc. Natl. Acad. Sci. U.S.A. $4, 729
(1987).

[9] S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of
Rate Processes (McGraw-Hill, New York, 1941).

[10] U. Zurcher and C. R. Doering, Phys. Rev. E 47, 3862
(1993).

[11]C. Van den Broek, Phys. Rev. E 47, 4579 (1993).

1652


