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Intrawell relaxation of overdamped Brownian particles
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We consider an overdamped Brownian particle in a well. When the particle escapes, it does so as an
instanton, i.e., in one run and without dwelling anywhere on the way from the bottom of the well to the top of
the barrier. For a sufficiently steep slope the instanton time equals the time it takes the particle to determin-
istically slidedownthe same slope. We show that the instanton time is also the relaxation time for the escape
rate after the barrier changes shape.@S1063-651X~99!04906-5#

PACS number~s!: 05.40.2a, 02.50.Ey, 82.20.2w
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INTRODUCTION

Suppose we have overdamped particles executing Bro
ian motion in a smooth potential well~Fig. 1!. The Kramers
formula

kesc5
1

b2p
AU9~a!uU9~b!ue[U(a)2U(b)]/kT ~1!

expresses the escape rate from the well in terms of the s
ture of the well, the temperatureT, the Boltzmann constantk
and the coefficient of viscous frictionb of the medium. At
x5a there is a minimum and atx5b there is a maximum.
U9(a) and U9(b) represent the second derivatives at the
extrema. The formula applies whenU(b)2U(a) is signifi-
cantly larger thankT and when the Brownian particles in th
well obey the stationary Boltzmann distribution, i.e.,

P~x!5
1

Z
e2U(x)/kT, ~2!

whereZ is a normalization factor.
Now suppose that the distribution of particles in the w

is not a Boltzmann distribution. In that case the distributi
will relax to a Boltzmann distribution. At the same time th
escape rate from the well will relax to the one expressed
the above Kramers formula~1!.

The main result of this paper is thatthe relaxation time of
the majority of the probability around the bottom of the w
and the time for the transition rate to relax to the Krame
rate are different quantities that scale differently with ba
rier height and temperature. The two rates have often bee
taken to be identical. But this can lead to serious misund
standing. Generally the escape rate will have a longer re
ation time than the majority of the probability in the we
Furthermore, the relaxation rate of the escape time does
depend on temperature, whereas the relaxation time of
majority of the probability does.

We will present analytic as well as numerical resul
Even though the mathematics we will present will be trick
the final physical picture is an attractive and easy to und
stand one. We will find the relaxation time to the Krame
escape rate to be equal to the time it takes to determin
PRE 591063-651X/99/59~6!/6422~11!/$15.00
n-

c-

e

l

y

l

r-
x-

ot
he

.
,
r-

ti-

cally slide down the barrier. Our results apply for barrie
that are more than a fewkT high. But this essentially encom
passes all activated processes, including chemical react
nucleation phenomena, etc.

The relaxation of the escape rate is also the key facto
the escape behavior of an overdamped Brownian particle
well with a fluctuating barrier. There are a great many pro
lems in physics, chemistry, and biology that involve impo
ing an external fluctuation or oscillation on a system th
takes time to equilibrate to the stationary distribution. Ta
for instance, the situation that arises when a protein tha
embedded in a cell membrane is subjected to a fluctua
electric field ~e.g., the 60 Hz electromagnetic field from
power line! @1#. Proteins are very polar molecules and t
different conformational states that a protein cycles throu
when it is catalyzing a chemical reaction generally have d
ferent values for the electric dipole moment. Imposing
fluctuating electromagnetic field on such a protein amou
to fluctuating the energy levels of the states in the cataly
In such systems the relaxation time to stationarity within
well is an important quantity.

The theoretical study of overdamped particles in a w
with a fluctuating barrier has led to the discovery of t

FIG. 1. A smooth potential with a well and a barrier. With
height of severalkT units and with a Boltzmann distribution in th
well the escape rate for overdamped Brownian particles is given
the Kramers formula~1!.
6422 ©1999 The American Physical Society
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PRE 59 6423INTRAWELL RELAXATION OF OVERDAMPED BROWNIAN . . .
‘‘resonant activation’’ phenomenon@2–4#. Take, for in-
stance, the system depicted in the inset in Fig. 2. The lin
barrier is flipping between (E01DE) and (E02DE) with a
rateg for both transitions. Att50 we have for the probabil
ity density ad function atx50 and probability 1/2 to be in
(E01DE) and probability 1/2 to be in (E02DE). If, in the
high frequency regime, the barrier fluctuations are very f
the particle ‘‘can never adjust’’ to the instantaneous slo
and the mean first passage time~MFPT! over the barrier is
the one corresponding to the average barrierE0. If, in the
low frequency regime, the barrier fluctuations are slow
than the actual escape rate the particle will escape before
barrier flip will occur. In that case the MFPT over the flu
tuating barrier is the average ofTE01DE ~the MFPT over a

stationaryE01DE) andTE02DE ~the MFPT over a stationary

E02DE). The MFPTTE over a stationary barrier of heightE
increases exponentially withE. So the low frequency MFPT
1
2 (T11T2), will be higher than theTE0

of the high fre-
quency limit. In the middle frequency regime the fluctuatio
are faster than the MFPT, but still slow enough that a s
tionary escape rate can be established each time we a
E1 or E2 . We then get a situation where the effective e
cape rate over the fluctuating barrier is the average1

2 (k1

1k2), wherek151/T1 andk251/T2 represent the escap
rates over the individual stationary barriers. The ratek2 is
much larger thank1 and, again because of the exponent
dependence, the MFPT in the middle frequency regime
be smaller thanTE0

. Figure 2 shows log10(T) as a function of

log10(g) and all the frequency regimes are present in t
graph. The enhanced escape in the middle frequency re
has been called ‘‘resonant activation’’@2#. With smooth
wells and barriers and with other than dichotomous Mark
ian barrier flips the phenomenon also occurs@3#.

In the first section we will see how for a sufficiently hig
barrier ~or, equivalently, for sufficiently small noise! the es-
cape rate relaxes like the probability density near the top
the barrier. The bulk of the probability is at the bottom of t
well and relaxes faster. We will furthermore see how t

FIG. 2. The inset depicts the piecewise linear setup for
problem. The height of the barrier fluctuates betweenE15E0

1DE and E25E02DE. We study how long it takes before th
particle escapes over the barrier and how this changes with
fluctuation rateg. The graph shows log10 of the mean first passag
time (T) versus log10(g) with E0511 andDE51. The solid line
represents an exact evaluation. The dashed line is the predictio
the instanton mechanism~27! for 1/g!T.
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relaxation time of the escape rate is identical to the instan
time, i.e., the time it takes to slide down from the top of t
barrier to the bottom of the well.

In the second section we will analyze the aforemention
fluctuating linear barrier problem in detail and we will sho
how the identification of the instanton time with the rela
ation time for the escape rate can quantitatively account
the transition from the middle frequency regime to the hi
frequency regime in the log10(T) vs log10(g) graph~Fig. 2!.
In this section we will focus on the piecewise linear ca
which allows for many quantities to be analytically deri
able.

I. INTRAWELL RELAXATION TIMES

The motion of an overdamped Brownian particle in a p
tential well is described by the Langevin equation

b ẋ5F~x!1b~A2D !j~ t !, ~3!

whereF(x)52(d/dx)U(x) is the force due to a potentia
U(x), b is the coefficient of viscous friction, andD is the
diffusion coefficient. The termj(t) represents the Gaussia
white noise with zero average and autocorrelation funct
^j(t)j(t8)&5d(t2t8). The system is overdamped, so the
is no inertia and at any time the velocity of the particle
determined solely by the force on the particle at that m
ment. For a system in equilibriumb andD are connected to
each other through the fluctuation-dissipation theoremb
5kT/D.

In a mathematical analysis thej(t) is hard to handle.
Because ofj(t), Eq. ~3! is an ordinary differential equation
that describes an evolution in time that is not deterministic
is possible to derive an equivalent partial differential equ
tion, the Fokker-Planck equation, to deterministically d
scribe the evolution of the particle’s probability densi
P(x,t):

b] tP~x,t !52]x@F~x!P~x,t !#1kT]xxP~x,t !. ~4!

A Brownian particle in a well~Fig. 1! will eventually escape.
Given that the particle escapes it is possible to calculate
most likely escape path. The following derivation is due
Onsager and Machlup@5#. The derivation employs the prin
ciple of least action and shows that when the Brownian p
ticle escapes, it most likely does so in one run, i.e., it do
not dwell anywhere on the slope for any considerable ti
on the way to the top. Furthermore, the time it takes to
this ‘‘run up the barrier’’ is identical to the time that it woul
take to slide down the barrier in the absence of noise~see
Fig. 3!.

For a system with noise the application of the principle
least action is only slightly more involved than in the trad
tional treatment. For discretized time, i.e.,t j5t01 j Dt with
j 51,2,3, . . . , thej(t j )’s are independent and have a Gau
ian distribution with a zero average and a standard devia
of 1/ADt. The probability that a particular sequence
‘‘Brownian kicks’’ j(t1),j(t2), . . . ,j(tn) is realized is pro-
portional to) j 51

n exp@21
2j

2(tj)Dt#5exp@21
2(j51

n j2(tj)Dt#. Go-
ing to the limit of a continuous time that runs from an initi
time t5t i to a final timet5t f the sum becomes an integra
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6424 PRE 59BIER, DERÉNYI, KOSTUR, AND ASTUMIAN
P@j~ t !#}expS 2
1

2Et i

t f
j2~ t !dtD . ~5!

When we view the Langevin equation~3! as a mapping from
j space to x space, j(t) can be expressed as@ ẋ
2F(x)/b#/A2D. This means that the exponent of the abo
expression becomes2S@x(t)#/D, where

S@x~ t !#[
1

4Et i

t f S ẋ2
F~x!

b D 2

dt ~6!

is the action associated with a pathx(t). Notice that this
quantity can never be negative.

When we change variables fromj(t) to x(t) the probabil-
ity densities must obey

E
S
P@x~ t !#dx~ t !5E

S
P@j~ t !#dj~ t !, ~7!

whereS represents a set of trajectories. For this equation
hold for all possible sets of trajectories we must ha
P@x(t)#5idj/dxiP@j(t)#. So we have to evaluate the Jac
bian idj/dxi . After discretization this Jacobian becomes t
determinant of a matrix. Because the matrix is triangular
determinant is the product of the trace eleme
) j 51

n idj j /dxj i . The Jacobian compensates for the stretch
and shrinking involved in the transformation from traject
ries in noise space to trajectories inx space. The exact form

FIG. 3. An escape over the barrier requires a sequence
Brownian kicks that brings the particle against the strong determ
istic force fromxi to xf . In the text it is derived that the most likel
such trajectory~between the last touch atxi and the first touch atxf)
is an upslide that is the exact reverse of the deterministic downs
e

to
e

e
s
g

of the Jacobian depends on the way the Langevin equa
~3! is discretized. With the discretization

xj2xj 21

Dt
52

U8~xj !1U8~xj 21!

2b
1A2Dj j ~8!

we derive

)
j 51

n Idj j

dxj
I5)

j 51

n
1

A2DDt
S 11

1

2

U9~xj !

b
Dt D

'S 1

A2DDt
D n

expF 1

2b (
j 51

n

U9~xj !G . ~9!

Eventually, in the continuum limit, this Jacobian takes t
form

J@x~ t !#5expH 1

2bEt i

t f
U9@x~ t !#dtJ . ~10!

This form for the Jacobian is also obtained when the nois
first assumed to have a nonzero correlation time, and whe
the end of the calculation the limit is taken in which th
correlation time goes to zero@6#.

All in all, for the probability that a certain pathx(t) is
realized we have

P@x~ t !#}expH 2
S~x!

D
1

1

2bEt i

t f
U9@x~ t !#dtJ . ~11!

Notice that in the low noise limit (D→0) the contribution of
the U9@x(t)# becomes negligible in comparison to the co
tribution of the action term. In that case the trajectory w
the highest probabilityP@x(t)# is simply the one for which
the actionS@x(t)# is minimal.

Next we go to the low noise limit. We neglect the Jac
bian contribution in Eq.~11! and take the integrandL(x,ẋ)
5@ ẋ2F(x)/b#2 as the Lagrangian. Using the Eule
Lagrange theorem,@]/]x2(d/dt)(]/] ẋ)#L(x,ẋ)50, we de-
rive the equation of motionb2ẍ5F(x)(d/dx)F(x). A first
integral is easily derived: (b ẋ)22F(x)25C, whereC is the
constant of integration. It is obvious from the formula f
S@x(t)# that the most likely way to slide down isb ẋ
5F(x), i.e., the particle behaving as if there were no noi
This is not a surprising result. But from the integral we al
infer that the most likely path up the barrier from a sm
diffusion dominated zone around the bottom of the w
@where F(x)'0 for smooth potentials and the noise th
dominates# to the small diffusion dominated zone around t
top is b ẋ52F(x), i.e., the particle following the revers
path from the deterministic downslide. Such an upslide
what we call the ‘‘instanton.’’

The intuitive picture with this derivation is as follows
There are many ‘‘attempts’’ during which the particle go
quite a way up the barrier and then falls back. But the fi
‘‘successful attempt’’ is most likely one during which th
particle did not dwell anywhere on the slope for any tim
The ‘‘successful attempt’’ was one during which the partic
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PRE 59 6425INTRAWELL RELAXATION OF OVERDAMPED BROWNIAN . . .
went up in one smooth ‘‘instanton’’ upslide that is the exa
reverse of the deterministic downslide.

The instanton is the most likely trajectory, i.e., it is th
maximum of a distribution and not the average. However,
smaller noise~i.e., higher barriers! the distribution of trajec-
tories is more sharply peaked around this most likely traj
tory and the exact instanton becomes an ever more lik
escape route. Analog electrical circuits have been emplo
to observe such instantons@7#. For barriers of severalkT the
actual escape trajectories appear ‘‘hairy’’ because of
noise, but they are indeed very close to the instanton p
~Fig. 3!.

Next consider a well and a barrier as in Fig. 3. Equat
~11! tells us that the most likely escape trajectory, i.e.,
path between the ‘‘last touch’’ at the initial positionxi and
the ‘‘first touch’’ at the final positionxf ~Fig. 3! is the re-
verse of the deterministic downslide. But Eq.~11! gives even
more information. The expression for the action can be
written as follows:

S@x~ t !#

D
5

1

2

DU

kT
1

1

4DE
t i

t f F ẋ~ t !21S U8@x~ t !#

b D 2Gdt,

~12!

whereDU is the energy difference between the end pointxf

and the initial pointxi . The argumentsẋ2 and U8(x)2 are
insensitive to whether you run your trajectory forward
backward. Also theU9(x) in the Jacobian is unaffected b
time reversal. So whether you run from (t i ,xi) to (t f ,xf) or
from (t i ,xf) to (t f ,xi) via the time reversed path is onl
reflected in the prefactor, which ise2DU/2kT for the upward
path andeDU/2kT for the downward path. This means that
sequence of Brownian kicks leading to an upward p
x(t)up is less likely than the sequence leading to the dow
ward pathx(t)down by a factore2DU/kT, i.e.,

P@xup~ t !#5P@xdown~ t !#e2DU/kT. ~13!

This result makes sense. Suppose we have a reaction co
nateU(x) and U(xf) is DU higher thanU(xi). Then at a
Boltzmann distribution the probability to be betweenxi and
xi1Dx is a factoreDU/kT larger than the probability to be
betweenxf andxf1Dx. So for the system as a whole the
are just as many (xi ,xi1Dx)→(xf ,xf1Dx) transitions as
there are (xf ,xf1Dx)→(xi ,xi1Dx) transitions. This is, in
its most general form, the microscopic reversibility that w
are supposed to have at equilibrium.

We take a slope that is part of a continuous potentialU(x)
~Fig. 4!. The pointx50 is at the left of a diffusion domi-
nated basin around the minimum. We define the diffus
dominated basin as the interval where the energy is less
a kT higher than the energy at the minimum. The pointx
5L is to the right of the diffusion dominated basin arou
the maximum~i.e., the interval where the energy is less th
a kT lower than at the maximum!. For a particle to make a
full escape from the well it has to reachx5L. An escape
thus also involves a crossing of the diffusion dominated
sins. In these basins the instanton theory no longer app
and mere diffusion in an almost flat region has to do the j
The textbook by Gardiner@8# gives a derivation from the
Fokker-Planck equation~Sec. 5.2.7! of the mean first passag
t
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time from any point along any potential to any other poi
This MFPT is expressed in terms of a double integral o
function involving U(x). Using this result we have for the
MFPT, T0(x→L), from any pointx(0<x<L) to L,

T0~x→L !5
1

DE
x

LE
0

y

e[U(y)2U(z)]/kTdzdy. ~14!

Technically this result is only valid when there is a reflecti
barrier atx50 ~hence the ‘‘0’’ subscript!, but when the po-
tential is sufficiently steep atx,0 this formula is a good
approximation for the potential in Fig. 4. From any pointx
(0<x<L) to 0 we have

TL~x→0!5
1

DE
0

xE
y

L

e[U(y)2U(z)]/kTdzdy. ~15!

Again this result is valid when there is a reflecting barrier
x5L. When we want to find the MFPTs of a ‘‘Boltzman
distributed particle’’ we have to integrate this double integ
over a Boltzmann distribution. So to reachx5L from a Bolt-
zmann distribution on@0,L# takes on the average

T0~B→L !5
1

DZE0

LE
x

LE
0

y

e[ 2U(x)1U(y)2U(z)]/kTdzdydx,

~16!

where Z5*0
Lexp@2U(x)/kT#dx is again the normalization

factor @cf. Eq. ~2!#. Changing the order of integration w
rewrite T0(0→L) in the following way:

FIG. 4. A passage from the well over the barrier also involv
diffusion across the flatter basins around the minimum and m
mum. If this diffusion time is negligible in comparison to the in
stanton time to ‘‘climb the barrier,’’ then an escape trajectory fro
x50 to x5L can be identified with an instanton trajectory fromx
5xi to x5xf in the previous figure. In the text we relate mean fi
passage times betweenx50 andx5L to instanton times and in-
trawell relaxation times.
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T0~0→L !5
1

DE
0

LE
0

y

e[U(y)2U(x)]/kTdxdy

5
1

DE
0

LE
x

L

e[U(y)2U(x)]/kTdydx

5
1

DZE0

LE
x

LE
0

L

e[ 2U(x)1U(y)2U(z)]/kTdzdydx.

~17!

From the above two formulas we derive

T0~0→L !2T0~B→L !

5
1

DZE0

LE
x

LE
y

L

e[ 2U(x)1U(y)2U(z)]/kTdzdydx.

~18!

We rewrite this expression in two steps:

1

DZE0

LE
0

LE
y

L

e[ 2U(x)1U(y)2U(z)]/kTdzdydx

2
1

DZE0

LE
0

xE
y

L

e[ 2U(x)1U(y)2U(z)]/kTdzdydx

5
1

DE
0

LE
y

L

e[U(y)2U(z)]/kTdzdy

2
1

ZE0

L

e2U(x)/kTF 1

DE
0

xE
y

L

e[U(y)2U(z)]/kTdzdyGdx

~19!

and find it to be equal toTL(L→0)2TL(B→0).
All in all, we have derived the following equality:

T0~0→L !2T0~B→L !5TL~L→0!2TL~B→0!. ~20!

It is important to realize that this equation is not an appro
mation and that it is valid between any two pointsx50 and
x5L on any potentialU(x) @9#. If the time to diffuse across
the diffusion dominated basin around the minimumTL(B
→0) is negligible in comparison to the timeTL(L→0), i.e.,
the time to diffuse across the diffusion dominated basin n
the maximum plus the time to slide down, we have

T0~0→L !2T0~B→L !'TL~L→0!. ~21!

This equation has an interesting interpretation.T0(B→L) is
the escape time from a stationary distribution, i.e., the
verse of the Kramers rate.T0(0→L) is the escape time whe
we start from a Diracd distribution atx50. The difference
of these two times can be interpreted as the timet5T0(0
→L)2T0(B→L) it takes for the probability density to
change to a distribution where the Kramers rate applies
the times to diffuse across the diffusion dominated basins
negligible in comparison to the time to deterministica
slide down the barrier, then formula~21! tells us that the
relaxation timet of the MFPT is identical to the instanto
time.
-

ar

-

If
re

So the relaxation time of the MFPT equals the instan
time to deterministically slide down the barrier. It is wor
noticing that the instanton time is independent of tempe
ture. This is a counterintuitive result: the relaxation is diff
sion driven and one would expect a faster relaxation
higher temperature. At the end of Sec. II we will come ba
to this point.

For Fig. 5 we took U(x)52E(2x3/20323x2/202),
where the energy is inkT units. This is a smooth and differ
entiable function for all values ofx. The bottom of the well is
at x50, where we haveU(0)50, and the top of the barrie
is atx520 for whichU(20)5E. The time is scaled such tha
b5D51. Figure 5 is the result of a simulation of th
Fokker-Planck equation~4!. We start with a Diracd function
at x50 and we depict the flux,J(x,t)52@U8(x)
1]x#P(x,t), as a function of time forx1510. It is clear
from the graph that the appropriate amount of probability
x1510 arrives in a ‘‘package.’’ We can calculate the tim
Tdet it takes a particle to deterministically slide down fro
x1510 to anx0 at the edge of the diffusion dominated bas
on the bottom. Fromẋ52dU(x)/dx it is straightforwardly
derived that

Tdet52E
x1

x0FdU~x!

dx G21

dx5
200

3E
lnF ~202x0!x1

~202x1!x0
G . ~22!

When we take forx0 the value ofx for which U(x)51, we
find x051.9 for E540 andx052.7 for E520. Substituting
these values in the above expression forTdet we find Tdet
53.8 forE540 andTdet56.2 forE520. These estimates fo
Tdet correspond very well with the location of the peaks
the instantons in Fig. 5.

It is reasonable to associate the relaxation time at anyx1
with the peak of the instanton. The trajectory of this peak
the reverse of the deterministic downslide. When a distri
tion in a well like Fig. 1 relaxes to a Boltzmann distributio
it is the little bit of probability near the top of the barrier th
matters for the escape rate over the barrier. The relaxa
takes place last near the top of the barrier. The escape
therefore relaxes slower than the ‘‘rest of the distribution.’’
would be a definite mistake to identify the relaxation of t
escape rate with the relaxation of the majority of the pro
ability in the bottom of the well. The latter is generally muc
faster.

II. PIECEWISE LINEAR CASE

In this section we will take the example of a linear slo
with a reflecting barrier atx50 and an absorbing barrier a
x51. The slope, and thus the barrier height, equalsE ~Fig.
6!. In a linear setup like this it is often possible to formula
analytic solutions. The results we will obtain below illustra
the general points made in the broader context of the pre
ing section. In problems with diffusion it usually does n
make for qualitatively different results when ‘‘corners’’ ar
introduced. Diffusion tends to ‘‘smooth things out.’’ The s
lutions for the piecewise linear potential are therefore
pected not to differ qualitatively from those for smooth d
ferentiable potentials~as is borne out by numerica
calculations!.

When the barrier fluctuates~Fig. 2, inset! the time scale of
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FIG. 5. The differentiable potentialU(x)5
2E(2x3/20323x2/202) has the shape depicted i
Figs. 1, 3~a!, and 4 with aU50 minimum atx
50 and aU5E maximum atx520. We start
with a Diracd function atx50 at t50 and fol-
low how the probability density develops as
function of time. The graph shows the flu
throughx510 ~halfway the barrier! as a function
of time for E520 ~right curve! and for E540
~left curve!. The fluxes have been normalized b
factors 9.731027 for E520 and 6.7310211 for
E540. Instantons appear to be traveling up at t
sliding down speed~see text!.
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the fluctuation enters the problem. If the barrier fluctua
faster than the relaxation of the escape rate, the particle
fectively ‘‘sees’’ the average barrier height and the esc
time over the barrier is indeed observed to be identical to
one over the average barrier if it were stationary. Below
will study the transition from the adiabatic regime~where the
fluctuations are slow and the probability distribution can f
low the flipping slope and be Boltzmann most of the time! to
the nonadiabatic regime~where fluctuations are too fast an
the probability distribution never gets adjusted to the slop!.

As we explained in the preceding section, when
Brownian particle escapes, it most likely does so in o
smooth run without dwelling anywhere on the slope for a
considerable time. The time it takes to execute this ‘‘run
the barrier’’ is identical to the time that it would take to slid
down the barrier in the absence of noise. This instanton t
is a characteristic time scale in the fluctuating barrier se
and through analytic results we will see in this section h
this time scale is responsible for the adiabatic-
nonadiabatic transition.

We analyze the linear slope with a reflecting barrier ax
50 and an absorbing barrier atx51. We, furthermore, dedi-
mensionalize the variables by absorbingb in the time scale
and expressing the energy inkT units. Because of the
fluctuation-dissipation theorem (D5kT/b) this also leads to
the disappearance ofD from the Langevin equation~3! and
the equivalent Fokker-Planck equation~4!. When, in this
setup, a stationary barrier height isE0, the instanton lasts
t051/E0. It is, furthermore, worth noticing that with the sta
tionary linear slope the most likely upward path is one wh
the ‘‘Brownian kicks’’ do all have the same strength. It
because of the upward concavity~positive second derivative!
of the quadratic in exp@2Sji

2/2# that a ‘‘small kick’’ that is
subsequently compensated for by a ‘‘big kick’’ is less like
than two kicks of the average magnitude„exp@22j2#
.exp@2(j1Dj)22(j2Dj)2#….

We consider a Brownian particle in a well and we a
interested in the mean first passage time over a barrier. E
s
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when the barrier is fluctuating at a rateg the associated
Fokker-Planck equations

] tP15~E01DE!]xP11]xxP12g~P12P2!,
~23!

] tP25~E02DE!]xP21]xxP21g~P12P2!

can be evaluated to yield an analytic expression for
MFPT @8,4#, even though the algebra involved in such
evaluation requires the power of a symbolic manipulat
package likeMATHEMATICA . The MFPT over a stationary
barrier of heightE ~Fig. 6! for a particle atx50 when t
50 is TE5(eE212E)/E2. When we let the barrier fluctu
ate betweenE01DE andE02DE ~see Fig. 2!, all the char-
acteristic time scales for the Brownian particle in the w

FIG. 6. A stationary linear well of width 1 and heightE. There
is a reflecting barrier atx50 and an absorbing barrier atx51. With
the energy inkT units and diffusion coefficientD51 it can be
derived that the mean first passage time for a particle that is loc
at x50 at t50 equals (eE212E)/E2.
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will show up in the log10(T) vs log10(g) graph~Fig. 2,solid
curve!. As the initial condition we take the particle to be
x50 and the barrier to be equally likely in the1 as in the2
state, i.e.,P1(0)51/2 andP2(0)51/2. The problem of es-
cape over a fluctuating barrier has been analyzed and un
stood in ever greater generality~see@2,4,3,10,11#, and refer-
ences in@3#!. A curve like Fig. 2, with two inflection points
and the minimum plateau in the middle, occurs also for n
piecewise linear wells@3#. For small g, i.e., the low fre-
quency regime, the particle escapes before the barrier
ever change and the MFPT is the average ofTE01DE and

TE02DE . For sufficiently largeDE this average is well ap

proximated by1
2TE01DE . In the middle frequency regime th

flipping time of the barrier~i.e., the average time betwee
two transitions! is much shorter thanTE01DE . What happens
as a result is that escape will most likely take place over
lower barrier. Since half the time is spent on the lower b
rier the MFPT can be well approximated by 2TE02DE . In the
high frequency regime the MFPT is the passage time o
the average barrier, i.e.,TE0

. The standard view of this is tha
in the high frequency regime the probability distribution
the particle never gets an opportunity for intrawell relaxat
and effectively ‘‘feels’’ the average potential. Below we w
apply the ideas of the preceding section and we will see h
in this escape problem the time scale for intrawell relaxat
is actually the time scale for the ascending instanton.

Next we must extend the principle of least action to
nonstationary system and derive the time it takes the ins
ton to run up the fluctuating slope. For that purpose
should consider a deterministic particle on a fluctuat
downslide~Fig. 7!. The evolution of the probability distribu
tion during the fluctuating downslide is described by

] tP152~E01DE!]xP12g~P12P2!,
~24!

] tP252~E02DE!]xP21g~P12P2!.

As thet50 condition we have the particle atx50 and equal
probability for the barrier being up or down, i.e.,P1(x,t
50)5P2(x,t50)5d(x)/2. Equations~24! are identical to
the Fokker Planck equations~23! that describe the problem
of escape over a barrier, except for the sign of (E01DE) and
(E02DE) and the fact that there is no diffusion term~i.e.,
second derivative!. It is the stochastic fluctuations of th
slope that are responsible for thed functions turning into a
continuous distribution during the descent fromx50 to x
51. We will thus find a distribution of instanton times@see
Fig. 7~b!# from which a distribution of MFPTs and an ave
age MFPT can be derived. This approximate average MF
can then be compared to the exact solution of Fig. 2. In@12#
we perform this calculation. Below we show a derivati
with a few shortcuts that also leads to a good approximat

We pointed out earlier in this section that when the
stanton goes up a static linear slope, the Brownian ki
provide a constant force along the most probable path.
discretization this means that all the Brownian kicks have
identical magnitudek. This makes sense because the pr
ability of a sequence ofn such kicks is proportional to
exp@2nk2/D#, whereas a sequence withn22 kicks of sizek
er-
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and one kick ofk1Dk and one kick ofk2Dk brings the
particle equally fast over the barrier, but has a smaller pr
ability, which is proportional to exp@2nk2/D22(Dk)2/D#.
Note that this reasoning only applies in the low noise~small
D) limit. Only then does the exponential overcome the eff
of the extra permutations.

Because the Langevin equation is linear in the force,
above argument holds even if the slope is fluctuating: if
decrease one Brownian kick and increase another one by
same amount, the duration of the particle’s escape rem
unchanged, but the probability of the sequence of these k
becomes smaller. This means that the most likely esc
trajectory, i.e., the Brownian instanton, has a lower spe
when the slope is steeper. For the deterministic downsl
on the other hand, the speed is higher on the steeper s
Thus, the Brownian instanton and the determinis
downslide no longer follow paths that are each other’s ti
reverse as in the case of the stationary slope. However, if
fluctuationDE is small relative to the barrier heightE0, we
can well approximate the velocity of the Brownian instant
by E0 and the instanton time byt051/E0.

The escaping instanton spends part of the time on
(E01DE) slope and part of the time on the (E02DE) slope.
On the steep (E01DE) slope it increases its potential energ
at a rater 15(E01DE)/t0. On the (E02DE) slope the po-
tential energy increases at a rater 25(E02DE)/t0. This im-
plies that there is a distribution of the exit energiesp(E)
when the particle reachesx51. To derive this distribution

FIG. 7. In order to find the distribution of instanton times for th
system of Fig. 2 we solve the equations for the evolution of
probability density when a particle slides down a fluctuating slo
~a! with P1(x,t50)5P2(x,t50)5d(x)/2. ~b! depicts the evolu-
tion of the probability density (P11P2)(x,t) when a particle is
going down the fluctuating slope. The fluctuation rate isg520 and
we have E0511 and DE51. (P11P2)(x,t) is depicted att
50.01, t50.025, andt50.04. Twod functions grow smaller and
move apart, while between them a Gaussian develops.
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we solve the continuity equations for the probability dist
butionsQ1(E,t) andQ2(E,t).

] tQ11r 1]EQ15g~Q12Q2!,
~25!

] tQ21r 2]EQ25g~Q22Q1!.

Q6(E,t)dE is the probability for the ascending instanton
be on the (E06DE) slope and have accumulated an amo
.
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of energy betweenE andE1dE. At t50 we haveE50 and
the barrier has equal probability for being up or down. So
initial condition is Q1(E,t50)5Q2(E,t50)5d(E)/2.
Stochastic fluctuations of the slope turn thed functions into
a distribution during the escape. Equation~25! will thus yield
a distribution of exit energies. After a Laplace transform
the time the system can be solved. For the inverse Lap
transformation the required canonical forms are exp@2sT#
2exp@2TA(s21a2)#, @s/A(s21a2)#exp@2TA(s21a2)#
2exp@2sT# and exp@2T/A(s21a2)#/A(s21a2). These are
listed in @13# and @14#. We let z(E,t)
5A(E0DEt)22(E0

2t2E)2 and find
Q1~E,t !1Q2~E,t !5
ge2gt

2E0DE
I 0F g

E0DE
z~E,t !G1

gte2gt

2z~x,t !
I 1F g

E0DE
z~E,t !G

1e2gt
d@ tE0~E01DE!2E#1d@ tE0~E02DE!2E#

2
~26!
ita-
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on tE0(E02DE)<E<tE0(E02DE) and zero elsewhere
The functionsI 0 and I 1 represent the modified Bessel fun
tions of the zeroth and first kind@13#. The third term of this
expression describesd functions that advance with velocitie
r 1 and r 2 . Because of the exponential flipping time dist
bution thesed functions carry an exp(2gt) in front. For large
enought many flips occur. Then the central limit theore
becomes applicable andQ11Q2 becomes a Gaussia
aroundE5E0

2t. The final probability distribution of the exi
energies can be expressed asp(E)5Q1(E,t5t0)
1Q2(E,t5t0).

We take the escape ratek over the stationary barrier o
height E ~Fig. 6! as the inverse of the MFPT, i.e.,k(E)
5E2@exp(E)212E#21. SinceDE is small relative toE0 this
formula can be used even if the slope fluctuates, and
MFPT can be well approximated as

Tavg5F E
E220

E110

k~E!p~E!dEG21

~27!

for g@k(E0). p(E) is a complicated function, but the mod
fied Bessel functions are a standard feature ofMATHEMATICA

and the integral is readily calculated with this package.
Figure 2 shows how in the middle and high frequen

regime there is good correspondence between the exac
lution ~solid line! and the curve predicted by the above fo
mula ~27! for Tavg ~dashed line!. We checked for many val
ues ofE0 and DE and the deviation between the curves
always small.

The transition of the solid line in Fig. 2 from the lowe
plateau to theg→` plateau is the transition from the regim
where the probability distribution can follow the fluctuatio
all the time~i.e., the adiabatic regime! to the regime where
the probability distribution is no longer able to do so~i.e., the
nonadiabatic regime!. In Fig. 2 we are looking at MFPTs
i.e., the escape behavior, so it is the probability density n
the top of the barrier that is important. The adiabatic-
e

so-

ar
-

nonadiabatic transition in Fig. 2 can therefore be quant
tively accounted for by the instanton mechanism. The rel
ation time of the escape rate appears to be the time it ta
the instanton to ascend.

When the shape of a potential well changes, the proba
ity distribution for a Brownian particle in that well follows in
the course of time. Suppose we have a barrier as in Fi
with a nonfluctuating heightE. When we start with a Diracd
function at x50 as the initial condition, we can solve th
Fokker-Planck equation by separation of variables~cf. @8#,
Sec. 5.2.5!. This leads to a sequence of eigenfunctions, e
of which exponentially relaxes to zero. The relaxation tim
can be derived to be the positive solutions fort of

tan(1
2 A4/t2E2)52A4/t2E2/E. The largest relaxation

time, t1, is the one corresponding to the first eigenfuncti
and this time can be taken to be the intrawell relaxation ti
of the bulk of the distribution. In the small noise limit~large
E) t1 approaches 2/E2.

The eigenfunction expansion emphasizes the bottom
the well, nearx50, where most of the probability is concen
trated. But in the setup of Fig. 2 it is the relaxation of t
escape rate that is of importance. For the escape over
barrier it is the little bit of probability near the top, i.e.,x
51, that is relevant and in that region the equilibration tak
longer (1/E vs 2/E2). To understand this in another way tak
again the barrier as in Fig. 6 with a stationary heightE. For
a particle at positionx, 0<x<1, at t50 the MFPT isT(x)
5$eE2eEx2E(12x)%/E2. When the particle is atx50 at
t50 this meansT(0)5(eE212E)/E2. For an ‘‘equili-
brated particle’’ we have a Boltzmann distributionP(x)
5Ee2Ex/(12e2E). For such a particle the MFPT isT*
5*0

1T(x)P(x)dx, which works out to T* 5(eE22E
2e2E)/@E2(12e2E)#. T* is smaller thanT(0) and we can
taket5T(0)2T* to be the time it takes for the probabilit
density to go from ad function atx50 to a an equilibrated
Boltzmann distribution. As such it is a good measure for
intrawell equilibration time. We findt5(1/E)2(2/E2)
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12e2E/(E(12e2E)). So at leading order in 1/E ~taking the
largeE limit is equivalent to taking the low noise limit! the
adiabatic adjustment timet equals the instanton time.

The result of the preceding paragraph is a special cas
Eq. ~20! as derived in Sec. I. But for the piecewise line
slope there is no curvature at the top and no curvature a
bottom. So there are no flat basins that are to be crosse
mere diffusion.

When we take the instanton~equilibration! time of 1/E
back to dimensionalized variables with a well of any wid
L, we getbL2/E. It is worth noticing that this time does no
depend on the temperature. This may seem paradoxical s
the equilibration is a diffusion driven process. However,
slower diffusion at lower temperature is apparently balan
out by the fact that the Boltzmann distribution prescribe
smaller probability density near the top of the barrier
lower temperatures. The slower diffusion at lower tempe
ture is compensated for exactly by the smaller fraction t
has to diffuse and the equilibration time comes out indep
dent of temperature. On the other hand, the 2/E2 equilibra-
tion time of the distribution in the bottom of the well un
scales as 2kTbL2/E2 and does depend on temperature.

Take a sufficiently high linear barrier of heightE at width
1 ~Fig. 8!. If both the height and the width are multiplie
with the same factorl a linear well with the same slope i
obtained. The instanton time, and thus the relaxation time
the escape rate, increases with the same magnification fa
l. When the relaxation is from ad function to a Boltzmann
distribution, forE larger than about 4, the vast majority o
the probability is and stays near the bottom of the well a
does not ‘‘sense’’ anything of what happens to the right
x51. Indeed the 2kTbL2/E2 equilibration time of the dis-
tribution in the bottom of the well is insensitive to the ma
nification as thel ’s in E2 andL2 cancel each other out.

There is no obvious quantitative definition for the rela
ation time of a distribution in a well. This relaxation is not
simple exponential one and proceeds differently at differ
points in the well. Taking as the criterion the behavior of t
majority of the probability in the bottom of the well leads

FIG. 8. We create a bigger and wider well with the same slo
by taking the well depicted in Fig. 6 and extend the height a
length by the same factorl. The instanton time and the relaxatio
time of the Kramers rate increase by the same factorl, whereas the
intrawell relaxation time for the majority of the probability remain
unaffected.
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different characteristic times than taking the relaxation ti
of the escape rate as the criterion. Generally, the relaxa
of the probability distribution cannot be identified with th
relaxation of the escape rate to the Kramers rate@Eq. ~1!#.
The escape rate has a slower relaxation.

Finally, in the same way as we did at the end of Sec. I
can ‘‘see’’ the instanton by following the relaxation of th
probability density in a stationary potential through t
Fokker-Planck equation. Again we start with a delta functi
at the bottom and look at the flux at a point sufficiently f
away from the bottom. This time we do not need numeri
For the linear case an easy analytic expression for the
can be derived.

Take a linear slope that has a reflecting barrier atx50. At
x51 the potential energy isE. The slope extends to infinity
so for allx, E is also the value of the slope and therefore
the deterministic force driving a particle tox50. Before t
50 the slope isE0→`. At t50 the value of the slope
switches to a finite valueE @Fig. 9~a!#. The Fokker-Planck
equation that describes the time evolution of the probabi
density when t.0 is ] tP(x,t)5(E1]x)]xP(x,t). The
boundary condition is obtained from the fact that the flux
the reflecting barrier atx50 equals zero at all times, i.e
(E1]x)P(0,t)50. The initial condition is constituted by th
Boltzmann distribution on E0, i.e., P(x,0)5E0e2E0x.
Laplace transforming the time@p(x,s)5*0

`e2stP(x,t)dt#
leads to the following ordinary differential equation inx:

e
d

FIG. 9. ~a! We have a reflecting barrier atx50 and a positive
slope that extends tox→`. At t50 the slope is changed from
value E0 to E. For this linear setup it is possible to analytical
follow how the probability density for an overdamped Brownia
particle relaxes to a new Boltzmann distribution. In the text we fi
the simplest mathematics for the case thatE0→`, i.e., att50 we
start out with a Diracd function. ~b! A plot of the flux,] tP(x0 ,t),
throughx0510 for E510. Apparently the appropriate amount o
probability arrives in an ‘‘instanton package’’ after a timex0 /E.
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]xxp~x,s!1E]xp~x,s!2sp~x,s!52E0e2E0x. ~28!

This equation is easily solved and yields forp(x,s)

p~x,s!5Celx2
E0

E0
22E0E2s

e2E0x, ~29!

wherel is the only negative eigenvalue,

l52
1

2
~E1AE214s!. ~30!

The exponential with the positive eigenvalue is not a leg
mate part of the solution since it would letp(x,s) blow up at
x→`. Demanding the solution to be normalizable is equiv
lent to allowing only the negative eigenvalue. The value
the constantC is to be determined from the boundary cond
tion and we find

C5
2E0~E02E!

~E1AE214s!@s2E0~E02E!#
. ~31!

Taking theE0→` limit effectively means that we start with
a d function atx50. In Laplace space thet→0 limit corre-
sponds tos→`. For infinite E0 and finites the second par
of the solution~29! ~the particular part! cancels out and the
numerator ofC cancels against thes2E0(E02E) part in the
denominator. The inverse Laplace transformation can n
easily be performed and gives as the solution

P~x,t !5Ee2ExF1

2
1

e2(2Et1x)2/4t

EApt
1

1

2
erfS 2Et1x

2At
D G .

~32!

Using thez→` expansion for the erf function@13# we take
erf(z)'12(1/zAp)e2z2

and find atx50

P~0,t→`!5EF11
4

E3tApt
e(2E2/4)tG . ~33!

So we see a relaxation time for the probability density ax
50 that is proportional toE22. We get a different picture for
x0.1/E, i.e., whenx0 is outside the diffusion dominate
domain. For thet→` limit the Boltzmann distribution pre-
scribesP(x0 ,t→`)5Ee2Ex0. After t05x0 /E, i.e., the time
it takes the instanton to go from 0 tox0, the argument of the
erf function and of the exponential in Eq.~32! equals zero
and we thus have

P~x0 ,x0 /E!5Ee2Ex0F1

2
1

1

ApEx0
G . ~34!

For Ex0 being sufficiently larger than one~i.e., being outside
of the diffusion dominated domain!, we getApEx0!1/2.
This means that after the instanton timex0 /E the probability
density atx0 has reached 1/2 of its final valueEe2Ex0. Fig-
ure 9~b! shows the flux as a function of time through a po
x0 far outside the diffusion dominated domain. The figu
shows how the probability arrives in a ‘‘package’’ that
-

-
f

w

t

centered around the instanton timet05x0 /E. The flux is
easily evaluated asJ(x,t)52(E1]x)P(x,t) and yields the
simple expression

J~x,t !5
x

2tApt
e2(Et1x)2/4t. ~35!

For largex and t it is the variations in the exponent that a
important whenx and t vary. At a locationx0 outside the
diffusion dominated domain the fluxJ(x0 ,t) will have a
maximum when (Et1x0)2/4t has a minimum. One easily
finds that this happens whent5x0 /E, i.e., the peak of the
‘‘probability package’’ follows the instanton path. Figur
9~b! shows the shape of the instanton. We can estimate
width of the instanton by making a Taylor expansion
f (t)5(Et1x0)2/4t aroundt05x0 /E. Going to second orde
@ f (t)' f (t0)11/2f 9(t0)(t2t0)2# leads to f (t)'Ex0
1(E3/4x0)(t2t0)2. The coefficient of the second order Ta
lor term represents the curvature at the maximum and
square root, i.e., (E/2)AE/x0, is a good approximation for
the ‘‘sharpness’’ of the instanton@cf. Fig. 9~b!#. So the in-
stanton is more sharply peaked for steeper slopes~or, equiva-
lently, lower temperature/smaller noise!. The instanton also
gets wider for largerx0, i.e., as it moves up it flattens out.

The picture that emerges is the following. In the rela
ation from ad function to a Boltzmann distribution along th
x axis the appropriate amount of probability in some inter
is deposited as a package that arrives after the instanton t
The instanton package moves as the reverse of a downsli
particle, except for the fact that the instanton has a widen
probability distribution as time goes on.

DISCUSSION

The theory we presented applies in principle to any a
vated process. For most chemical reactions the intrawell
laxation time~whether you take it to be the relaxation time
the majority of the distribution or the relaxation time of th
Kramers rate! is of the order of femtoseconds and as such
yet within a realm that is experimentally accessible. Ho
ever, there are other activated processes that take plac
more measurable time scales. For nucleation phenomena
instance, the energy as a function of the size of the nu
ation kernel looks like a curve as in Fig. 1. In such setu
thermal fluctuations have to increase the size of a ke
against the energy gradient until the critical size~i.e., the
maximum in Fig. 1! is reached. Once the critical size is e
ceeded the kernel rapidly grows and loses energy. In nu
ation experiments the relaxation times we have studied
this paper are within limits of measurability. A sudde
change of the potential could, for instance, be realized b
sudden change in temperature.

Recently there has been a growing interest in the beha
of Brownian particles in oscillating or fluctuating potential
These studies have also led to the discovery and explana
of stochastic resonance@15,16# and noise induced transpo
@17#. In all of the systems that exhibit these phenomena
time scale of intrawell relaxation is important and it grea
matters for the response of the system whether the extern
imposed fluctuations or oscillations are slower or faster th
this time scale. In Sec. II we have shown in great detail h
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this is the case in resonant activation.
In the Langevin picture we see the instanton as the m

likely escape path. As such it happens to be the reverse o
deterministic ~noiseless! downslide. In the Fokker-Planc
picture we see the instanton again. There it appears that
ing the intrawell relaxation of a distribution from a Diracd
function to a Boltzmann distribution the appropriate amo
of probability is delivered in the form of a package who
upward journey is the exact reverse of the determini
-
ur
st
he

ur-

t

c

downslide. The relaxation time of the escape rate thus eq
the time to deterministically slide down the barrier, i.e., t
instanton time. This ‘‘happy coincidence’’ constitutes th
simple, bottom line result of this paper.
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