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We consider an overdamped Brownian particle in a well. When the particle escapes, it does so as an
instanton, i.e., in one run and without dwelling anywhere on the way from the bottom of the well to the top of
the barrier. For a sufficiently steep slope the instanton time equals the time it takes the particle to determin-
istically slidedownthe same slope. We show that the instanton time is also the relaxation time for the escape
rate after the barrier changes sha®1063-651X99)04906-3

PACS numbdss): 05.40—a, 02.50.Ey, 82.26-w

INTRODUCTION cally slide down the barrier. Our results apply for barriers
that are more than a felwT high. But this essentially encom-
Suppose we have overdamped particles executing Browrpasses all activated processes, including chemical reactions,
ian motion in a smooth potential welFig. 1). The Kramers nucleation phenomena, etc.
formula The relaxation of the escape rate is also the key factor in
the escape behavior of an overdamped Brownian particle in a
U"(a)|U" ()] elV(@ - U®KT ) :/vell V\_/ith a flgctuating t_)arrier. The_re are a grt_aat many prob-
ems in physics, chemistry, and biology that involve impos-
ing an external fluctuation or oscillation on a system that
expresses the escape rate from the well in terms of the strutakes time to equilibrate to the stationary distribution. Take,
ture of the well, the temperatufie the Boltzmann constalkt  for instance, the situation that arises when a protein that is
and the coefficient of viscous frictiog of the medium. At embedded in a cell membrane is subjected to a fluctuating
x=a there is a minimum and at=b there is a maximum. electric field(e.g., the 60 Hz electromagnetic field from a
U”(a) andU”(b) represent the second derivatives at thesepower ling [1]. Proteins are very polar molecules and the
extrema. The formula applies wheh(b) —U(a) is signifi-  different conformational states that a protein cycles through
cantly larger tharkT and when the Brownian particles in the when it is catalyzing a chemical reaction generally have dif-
well obey the stationary Boltzmann distribution, i.e., ferent values for the electric dipole moment. Imposing a
fluctuating electromagnetic field on such a protein amounts
to fluctuating the energy levels of the states in the catalysis.

1
Kesc= [32_77

= _ @ UX/KkT . . - . L
P(x)= Ze S 2 In such systems the relaxation time to stationarity within the
well is an important quantity.
whereZ is a normalization factor. The theoretical study of overdamped particles in a well

Now suppose that the distribution of particles in the wellwith a fluctuating barrier has led to the discovery of the
is not a Boltzmann distribution. In that case the distribution
will relax to a Boltzmann distribution. At the same time the Ulx)
escape rate from the well will relax to the one expressed by
the above Kramers formuld).
The main result of this paper is thtite relaxation time of
the majority of the probability around the bottom of the well
and the time for the transition rate to relax to the Kramers
rate are different quantities that scale differently with bar-
rier height and temperatureThe two rates have often been
taken to be identical. But this can lead to serious misunder-
standing. Generally the escape rate will have a longer relax-
ation time than the majority of the probability in the well.
Furthermore, the relaxation rate of the escape time does not
depend on temperature, whereas the relaxation time of the ;
majority of the probability does. :
We will present analytic as well as numerical results.
Even though the mathematics we will present will be tricky,  FIG. 1. A smooth potential with a well and a barrier. With a
the final physical picture is an attractive and easy to underheight of severakT units and with a Boltzmann distribution in the
stand one. We will find the relaxation time to the Kramerswell the escape rate for overdamped Brownian particles is given by
escape rate to be equal to the time it takes to deterministithe Kramers formuld1).

a b x
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time, i.e., the time it takes to slide down from the top of the
barrier to the bottom of the well.

In the second section we will analyze the aforementioned
fluctuating linear barrier problem in detail and we will show
E=0 how the identification of the instanton time with the relax-

x=0 x=1 ation time for the escape rate can quantitatively account for
2.7 the transition from the middle frequency regime to the high
frequency regime in the lgg(7) vs log(y) graph(Fig. 2).
In this section we will focus on the piecewise linear case
which allows for many quantities to be analytically deriv-

4 A L7 2 4 able.

T log1ov

E.= ET«» AE relaxation time of the escape rate is identical to the instanton
i

FIG. 2. The inset depicts the piecewise linear setup for our [. INTRAWELL RELAXATION TIMES

problem. The height of the barrier fluctuates betwden=E, The motion of an overdamped Brownian particle in a po-

+AE and E_=Ey,—AE. We study how long it takes before the : . . . .
particle escapes over the barrier and how this changes with threentlal well is described by the Langevin equation

fluctuation ratey. The graph shows lgg of the mean first passage

time (7) versus log(y) with Eo=11 andAE=1. The solid line Bx=F(x)+ B(y2D)&(1), (©)
represents an exact evaluation. The dashed line is the prediction of
the instanton mechanis(@7) for 1/y<7. where F(x)=—(d/dx)U(x) is the force due to a potential

U(x), B is the coefficient of viscous friction, and is the
“resonant activation” phenomenofi2—4]. Take, for in- diff_usion.coeff!cient. The terng(t) represents the.Gaussia.n
stance, the system depicted in the inset in Fig. 2. The lineaf/hite noise with zero average an(_d autocorrelation function
barrier is flipping betweenH,+ AE) and E,— AE) witha  (§(1)&(t"))=4(t—t"). The system is overdamped, so there
rate y for both transitions. At=0 we have for the probabil- S N0 inertia and at any time the velocity of the particle is
ity density as function atx=0 and probability 1/2 to be in determined solely by the force on the particle at that mo-
(Eo+AE) and probability 1/2 to be inE,— AE). If, in the ~ Ment. For a system in equilibriugg andD are connected to
high frequency regime, the barrier fluctuations are very fastéach other through the fluctuation-dissipation theorgm,
the particle “can never adjust” to the instantaneous slope=KT/D. . ) )
and the mean first passage tirfMFPT) over the barrier is In a mathematical analysis thg(t) is hard to handle.
the one corresponding to the average barfigr If, in the ~ Because o(t), Eq.(3) is an ordinary differential equation
low frequency regime, the barrier fluctuations are slowerthat describes an evolution in time that is not deterministic. It
than the actual escape rate the particle will escape before af§y Possible to derive an equivalent partial differential equa-
barrier flip will occur. In that case the MFPT over the fluc- tion, the Fokker-Planck equation, to deterministically de-
tuating barrier is the average Gt . s (the MFPT over a scribe the evolution of the particle’s probability density

stationaryEy+ AE) and7g - se (the MFPT over a stationary P(x.1):
EO—AE). The MFPTTE over a stationary barrier of height BaP(x,1)= — [ F(X)P(X,1) ]+ KTdyP(X,1). (4)
increases exponentially with. So the low frequency MFPT,
(T, +7), will be higher than theZg  of the high fre- A Brownian particle in a wellFig. 1) will eventually escape.
quency limit. In the middle frequency regime the fluctuationsGiven that the particle escapes it is possible to calculate the
are faster than the MFPT, but still slow enough that a stamost likely escape path. The following derivation is due to
tionary escape rate can be established each time we are @nsager and Machlufb]. The derivation employs the prin-
E; or E_. We then get a situation where the effective es-ciple of least action and shows that when the Brownian par-
cape rate over the fluctuating barrier is the average, ticle escapes, it most likely does so in one run, i.e., it does
+k_), wherek, =1/7, andk_=1/7_ represent the escape not dwell anywhere on the slope for any considerable time
rates over the individual stationary barriers. The fateis  on the way to the top. Furthermore, the time it takes to do
much larger thark, and, again because of the exponentialthis “run up the barrier” is identical to the time that it would
dependence, the MFPT in the middle frequency regime wiltake to slide down the barrier in the absence of ndsme
be smaller tharfe . Figure 2 shows log(7) as a function of  Fig. 3.
log;o(y) and all the frequency regimes are present in this For a system with noise the application of the_ principle <_)f
graph. The enhanced escape in the middle frequency regim@ast action is only slightly more involved than in the tradi-
has been called “resonant activation2]. With smooth tional treatment. For discretized time, i.6+ty+jAt with
wells and barriers and with other than dichotomous Markovd =1.2,3 . .., the§(t;)’s are independent and have a Gauss-
ian barrier flips the phenomenon also occifk ian distribution with a zero average and a standard deviation
In the first section we will see how for a sufficiently high of 1/JAt. The probability that a particular sequence of
barrier (or, equivalently, for sufficiently small nois¢he es-  “Brownian kicks” £(t1),£(t,), - . . ,&(t,) is realized is pro-
cape rate relaxes like the probability density near the top oportional toll}_ 1exq—%fz(tj)At]=exp[—%E}ngz(tj)At]. Go-
the barrier. The bulk of the probability is at the bottom of theing to the limit of a continuous time that runs from an initial
well and relaxes faster. We will furthermore see how thetime t=t; to a final timet=t; the sum becomes an integral:
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u of the Jacobian depends on the way the Langevin equation
(3) is discretized. With the discretization

Xj—Xj_l__U/(Xj)'l'U/(Xj_l) -
N 28 +V2D¢; (8)
we derive
n n
dé; 1 1 U"(x;
11 ﬁ:]_[ (1+— (')At)
=1 |dx| =1 \2DAt 2 B
1 \" 1 2
~| ——| exg =— U”(xp)]|. 9
J2DAt F{ZB le X)) .
Eventually, in the continuum limit, this Jacobian takes the
form
1 [t
J[x(t)]=ex —f U"[x(t)]dt;. (10
2B )y
This form for the Jacobian is also obtained when the noise is

first assumed to have a nonzero correlation time, and when at
the end of the calculation the limit is taken in which the
correlation time goes to zef®].

All'in all, for the probability that a certain patk(t) is

FIG. 3. An escape over the barrier requires a sequence d€alized we have
Brownian kicks that brings the particle against the strong determin-
istic force fromx; to x; . In the text it is derived that the most likely P[x(t)]ocexp[ _
such trajectorybetween the last touch &t and the first touch at;)
is an upslide that is the exact reverse of the deterministic downslide.

Notice that in the low noise limit — 0) the contribution of
the U”[x(t)] becomes negligible in comparison to the con-
tribution of the action term. In that case the trajectory with
the highest probability?[ x(t)] is simply the one for which
When we view the Langevin equatiéB) as a mapping from the actiong x(t) ] is minimal.

S 1 (u

1(t
P[f(t)]ocexp( - EL §2<t>dt). (5)

& space tox space, £(t) can be expressed apx Next we go to the low noise limit. We neglect the Jaco-
—F(x)/B]/2D. This means that the exponent of the abovebian contribution in Eq(11) and take the integrank(x,X)
expression becomes §[x(t)]/D, where =[x—F(x)/B]?> as the Lagrangian. Using the Euler-
1ul. Fx)\? Lagrange theorenﬁﬂ/ax—(d/dﬂt)(a/ai()]L(x,k)zo, we de-
S[x(t)]zzfti (x— T) dt (6)  rive the equation of motioB?x=F(x)(d/dx)F(x). A first

integral is easily derived:gx)2— F(x)2=C, whereC is the
is the action associated with a patit). Notice that this constant of integration. It is obvious from the formula for

guantity can never be negative. S[x(t)] that the most likely way to slide down igx
When we change variables froft) to x(t) the probabil- =F(x), i.e., the particle behaving as if there were no noise.
ity densities must obey This is not a surprising result. But from the integral we also

infer that the most likely path up the barrier from a small
diffusion dominated zone around the bottom of the well
LP[x(t)]dx(t)zLP[g(t)]dg(t), @) [where F(x)~0 for smooth potentials and the noise thus
dominate$to the small diffusion dominated zone around the

whereS represents a set of trajectories. For this equation taop is Bx=—F(x), i.e., the particle following the reverse
hold for all possible sets of trajectories we must havepath from the deterministic downslide. Such an upslide is
P[x(t)]=|ld&/dx||P[&(t)]. So we have to evaluate the Jaco- what we call the “instanton.”

bian|d¢&/dx|. After discretization this Jacobian becomes the The intuitive picture with this derivation is as follows.
determinant of a matrix. Because the matrix is triangular theThere are many “attempts” during which the particle goes
determinant is the product of the trace elementxuite a way up the barrier and then falls back. But the final
I]_,||d&; /dx;]|. The Jacobian compensates for the stretching'successful attempt” is most likely one during which the
and shrinking involved in the transformation from trajecto- particle did not dwell anywhere on the slope for any time.
ries in noise space to trajectoriesxrspace. The exact form The “successful attempt” was one during which the particle
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went up in one smooth “instanton” upslide that is the exact U(x)
reverse of the deterministic downslide.

The instanton is the most likely trajectory, i.e., it is the
maximum of a distribution and not the average. However, for
smaller noisgi.e., higher barriefsthe distribution of trajec-
tories is more sharply peaked around this most likely trajec-
tory and the exact instanton becomes an ever more likely
escape route. Analog electrical circuits have been employed
to observe such instantofig]. For barriers of severdT the
actual escape trajectories appear “hairy” because of the
noise, but they are indeed very close to the instanton path

(Fig. 3. :
Next consider a well and a barrier as in Fig. 3. Equation .
(12) tells us that the most likely escape trajectory, i.e., the 0 L x

path between the “last touch” at the initial position and
the “first touch” at the final positionx; (Fig. 3 is the re-
verse of the deterministic downslide. But Efj1) gives even
more information. The expression for the action can be re
written as follows:

FIG. 4. A passage from the well over the barrier also involves
diffusion across the flatter basins around the minimum and maxi-
mum. If this diffusion time is negligible in comparison to the in-
stanton time to “climb the barrier,” then an escape trajectory from
x=0 tox=L can be identified with an instanton trajectory from
) U'[x(1)] 2 =X; to X=X in the previous figure. In thg text we rglate mean first
x(t)2+(—) }dt, passage times betweerr=0 andx=L to instanton times and in-

B trawell relaxation times.

Sx()] 1AU 1 (v
D 2kT 4D,

12

whereAU is the energy difference between the end paint time from any point anng_ any potential to any .other point.
and the initial pointx;. The arguments? and U’ (x)? are This MFPT is expressed in terms of a double integral of a

- o ; function involving U(x). Using this result we have for the
insensitive to whether you run your trajectory forward or .

backward. Also thdJ”(x) in the Jacobian is unaffected by MFPT, To(x—L), from any poinx(0=x=<L) to L,

time reversal. So whether you run from (x;) to (ts,Xx;) or

from (t;,x;) to (t;,X;) via the time reversed path is only 1L

reflected in the prefactor, which & 2V for the upward T(XHL)=—J fye[U(y)‘U(Z)]’dezdy_ (14)
path ande®Y/*T for the downward path. This means that a ° DJx Jo

sequence of Brownian kicks leading to an upward path

x(t)p is less likely than the sequence leading to the down-

ward pathy(t)gown by @ factore 2VKT e, Technically this result is only valid when there is a reflecting
barrier atx=0 (hence the “0” subscript but when the po-
PLxup(H)]1= Pl Xaowr(t) Je ™ 2V/KT, (13 tential is sufficiently steep at<O this formula is a good

approximation for the potential in Fig. 4. From any point
This result makes sense. Suppose we have a reaction coorgg<x<L) to 0 we have
nateU(x) and U(x;) is AU higher thanU(x;). Then at a
Boltzmann distribution the probability to be betweenand
x;+Ax is a factore®V’kT larger than the probability to be 1 (x (L
betweenx; andx;+ Ax. So for the system as a whole there TL(X—>0)=5J J elV-V@lkTgzdy, (15
are just as manyx{,x; + Ax)— (X ,X;+AXx) transitions as 0y
there are X;,X;+AX)—(X;,X;+AX) transitions. This is, in
its most general form, the microscopic reversibility that we

are supposed to have at equilibrium. : "
: : . x=L. When we want to find the MFPTs of a “Boltzmann
We take a slope thatis part of a continuous poterui) distributed particle” we have to integrate this double integral

(Fig. 4). The pointx=0 is at the left of a diffusion domi- o
nated basin around the minimum. We define the diffusior® c' & Boltzmann distribution. So to reack L from a Bolt-

dominated basin as the interval where the energy is less thegnann distribution ofi0.L ] takes on the average

a kT higher than the energy at the minimum. The point

=L is to the right of the diffusion dominated basin around 1 (LrL

the maximum(i.e., the interval where the energy is less than %(B—>L)=—f f Jye[—U(x)+U(y)—U(z)]/deZdydx

a kT lower than at the maximumFor a particle to make a DZJo Jx Jo

full escape from the well it has to reach=L. An escape (16)
thus also involves a crossing of the diffusion dominated ba-

sins. In these basins the instanton theory no longer applies

and mere diffusion in an almost flat region has to do the jobwhere szbexp[—U(x)/kT_ldx is again the normalization
The textbook by Gardinef8] gives a derivation from the factor [cf. Eq. (2)]. Changing the order of integration we
Fokker-Planck equatiofBec. 5.2.Y of the mean first passage rewrite 7,(0—L) in the following way:

Again this result is valid when there is a reflecting barrier at
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1 (L (y So the relaxation time of the MFPT equals the instanton
To(o—>|-):5f J elVM VeI gxdy time to deterministically slide down the barrier. It is worth
00 noticing that the instanton time is independent of tempera-
1 (L (L ture. This is a counterintuitive result: the relaxation is diffu-
=5J f el =UIKTgy dx sion driven and one would expect a faster relaxation for
0 Jx higher temperature. At the end of Sec. Il we will come back
1 (L (L (L to this point.
:ﬁj f f el VUM -V@IKTg zdy dx For Fig. 5 we took U(x)=—E(2x%20°—3x?/20%),
0/x J0 where the energy is ikT units. This is a smooth and differ-
(17)  entiable function for all values of The bottom of the well is
atx=0, where we havéJ(0)=0, and the top of the barrier
From the above two formulas we derive is atx=20 for whichU(20)=E. The time is scaled such that
B=D=1. Figure 5 is the result of a simulation of the
Fokker-Planck equatio). We start with a Diraa function
1 (L (L (L at x=0 and we depict the flux,J(x,t)=—-[U’(x)
:ﬁj f f el VUM ~U@VKTg zdy dx +d,]P(x,t), as a function of time fox;=10. It is clear
0 JxJy from the graph that the appropriate amount of probability at
(18 x;=10 arrives in a “package.” We can calculate the time
Tqet It takes a particle to deterministically slide down from

To(0—L)—"79(B—L)

We rewrite this expression in two steps: X, =10 to anx, at the edge of the diffusion dominated basin
1 (Ll L on the bottom. Fronx=—dU(x)/dx it is straightforwardly
_f J f el~UC+U-U@VKTg 7 dy dx derived that
DZJo Jo Jy
w[dU(X)]™t 200 [(20—xg)X;
1 [L(x(L Taer= — =—Inl——|. (22
__f f f e[fU(x)JrU(Y)fu(z)]/dezdde X1 dx 3E (20_X1)X0
1L (L When we take fox, the value ofx for which U(x)=1, we
:_f f V) -U@IKTg 7y find xo=1.9 for E=40 andxo=2.7 for E=20. Substituting
DJoJy these values in the above expression TQg; we find T e

=3.8 forE=40 andT 4~ 6.2 forE=20. These estimates for

— lfLeU(x)/kT[iffoe[U(y)U(z)]/dezdy dx Tget CcOrrespond very well with the location of the peaks of
ZJ)o DJolJy the instantons in Fig. 5.
(19) It is reasonable to associate the relaxation time atxany
with the peak of the instanton. The trajectory of this peak is
and find it to be equal td; (L—0)—7; (B—0). the reverse of the deterministic downslide. When a distribu-
All in all, we have derived the following equality: tion in a well like Fig. 1 relaxes to a Boltzmann distribution

it is the little bit of probability near the top of the barrier that
T9(0—L)—-7y(B—L)=7(L—-0)—-7,(B—0). (20 matters for the escape rate over the barrier. The relaxation
takes place last near the top of the barrier. The escape rate
It is important to realize that this equation is not an approxi-therefore relaxes slower than the “rest of the distribution.” It
mation and that it is valid between any two poimtsO0 and  would be a definite mistake to identify the relaxation of the
x=L on any potentialJ(x) [9]. If the time to diffuse across escape rate with the relaxation of the majority of the prob-
the diffusion dominated basin around the minim@n(B ability in the bottom of the well. The latter is generally much
—0) is negligible in comparison to the tinig(L—0), i.e., faster.
the time to diffuse across the diffusion dominated basin near
the maximum plus the time to slide down, we have Il. PIECEWISE LINEAR CASE

To(0—L)—To(B—L)~7 (L—0). (21 In this section we will take the example of a linear slope
with a reflecting barrier ax=0 and an absorbing barrier at

This equation has an interesting interpretatiégs(B—L) is  x=1. The slope, and thus the barrier height, eqial&ig.
the escape time from a stationary distribution, i.e., the in). In a linear setup like this it is often possible to formulate
verse of the Kramers rat@y(0—L) is the escape time when analytic solutions. The results we will obtain below illustrate
we start from a Dirads distribution atx=0. The difference the general points made in the broader context of the preced-
of these two times can be interpreted as the timeZ,(0 ing section. In problems with diffusion it usually does not
—L)—73(B—L) it takes for the probability density to make for qualitatively different results when “corners” are
change to a distribution where the Kramers rate applies. lintroduced. Diffusion tends to “smooth things out.” The so-
the times to diffuse across the diffusion dominated basins arkitions for the piecewise linear potential are therefore ex-
negligible in comparison to the time to deterministically pected not to differ qualitatively from those for smooth dif-
slide down the barrier, then formul@1) tells us that the ferentiable potentials(as is borne out by numerical
relaxation timer of the MFPT is identical to the instanton calculations.
time. When the barrier fluctuaté&ig. 2, insel the time scale of
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\
\ \
A \ FIG. 5. The differentiable potentidl (x)=
\ \ —E(2x%/20°— 3x?/20%) has the shape depicted in
\\ Figs. 1, 3a), and 4 with aU=0 minimum atx
=0 and aU=E maximum atx=20. We start

/ \ \ with a Dirac é function atx=0 att=0 and fol-
i /' \ N low how the probability density develops as a
].1 / \ function of time. The graph shows the flux
" / 3 \\ throughx= 10 (halfway the barrieras a function

/ i \ \ of time for E=20 (right curveg and for E=40
,i / \ (left curve. The fluxes have been normalized by
/ \ factors 9.% 107 for E=20 and 6.% 10" for
/ E=40. Instantons appear to be traveling up at the

sliding down speedsee text

flux

time
the fluctuation enters the problem. If the barrier fluctuatesvhen the barrier is fluctuating at a rate the associated

faster than the relaxation of the escape rate, the particle efokker-Planck equations
fectively “sees” the average barrier height and the escape
time over the barrier is indeed observed to be identical to the ~ tP+=(Eo+AE) P+ 5P —y(PL—P_),
one over the average barrier if it were stationary. Below we (23
will study the transition from the adiabatic regirehere the P -=(Ep—AE)9xP_+dxP-+y(P.—P_)
fluctuations are slow and the probability distribution can fol- : . _
L ! can be evaluated to yield an analytic expression for the
low the flipping slope and be Boltzmann most of the tire X ;
. . i ; MFPT [8,4], even though the algebra involved in such an
the nonadiabatic regim@vhere fluctuations are too fast and . : . ; |
S Y . evaluation requires the power of a symbolic manipulation
the probability distribution never gets adjusted to the siope . :
: . : . ackage likeMATHEMATICA. The MFPT over a stationary
As we explained in the preceding section, when th arrier of heightk (Fig. 6) for a particle atx=0 whent
Brownian particle escapes, it most likely does so in one 0 is T. —(eEg—l—E)glliEZ When 5ve let the barrier fluctu-
smooth run without dwelling anywhere on the slope for anyate betvSe_erE +AE and E. _AE (see Fig. 2, all the char-
considerable time. The time it takes to execute this “run up teristic i 0 les f %h 5 > 719 icle in th I
the barrier” is identical to the time that it would take to slide 2¢'€MStC Ime scales for the brownian particie in the we
down the barrier in the absence of noise. This instanton time
is a characteristic time scale in the fluctuating barrier setup
and through analytic results we will see in this section how
this time scale is responsible for the adiabatic-to-

nonadiabatic transition.
We analyze the linear slope with a reflecting barriex at

=0 and an absorbing barrierat 1. We, furthermore, dedi-
mensionalize the variables by absorbiégn the time scale
and expressing the energy kT units. Because of the
fluctuation-dissipation theoren(=k T/ 8) this also leads to
the disappearance @ from the Langevin equatiofB8) and
the equivalent Fokker-Planck equatig#). When, in this
setup, a stationary barrier height k5, the instanton lasts
to=1/E,. It is, furthermore, worth noticing that with the sta-
tionary linear slope the most likely upward path is one where
the “Brownian kicks” do all have the same strength. It is
because of the upward concavipositive second derivatiye
of the quadratic in eXp-2¢£42] that a “small kick” that is
subsequently compensated for by a “big kick” is less likely
than two kicks of the average magnitudexd —2¢]

>exp—(£+A9°—(¢-A97)).
We consider a Brownian particle in a well and we arederived that the mean first passage time for a particle that is located
interested in the mean first passage time over a barrier. Eveatx=0 att=0 equals ¢5—1—E)/E2.

Energy (KT units)

FIG. 6. A stationary linear well of width 1 and height There
is a reflecting barrier at=0 and an absorbing barriersat 1. With
the energy inkT units and diffusion coefficienD=1 it can be
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will show up in the logy(7) vs logoy) graph(Fig. 2,solid x=0  x=1
curve). As the initial condition we take the particle to be at E=0
x=0 and the barrier to be equally likely in the as in the—

state, i.e.P,(0)=1/2 andP_(0)=1/2. The problem of es-

cape over a fluctuating barrier has been analyzed and under-

stood in ever greater generalityee[2,4,3,10,1], and refer- E =Ep - AE
ences i 3]). A curve like Fig. 2, with two inflection points

and the minimum plateau in the middle, occurs also for non- yl Ty
piecewise linear well§3]. For small y, i.e., the low fre-

guency regime, the particle escapes before the barrier can
ever change and the MFPT is the averagéT@JME and

TEO,AE. For sufficiently largeAE this average is well ap- s
proximated by%TEOME. In the middle frequency regime the

flipping time of the barrier(i.e., the average time between
two transition$ is much shorter thalTEo+AE. What happens 3

as a result is that escape will most likely take place over the
lower barrier. Since half the time is spent on the lower bar-
rier the MFPT can be well approximated bﬂ?_o_AE. In the 1

high frequency regime the MFPT is the passage time over
the average barrier, i.g . The standard view of this is that (b) 01 02 03 04 05

in the high frequency regime the probability distribution of
the particle never gets an opportunity for intrawell relaxation . , ;
andpeffectively “fegls” the a?/grage p)é)tential. Below we will system of Fig. 2 we solve the equations for the evolution of the

. - - . robability density when a particle slides down a fluctuating slope
apply the ideas of the preceding section and we will see hoﬁa) with P, (x,t=0)=P_ (x,1=0)= &(x)/2. (b) depicts the evolu-

in this escape problem the time scale for intrawell relaxatior}, ) - ¢ e probability density @, +P_)(x,t) when a particle is

is actually the time scale for the_as_cending inStamo,n' going down the fluctuating slope. The fluctuation rate/is20 and
Next we must extend the principle of least action t0 a,,e have Eo=11 and AE=1. (P,+P_)(x,t) is depicted att

nonstationary system and derive the time it takes the instan= g1, t=0.025, andt=0.04. Two & functions grow smaller and
ton to run up the fluctuating slope. For that purpose Wemnove apart, while between them a Gaussian develops.
should consider a deterministic particle on a fluctuating
downslide(Fig. 7). The evolution of the probability distribu-
tion during the fluctuating downslide is described by

P(x.to)

>
———

X

FIG. 7. In order to find the distribution of instanton times for the

and one kick ofk+ Ak and one kick ofk — Ak brings the
particle equally fast over the barrier, but has a smaller prob-

P, =—(Eq+AE)AP, — y(P, —P_) ability, which is proportional to exp-n«?/D—2(Ax)%/D].
X ' Note that this reasoning only applies in the low naiseall
(24 - .
WP_=—(Ey—AE)d,P_+y(P,—P_). D) limit. Only then does the exponential overcome the effect
of the extra permutations.
As thet=0 condition we have the particle a0 and equal Because the Langevin equation is linear in the force, the

probability for the barrier being up or down, i.e?, (x,t above argument holds even if the slope is fluctuating: if we
=0)=P_(x,t=0)=8(x)/2. Equations(24) are identical to decrease one Brownian kick and increase another one by the
the Fokker Planck equatior{23) that describe the problem same amount, the duration of the particle’s escape remains
of escape over a barrier, except for the signEf AE) and  unchanged, but the probability of the sequence of these kicks
(Eq—AE) and the fact that there is no diffusion teffire., = becomes smaller. This means that the most likely escape
second derivative It is the stochastic fluctuations of the trajectory, i.e., the Brownian instanton, has a lower speed
slope that are responsible for tléefunctions turning into a when the slope is steeper. For the deterministic downslide,
continuous distribution during the descent frors0 to x  on the other hand, the speed is higher on the steeper slope.
=1. We will thus find a distribution of instanton timgsee  Thus, the Brownian instanton and the deterministic
Fig. 7(b)] from which a distribution of MFPTs and an aver- downslide no longer follow paths that are each other’s time
age MFPT can be derived. This approximate average MFPTeverse as in the case of the stationary slope. However, if the
can then be compared to the exact solution of Fig. 218  fluctuationAE is small relative to the barrier heigHy, we

we perform this calculation. Below we show a derivation can well approximate the velocity of the Brownian instanton
with a few shortcuts that also leads to a good approximationby Eq and the instanton time bty = 1/E,.

We pointed out earlier in this section that when the in- The escaping instanton spends part of the time on the
stanton goes up a static linear slope, the Brownian kick¢Eq+ AE) slope and part of the time on thE{— AE) slope.
provide a constant force along the most probable path. In &n the steepE,+ AE) slope it increases its potential energy
discretization this means that all the Brownian kicks have arat a rater . =(Eq+ AE)/ty. On the Eq— AE) slope the po-
identical magnitudec. This makes sense because the probtential energy increases at a rate= (Eq— AE)/ty. This im-
ability of a sequence oh such kicks is proportional to plies that there is a distribution of the exit energgE)
exf —n«?/D], whereas a sequence with-2 kicks of sizex ~ when the particle reaches=1. To derive this distribution
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we solve the continuity equations for the probability distri- of energy betweek andE+dE. At t=0 we haveE=0 and
butionsQ. (E,t) andQ_(E,t). the barrier has equal probability for being up or down. So the
initial condition is Q.(E,t=0)=Q_(E,t=0)=65(E)/2.
Stochastic fluctuations of the slope turn wdéunctions into
Q. +r,deQ,=y(Q,—Q_), a distribution during the escape. Equati@s) will thus yield
(25  adistribution of exit energies. After a Laplace transform of
the time the system can be solved. For the inverse Laplace
FQ_+r_deQ_=vy(Q_—Q,). transformation the required canonical forms are[exq¥]
—exd —TV(s?+a?)], [s/\/(s%+a%) Jexd —T/(s*+a%)]
—exd —sT] and exp—T/V(s°+a?)]/\/(s*°+a?). These are
Q- (E,t)dE is the probability for the ascending instanton tolisted in  [13] and [14]. We let ((E.t)
be on the E;+ AE) slope and have accumulated an amount= \/(EOAEt)z—(ESt— E)? and find

ye y yte y
Q+(E,t)+Q—(E:t):m|o E()Tg(E’t) + mh mZ(E.t)
4 o OLtEQ(Eq* AE)—E]+ A[tE(Eg—AE) —E] 6

2

on tEo(Eq—AE)<E<tEy(Ey;—AE) and zero elsewhere. nonadiabatic transition in Fig. 2 can therefore be quantita-
The functionsly and 1, represent the modified Bessel func- tively accounted for by the instanton mechanism. The relax-
tions of the zeroth and first kind.3]. The third term of this  ation time of the escape rate appears to be the time it takes
expression describesfunctions that advance with velocities the instanton to ascend.
r, andr_. Because of the exponential flipping time distri-  \When the shape of a potential well changes, the probabil-
bution these functions carry an exp{) in front. For large ity distribution for a Brownian particle in that well follows in
enought many flips occur. Then the central limit theorem the course of time. Suppose we have a barrier as in Fig. 6
becomes applicable an@.+Q_ becomes a Gaussian wjth a nonfluctuating heighg. When we start with a Diraé
aroundE=Et. The final probability distribution of the exit function atx=0 as the initial condition, we can solve the
energies can be expressed as(E)=Q.(E,t=tg)  Fokker-Planck equation by separation of variabefs [8],
+Q_(E,t=tp). Sec. 5.2.5 This leads to a sequence of eigenfunctions, each
We take the escape rakeover the stationary barrier of of which exponentially relaxes to zero. The relaxation times
height E (Fig. €) as the inverse of the MFPT, i.&k(E)  can be derived to be the positive solutions for of
=E“expE)—1—E] " SinceAE is small relative tcE, this tan(t J4/7—E?)=— J4r—E2/E. The largest relaxation

S{:?L.#i;r?gebsvef:d ?g;%gtézea:mpe fluctuates, and thﬁme, 71, IS the one corresponding to the first eigenfunction
P and this time can be taken to be the intrawell relaxation time
of the bulk of the distribution. In the small noise linflarge
(277  E) 71 approaches BP.
The eigenfunction expansion emphasizes the bottom of
the well, neaix=0, where most of the probability is concen-
for y>k(E,). p(E) is a complicated function, but the modi- trated. But in the setup of Fig. 2 it is the relaxation of the
fied Bessel functions are a standard featuremfHEMATICA ~ €Scape rate that is of importance. For the escape over the
and the integral is readily calculated with this package. ~ barrier it is the little bit of probability near the top, i.&,
Figure 2 shows how in the middle and high frequency=1, thatis relevant and in that region the equilibration takes
regime there is good correspondence between the exact sénger (1E vs 2E7). To understand this in another way take
lution (solid line) and the curve predicted by the above for- 2gain the barrier as in Fig. 6 with a stationary heightor
mula (27) for T,y (dashed ling We checked for many val- @ particle at positiorx, 0=<x<1, att=0 the MFPT is7(x)
ues ofE, and AE and the deviation between the curves is ={e5—e™—E(1—x)}/E?. When the particle is at=0 at
always small. t=0 this means7(0)=(ef—1—E)/E2. For an “equili-
The transition of the solid line in Fig. 2 from the lowest brated particle” we have a Boltzmann distributid?(x)
plateau to they—« plateau is the transition from the regime =Ee ®¥/(1—e"F). For such a particle the MFPT ig*
where the probability distribution can follow the fluctuation =[IT(x)P(x)dx, which works out to 7*=(ef-2E
all the time(i.e., the adiabatic regimeo the regime where —e E)/[E?(1—e E)]. 7* is smaller tharZ{0) and we can
the probability distribution is no longer able to do@e., the take r=7{0)—7* to be the time it takes for the probability
nonadiabatic regime In Fig. 2 we are looking at MFPTs, density to go from & function atx=0 to a an equilibrated
i.e., the escape behavior, so it is the probability density neaBoltzmann distribution. As such it is a good measure for the
the top of the barrier that is important. The adiabatic-to-intrawell equilibration time. We find7=(1/E)— (2/E?)

-1

E,+0
%vg: fE o k(E)p(E)dE
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Eo
Energy (KT units) t=0
Engrgy
E
{ AE
\e
—1 N
v (a) X
position
1x107%
FIG. 8. We create a bigger and wider well with the same slope flux o o-u
by taking the well depicted in Fig. 6 and extend the height and »
length by the same factor. The instanton time and the relaxation 6x10
time of the Kramers rate increase by the same factavhereas the ax10”%
intrawell relaxation time for the majority of the probability remains 1
unaffected. 2x10
0.5 1 1.5 2
+2e E/(E(1—eF)). So at leading order in E/(taking the (b) time

large E limit is equivalent to taking the low noise limithe ] ] N
adiabatic adjustment time equals the instanton time. FIG. 9. (8) We have a reflecting barrier at=0 and a positive
The result of the preceding paragraph is a special case §{oP€ that extends te—c. At t=0 the slope is changed from a
Eq. (20) as derived in Sec. I. But for the piecewise linear value Eq to E. For thls_!lnear se_-tup it is possible to analytlca_lly
slope there is no curvature at the top and no curvature at thf8”0.W how the probability density fof an O\./erdamped Browmgn
bottom. So there are no flat basins that are to be crossed artlc_le relaxes to a new Boltzmann dlstrlbutlon._ln the text we find
mere diffusion e snmple§t mathematlcs f(_)r the case thAgt>, i.e., att=0 we
) . . . . start out with a Diracs function. (b) A plot of the flux, 4,P(xg,t),
When we tal_<e th_e Instanto(requlllt_)ratlor) time of 1'E_ throughx,=10 for E=10. Apparently the appropriate amount of
back to dlmgnsmnz_illzed varlablgs with a yvel_l of any width probability arrives in an “instanton package” after a timg/E.
L, we getBL-/E. It is worth noticing that this time does not
depend on the temperature. This may seem paradoxical since o ) o
the equilibration is a diffusion driven process. However, thedifferent characteristic times than taking the relaxation time
slower diffusion at lower temperature is apparently balance®f the escape rate as the criterion. Generally, the relaxation
out by the fact that the Boltzmann distribution prescribes &f the probability distribution cannot be identified with the
smaller probability density near the top of the barrier atrelaxation of the escape rate to the Kramers f&®g. (1)].
lower temperatures. The slower diffusion at lower temperaThe escape rate has a slower relaxation.
ture is compensated for exactly by the smaller fraction that Finally, in the same way as we did at the end of Sec. | we
has to diffuse and the equilibration time comes out indepencan “see” the instanton by following the relaxation of the
dent of temperature. On the other hand, the®2¢quilibra-  probability density in a stationary potential through the
tion time of the distribution in the bottom of the well un- Fokker-Planck equation. Again we start with a delta function
scales as RTBL?/E? and does depend on temperature. at the bottom and look at the flux at a point sufficiently far
Take a sufficiently high linear barrier of heightat width ~ away from the bottom. This time we do not need numerics.
1 (Fig. 8. If both the height and the width are multiplied For the linear case an easy analytic expression for the flux
with the same factok a linear well with the same slope is can be derived.
obtained. The instanton time, and thus the relaxation time of Take a linear slope that has a reflecting barriec=a0. At
the escape rate, increases with the same magnification fact$F 1 the potential energy i§. The slope extends to infinity,
\. When the relaxation is from & function to a Boltzmann S0 for allx, E is also the value of the slope and therefore of
distribution, forE larger than about 4, the vast majority of the deterministic force driving a particle to=0. Beforet
the probability is and stays near the bottom of the well and=0 the slope isE;—=. At t=0 the value of the slope
does not “sense” anything of what happens to the right ofswitches to a finite valu& [Fig. 9a)]. The Fokker-Planck
x=1. Indeed the RTBL2/E? equilibration time of the dis- equation that describes the time evolution of the probability
tribution in the bottom of the well is insensitive to the mag- density whent>0 is d,P(x,t)=(E+dy)«P(x,t). The
nification as thex’s in E? andL? cancel each other out. boundary condition is obtained from the fact that the flux at
There is no obvious quantitative definition for the relax-the reflecting barrier ak=0 equals zero at all times, i.e.,
ation time of a distribution in a well. This relaxation is not a (E+ d,) P(0,;t)=0. The initial condition is constituted by the
simple exponential one and proceeds differently at differenBoltzmann distribution onE,, i.e., P(x,0)=Eqe Fo*.
points in the well. Taking as the criterion the behavior of theLaplace transforming the timgwm(x,s)=[ge S'P(x,t)dt]
majority of the probability in the bottom of the well leads to leads to the following ordinary differential equationn
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Ay (X,8) + Edym(X,8) —sm(x,8)=—Eqe Eo*. (28)  centered around the instanton timg=x,/E. The flux is
easily evaluated a3(x,t)=—(E+d,)P(x,t) and yields the

This equation is easily solved and yields fa(x,s) simple expression
m(x,8)=CeM— Le’ Eox (29 X - (Et+x)%at
! E3—EcE-s ' )= —e . (35)

where is the only negative eigenvalue, For largex andt it is the variations in the exponent that are

1 important whenx andt vary. At a locationx, outside the
)\=—§(E+ VEZ+4s). (300  diffusion dominated domain the flud(xq,t) will have a

maximum when Et+Xxg)?/4t has a minimum. One easily

The exponential with the positive eigenvalue is not a Iegiti—iInds th?t. this happegs wherr XO/E! l.e., the peak of.the

probability package” follows the instanton path. Figure

mate part of the solution since it would le{x,s) blow up at i :

x—o, Demanding the solution to be normalizable is equiva-g(%) hShofW‘;’] th? shape ofbthe mks_tanton. WF can eSt'mate t]tle

lent to allowing only the negative eigenvalue. The value of V/dth Of the instanton by making a _Tay or €xpansion o
g ony g g f(t)=(Et+xq)%/4t aroundt,=x,/E. Going to second order

h i ined f h i-
the constancC is to be determined from the boundary condi [F(D~F(tg) + 1/2F"(t) (1—1)2] leads to f()~Ex

tion and we find
+ (E3/4%,) (t—to) 2. The coefficient of the second order Tay-

2E,(Eo—E) lor term represents the curvature at the maximum and its
= > . (32 square root, i.e.,K/2)VE/Xq, is a good approximation for
(E+VE“+4s)[s—Eo(Eo—E)] the “sharpness” of the instantojcf. Fig. 9b)]. So the in-

stanton is more sharply peaked for steeper slépe®quiva-

lently, lower temperature/smaller nojsdhe instanton also

gets wider for largek,, i.e., as it moves up it flattens out.
The picture that emerges is the following. In the relax-

Taking theEy— e limit effectively means that we start with
a ¢ function atx=0. In Laplace space the—0 limit corre-
sponds tas—oe. For infinite Ey and finites the second part
of the solution(29) (the particular pajtcancels out and the  a4ion from as function to a Boltzmann distribution along the
numerator ofC cancels against the- Eq(Eq—E) partinthe  , ayis the appropriate amount of probability in some interval
denominator. The inverse Laplace transformation can novi genosited as a package that arrives after the instanton time.
easily be performed and gives as the solution The instanton package moves as the reverse of a downsliding
particle, except for the fact that the instanton has a widening

—(—Et+x)2/4t
P(x,t)=Ee B = + &jL Eerf( —Et+x probability distribution as time goes on.
' 2 Eyat 2 24\t

DISCUSSION
(32
The theory we presented applies in principle to any acti-
Using thez— o expansion for the erf functiofL3] we take  vated process. For most chemical reactions the intrawell re-
erf(z)~1— (1/zy/m)e % and find ax=0 laxation time(whether you take it to be the relaxation time of
the majority of the distribution or the relaxation time of the
4 ) Kramers ratgis of the order of femtoseconds and as such not
1+ WG({ fan (33 yet within a realm that is experimentally accessible. How-
wt ever, there are other activated processes that take place on
more measurable time scales. For nucleation phenomena, for
instance, the energy as a function of the size of the nucle-
ation kernel looks like a curve as in Fig. 1. In such setups
thermal fluctuations have to increase the size of a kernel
against the energy gradient until the critical size., the
maximum in Fig. } is reached. Once the critical size is ex-
ceeded the kernel rapidly grows and loses energy. In nucle-
ation experiments the relaxation times we have studied in
this paper are within limits of measurability. A sudden

P(Ot—x)=E

So we see a relaxation time for the probability density at
=0 that is proportional t& 2. We get a different picture for
Xo>1/E, i.e., whenx, is outside the diffusion dominated
domain. For tha—o limit the Boltzmann distribution pre-
scribesP(xq,t—») =Ee 5%, After to=x,/E, i.e., the time
it takes the instanton to go from O ig, the argument of the
erf function and of the exponential in E¢B2) equals zero
and we thus have

1 1 change of the potential could, for instance, be realized by a
P(Xo,Xo/E)=Ee E%| = + _ (34)  sudden change in temperature.
2 mExg Recently there has been a growing interest in the behavior

of Brownian particles in oscillating or fluctuating potentials.
For Ex, being sufficiently larger than or(ge., being outside These studies have also led to the discovery and explanation
of the diffusion dominated domainwe getwExy<<1/2.  of stochastic resonandé5,16 and noise induced transport
This means that after the instanton timg E the probability  [17]. In all of the systems that exhibit these phenomena the
density atx, has reached 1/2 of its final valliee %, Fig-  time scale of intrawell relaxation is important and it greatly
ure 9b) shows the flux as a function of time through a point matters for the response of the system whether the externally
Xo far outside the diffusion dominated domain. The figureimposed fluctuations or oscillations are slower or faster than
shows how the probability arrives in a “package” that is this time scale. In Sec. Il we have shown in great detail how
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this is the case in resonant activation. downslide. The relaxation time of the escape rate thus equals
In the Langevin picture we see the instanton as the moghe time to deterministically slide down the barrier, i.e., the

likely escape path. As such it happens to be the reverse of thestanton time. This “happy coincidence” constitutes the

deterministic (noiselesy downslide. In the Fokker-Planck simple, bottom line result of this paper.

picture we see the instanton again. There it appears that dur-

ing the intrawell relaxation of a distribution from a Dirdc ACKNOWLEDGMENT

function to a Boltzmann distribution the appropriate amount

of probability is delivered in the form of a package whose We are grateful to the NIHGrant No. R29ES0662Gor

upward journey is the exact reverse of the deterministidunding.

[1] R.D. Astumian and B. Robertson, J. Chem. Ph9§, 48 [9] . Derenyi and R.D. Astumian, Phys. Rev. Let82, 2623

(1989. (1999.
[2] C.R. Doering and J.C. Gadoua, Phys. Rev. L68, 2318 [10] P. Pechukas and P."Hagi, Phys. Rev. Let{73, 2772(1994).
(1992. [11] M. Bogura, J.M. Porra, J. Masoliver, and K. Lindenberg,
[3] P. Reimann and P. haggi, in Lectures on Stochastic Dynam- Phys. Rev. 557, 3990(1998.
ics, edited by T. Poeschel and L. Schimansky-Geier, Lecturd12] M. Bier and R.D. Astumian, Phys. Lett. 247, 385(1998.
Notes on Physics Vol. 48@Springer, Berlin, 1997 [13] Handbook of Mathematical Functionsedited by M.
[4] M. Bier and R.D. Astumian, Phys. Rev. Leftl, 1649(1993. Abramowitz and |.E. Stegun, 9th edover Publications, Inc.,
[5] L. Onsager and S. Machlup, Phys. Ré&it, 1505(1953. New York, 1972.
[6] A.J. McKane, H.C. Luckock, and A.J. Bray, Phys. Rev4R [14] G. Fodor, Laplace Transforms in EngineeringAkademiai
644 (1990. Kiado, Budapest, 1965
[7] D.G. Luchinsky and P.V.E. McClintock, Natufeondon 389, [15] K. Wiesenfeld and F. Moss, Natuteondon 373 33 (1995.
463 (1997). [16] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev.
[8] C.W. Gardiner,Handbook of Stochastic Methqd&nd ed. Mod. Phys.70, 223(1998.

(Springer, Berlin, 198b [17] R.D. Astumian, Scienc@76, 917 (1997.



