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Abstract 

We consider diffusive motion on a periodic, anisotrop~~ potential. Adding a zero-average force that fluctuates between 
three values: -F, 0 and + F, can bring about net Bow. As the frequency of the ~uctuat~~ns varies the direction of the flux 
can change. We discuss a possible aF~~icatio~ for the ~oastm~on of a device to separate ma~ro~ole~u~es* 

A periodic potential is ffuctuating between three 
profiles as in Fig. 1. In state 0 there is a periodic 
anisotropic piecewise linear profile and no net force, 
in the + state there is an added force to the Ieft (i.e. 
a potential with a positive slope) and in the - state 
the same force is added to the right (i.e. a negatively 
sloped ~tentia~~~ So, basically, we have the profile 
of the 0 state and added noise in the form of a force 
that is ~~ctuating in a M~kovi~ fashion between 
-F, 0 and F. We consider the behavior of a Brown- 
ian particle in this system. 

In the treatment that follows we take F, E and I): 
such that the potential is monotonically going up in 
the - state and monotonically going down in the 
+ state (Fs- E/ar and F 3*- E/(1 - a)). More 
specific conditions allow for approximations that 
will be formulated later. 

’ E-mail: mb~er~surge~.bsd.uch~ca~o.edu. 

It is known that dichotomous zero-average Buctu- 
ating forces super-imposed on an anisotropic peri- 
odic potentia1 can bring about a net flux [I]. It is 
underst~d how and in what direction flux occurs 
and how this flux changes are the flipping rate 
changes. Here we go beyond the dichotomous noise 
that Magnasco studied in Ref. fl] but, unlike Doering 
et al. [Z], we stay in a realm that is analytically 
managable by a computer algebra system like 
“Mathematics”. In the next three sections it will be 
observed how the induced flux changes as the corre- 
lation time of the noise changes. Because our noise 
is three-state we can vary another parameter, the 
Batness, which reflects how much time is spent in 
the O-state versus the + and - states. The dichoto- 
mous noise of Magnasco in Ref. fl] has a flatness of 
one, which cannot be varied. We will also observe 
how the flux varies as a function of the flatness. For 
different domains in the parameter space we can 
qualitatively understand how and why flux and re- 
versals of flux occur. We can, moreover, construct 
approximations for how the flux changes when char- 
acteristics of the noise are changed. 
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2. Low frequency domain 

The low frequency limit is when log y -+ - ~0. In 
the low frequency domain there is, in each of the 
three states, enough time for the probability distribu- 
tion to relax to and spend most of the time in the 
stationary probability distribution belonging to that 
state. For large enough E (E > 4) the probability 
distribution in the 0 state can be approximated by 
Delta functions at . . . , - 1, 0, 1, 2,. . . . 

In the 0 state the net flux J(O) is zero. The flux in 
the - state is Jl -F) and the flux in the f state is 
J(F). The fluxes J( -F) and J(F) can be explicitly 
evaluated in this adiabatic limit (cf. Ref. El]). Of the 
four slopes involved in the + and - state, with 
$<a<1 the (-E/(1--a)+F) slope of the + 
state is the smallest. One can think of this slope as 
the bottleneck and the reason that we get 1 J( - F)) 1 
> 1 J(F) 1 in the low frequency limit. We thus have 
a net flow to the right (i.e. a positive flux) in the low 
frequency limit. 

Increasing y away from the low frequency limit 
another effect, giving flux to the left, starts to play a 
role. Provided y is small enough, we get, in the + 
and - states, a spread of the probability where a 
fraction cy is in the intervals (k, cx + k) and a 
fraction 1 - cy is in the intervals ((Y + k, k C l), 
where k is any integer. So more probability ends up 
on the long slope than ends up on the short slope. If, 
in that case, we flip to the 0 state and go back to the 
delta functions at - 1, 0, 1, 2,. . . , there will be a 
shift to the left of the center of mass of cu - 3. We 
will call this the “flashing barrier” effect. 

Next we will use these ideas as a basis for a 
qu~titative approximation. In Fig. 2 T_ is the frac- 
tion of time spent by the potential in the - state, 
likewise, 7, is the fraction of time spent in the + 

fraction 
I 

of time 

occupied r_ 

Z.-i 2-O Z-1 

b v 

-T,o z=+ 

Y Y 

Fig. 2. The variable K in the kinetic scheme determines the 
fractions of time spent in the + , 0 and - states. 

state and r0 is the fraction of time spent in the 0 
state (see Fig. 2). 

From the equations 

7-f 70 + 7+= 1, r_+ 7+, A70 = 7+, 

we obtain r_ = r+= l/(2 - + l/h) and also the 
‘ ‘ flatness’ ’ , the ratio of the fourth moment and the 
square of the second moment, is easily obtained, 

(2”) T++ 7_ 1 1 
q= (z2)2= (7++7_)2 =7,+= 27_ 

In the low frequency limit the net flux is 

T_J( -F) + T+J(P) - j&F) +.qq]. 
The average number of transitions per unit of time 
into the “0” state is (r_ + r+ )y = y/cp and we thus 
obtain as the linear approximation at low frequency 

f(y) = d{$[J( -47) +-J(F)] - (ff - gy). 

Fig. 1. The setup for the system. The periodic, anisotropic potential is shown in the middle. A macroscopic force that fluctuates between 
-F, 0 and +F, where F is large, is applied and leads to the system ~uc~ating between the three depicted profiles. 



14 M. Bier/Physics LettersA 211 (19%) 12-18 

To get an idea until what y this approximation is 
valid we perform the following calculation. We take 
for the diffusion coefficient D = 1 and take as the 

unit of length the period of the potential. In the + or 
- state, with at t = 0 a Dirac delta function at 

x = 0, we get a spreading Gaussian as time evolves, 

P(O, x; t) z --$-exp( - (‘:r’*). 
We see that after d a unit of time (i.e. y = 8 so 
log y = 1) the standard deviation around :F is half a 

period. 
For a large enough positive F we can take 

sinh($F) = cosh(iF) = ieF/* and for large enough 

negative F we have sinh(iF) = cash($) = ie-F’2. 
Substituting this in Magnasco’s [l] formulae for 
J(F) and J( - F), we find that all the exponentials 

cancel. When we moreover have E2/F3 CK a2(1 
- (~1~ we can make some neglections and find 

J(F) +J( -F) = F 
(CCEE/F)(l-a+E/F) 

a(1 - o) + (2a - l)E/F 

(a+E/F)(l-a-E/F) 
- 

I (~(l- o) -(2a- l)E/F . 

Expanding this expression in powers of E/F we 
find that the first nonzero term occurs at third order, 

whence we get the approximation 

J(F) +J( -F) = 

For the flux J as a function of the flipping rate y we 
end up with the following relatively simple approxi- 
mation for the low frequency domain, 

(2a - 1)E3 

41_4*F2 - a ’ ’ . ( --I) 

In Fig. 3 this approximation (the dotted line on the 
left) is graphed together with the exact evaluation 
(the solid line) for F = 200, E = 8, A = 1 (which 
implies 40 = i and (Y = g. The exact evaluation can 
be obtained following the method described in Ref. 
[3]. The difference with the dichotomous case is that 
here we face three coupled second order linear ho- 
mogeneous equations. So the exponents have to be 
obtained from an eigenvalue equation which is a 

Fig. 3. The solid line gives the flux as a function of the flipping 

rate y for the system shown in Fig. 1. The parameter values are 

E = 8, F = 200, (Y = i and A = 1 (leading to a flatness of cp = t). 

The dashed line on the left is the result of the low frequency 

approximation and the dashed line on the right is the result of the 

high frequency approximation. 

fifth order polynomial and the coefficients follow 
from a linear algebraic system of twelve equations. 

We see that the approximation does indeed work 
well until about log y = 1. It appears furthermore 
that the approximation does cover the first flux 

reversal and that the “flashing barrier” effect is 
indeed “responsible” for this flux reversal. Finally, 
it is interesting to note that the frequency at which 
the first flux reversal takes place is, in the linear 
approximation, independent of the flatness of the 

noise. 

3. High frequency domain 

In the high frequency limit we take as a starting 
point the probability density distribution on the aver- 

age potential and we calculate how this Boltzmann 
distribution gets “jolted” by the fluctuating force. 
The average potential is the 0 state. We normalize 
the probability over one period. For a sufficiently 
large value of E (such that we can neglect ePE 
relative to 1) the normalization factor approximates 
E and with the energy in units of kT we have 

p(x) =pl( x) = EemEX’” ifOgx,<c2, 

=pa(x) =Ee -E(l-u)/(l-x) if a<x< 1. 

It is the barrier at x = (Y that is the bottleneck for the 
flux. In the 0 state there are not very many “jumps” 
over this barrier and, moreover, there are as many 
forward as backward ones. Net flux occurs because 
in the + state there is a different probability for a 
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+F 

- 
-F 

Fig. 4. The basic idea behind the high frequency approximation. 
The top shows the average potential and the bottom shows the 
Boltzmann distribution on this potential. During a sojourn in the 
I- F state an amount of probability P, is pushed over the barrier 
in the positive direction and during a sojourn in the - F state an 
amount P_ is pushed over the barrier in the negative direction. 
For small dwelling times P, > P_, because the (a, 1) slope is 
steeper than the (0, (Y) slope. But for larger dwelling the faster 
increase of P_ away from cr leads to P_ > P,. 

forward jump than there is for a backward jump in 
the - state. Thinking of this flux as deterministic 
(like in hydrodynamics) will help us to understand 
the flux as a function of y in the high frequency 
domain, including the flux reversal (see Fig. 3). 

Consider Fig. 4 which depicts the average poten- 
tial as well as the probability density. Whenever +F 
is “on” for l/y units of time an amount of proba- 
bility of 

p+= ~:<-s/*+&+) dx 

is pushed forward over the barrier. When -F is 
‘“on” for l/y units of time an amount 

P._ = 
/ 

&+[1-E/w-cr)+Fl/y 
P2( 4 dx 

a 

is pushed backward over the barrier. The areas P, 
and P_ are indicated in Fig. 4. It is easy to see that 
for very high y the width of the areas P, and P_ 
goes to zero and we can approximate: P, 
=pl(aX-E/a + F)/y and P_=p,(aX-E/(1 
- ar) + F)/y. Here (-E/Q + F)/y is the width of 
area P, and [-E/(1 - a) + F],/r is the width of 
area P_. We have PI(a)=pz(a) =E e-s. With 
5 < (Y < 1 the width of the P, area is bigger than 

that of the P_ area and thus P, > P_. This means a 
flow in the positive direction for the fluctuating 
system as a whole. When we lower the value of y 
the widths of P, and P_ both grow with the same 
factor, but the average height of the P_ area grows 
a lot faster than the average height of the P, area. 
This “height effect” is exponential and will in the 
end always “win” in comparison to the linear width 
effect, Around the point where P+= P_ there is a 
flux reversal. 

To get quantitative accuracy of our approximation 
and to get zero flux at y + ~0 we have to take one 
more effect into account. A particle that gets pushed 
a distance 6 across the x = (Y barrier when + F is 
“on” has a probability of (eEeeE s/“-cr) - l)/(eE 
- 1) to go back over the barrier and get back to the 
trench it came from when the system is again in state 
0 (see Ref. 141, Section 5.2.8). For a particle that gets 
pushed a distance E in the negative direction by -F 
this return probability equals (eEeeE ‘Ia - l)/(eE 
- 1). For y + 03 the distances 6 and E get very 
small and the return probabilities approach one. 

Next we take all the abovementioned effects into 
account and obtain one expression for the flux as a 
function of log y to approximate the high frequency 
domain. A particle at location x in the P, area is at 
x’ after application of +F for l/y units of time 
(remember: we neglect diffusive effects). We have 
for the relation between x and x’, 

The amount of probability that eventually gets trans- 
ferred by “one trench” (i.e. one period = one unit of 
distance) by +F applied for l/y units of time is 

R,= 
I 

a+E/(l-a)+Fl/y 

.X!=CY 
pl( x)d”( x’) dx’, 

where &)(x’) is the probability that a particle that 
mounts the x = fy barrier when +F is “on” actu- 
ally goes on to x = 1 (versus diffusing back over the 
barrier) when +F is “off” again. We have (cf. Ref. 
[4], Section 5.2.8) 

,E - ,sfl--nVo--af 
7P(x) = v beE _ 1 . 
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Likewise we have 

R_= lrea_(E,~+f,/vP2(X)“‘O)(X’) dx’, 

with 

eE _ $,/a 
7r(O)(X)’ - e”;l . 

The integrals can be evaluated analytically by 
“Mathematics” and the net flow of the fluctuating 
system is J = y(R+ - R_ )/2~. The result of this 
approximation for F = 200, E = 8, a = i and cp - 1 
is the dotted line on the right edge of Fig. 3. The 
approximation is no longer useful at flipping times 
larger than about 5 X 10e4, i.e. log y < 3.3, because 
this is about the time it takes to slide down the short 
slope when “ + F” is on. For longer flipping times 
the areas P, and P_ start to extend over several 
periods which would lead to complicated expressions 
(sums of integrals) for R, and R_. 

Though the approximation has the right shape, its 
peak occurs at a value that is a factor 5 lower than 
the real solution. The flux reversal in the approxima- 

-1 a 4 6 

tion takes place at a value for the flipping rate that is 
a factor 5 too high. There are many effects that ought 
to be taken into account for quantitative accuracy. 
We neglected, for instance, diffusive forces. We also 
took the average transferred areas P, and P_ to be 
the areas transferred during an average dwelling in 
the + and - state. 

4. Flux reversals 

When the flatness is increased from its minimum 
value of 1 to a, the fraction of time spent in the 0 
state grows from 0 to 1. For a flatness of 1 we have 
the dichotomous noise that was studied by Magnasco 
in Ref. [l]. In that case (see Fig. 5a) we have no flux 
reversals and for increasing log y the flow decreases 
sigmoidally and monotonically to 0. Taking values 
of the flatness away from 1 (see Fig. 5b) we create 
the discussed “flashing barrier” effect. In a flux 
versus log y graph this effect translates into a dip at 
at around log y = 1.5. 

In the high frequency domain Figs. 5c and 5d 

(b) 

-2 II 2 6 6 

Fig. 5. The flux as a function of the flipping rate y for E = 8, F = 200, a = i and different values of the flatness: (a) (p = 1, (h) cp = i, (c) 

cp = z, (d) cp = I. The dashed 1’ mes again indicate the low and high frequency approximations. No flux reversals occur when the flatness is 

too close to one. Beyond a certain critical flatness around 3 the last flux reversal no longer occurs and J = 0 is approached from the 

negative side. 
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show that the last flux reversal is no longer present 
at a sufficiently high flatness; J = 0 appears to be 
approached from above when cp = 2.5 and from 
below when ‘p = 3.5. This behavior is not reflected 
in the high frequency approximation described in the 
previous section. Elston and Doering have carried 
out an asymptotic expansion of the flux J in powers 
of l/y [5]. Their analysis is for a general potential 
v(x) with period 1. The first nonzero term in the 
expansion appears at third order in l/y, 

+ q(w4), 
where Z = 1,’ exp[- v(x)] dx and Y = 
/d exp[ v(x)] dx. For large values of F, such as the 
one we have used in our examples, the first term 
which goes with F4 is expected to dominate over 
the second F2 term. The first term indeed switches 
sign at cp = $(3 + 6) = 2.62 and this seems consis- 
tent with our observations. The first term of the 
expression generally fits the exact solution very well 
for different values of the flatness when log y > 4. 
The problem is that the formula of Elston and Doer- 
ing is for smooth potentials and is not supposed to 
apply to our case. For our case the integral in the 
second term is underfined (divergent). That just the 
first term gives a good approximation to the exact 
solution is something that, for the time being, we 
must accept as a “happy coincidence” and might be 
better understood once we have a complete expan- 
sion. 

5. Discussion 

That nonequilibrium fluctuations can bring about 
flux has been known for a while [6]. What we have 
shown and explained in this paper is that the direc- 
tion of the induced flux can depend on characteris- 
tics of the noise like the fastness and the flatness. It 
is surprising that already the relatively simple setup 
presented in Section 1 and Fig. 1 can lead to such 
rich and complicated behavior. 

Systems similar to ours have been studied. Doer- 
ing et al. [2] looked at the limit of infinitely fast 
noise with a continuous spectrum instead of three 
states and they varied the strength of this noise. In 
our notation varying the strength of the noise would 
mean changing F. The behavior in the high fre- 
quency realm for increasing F would be the same as 
for increasing dwelling times l/y; in both cases 
such an increase means wider strips, P, and P_, in 
Fig. 4. Where we took Markovian noise, Bartussek 
et al. [7] took a function F(t) =A sin(wt) (which 
has a flatness of $) and superimposed it, not on a 
sawtooth, but on a smooth anisotropic function. They 
varied the strength A, the fastness o and the thermal 
noise strength (equivalent to the temperature) and 
found flux reversals as these parameters were 
changed. The behavior for piecewise linear potentials 
and for smooth potentials is not expected to differ 
much; systems with diffusion tend to be very “for- 
giving” to corners. 

A possible application of the flux reversals could 
be for the separation of macromolecules. How this 
application arises becomes clear when we redimen- 
sionalize the variables. To unscale the frequencies 
(flipping rates) they have to be multiplied with 
kT/pL2. The quantity /3, representing the coefficient 
of viscous friction, is specific for each macro- 
molecule and depends on shape and size. Different 
macromolecules thus “feel” a different part of the 
frequency spectrum. 

A nanotechnological device that employs Brown- 
ian motion in the presence of a fluctuating potential 
to drive microscopically small particles has already 
been constructed by Rousselet et al. [8]. A device 
that operates according to the model that we have 
presented here would have a great advantage over 
any existing device. With our procedure it is always 
possible to find some flipping rate for which a 
molecule with friction & moves in a direction 
opposite to the one of a molecule with friction p2. 
Looking in Fig. 3 around log y = 2.5 we see that a 
difference of a factor 10 in the viscous friction /3 
can translate in the difference between maximum 
positive flow and maximum negative flow. Devices 
for the separation of macromolecules usually operate 
based on the fact that molecules with a larger /3 
move slower in a certain direction when a force is 
applied in that direction. Also the fluctuating poten- 
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tial apparatus of Ajdari and Prost [9] makes molecules 
move in the same direction but at different speeds. 
The fluctuating force device proposed here is actu- 

ally able to let molecules with different /3 ‘s move in 

opposite directions. 

Acknowledgement 

It was Charles Doering who proposed the study of 
this setup. The “flashing barrier” effect is an insight 
of Robert Almgren. I am furthermore grateful to 

Dean Astumian for useful discussion and to the NIH 

(grant No. ROlES06010) for funding. 

References 

(11 M. Magnasco, Phys. Rev. L&t. 71 (1993) 1477. 

[2] C.R. Doering, W. Horsthemke and J. Riordan, Phys. Rev. 

Lett. 72 (1994) 2984. 

[3] R.D. Astumian and M. Bier, Phys. Rev. Lett. 72 (1994) 1766. 

[4] C.W. Gardiner, Handbook of stochastic methods, 2nd Ed. 

(Springer, Berlin, 1985). 

[5] T.C. Elston and C.R. Doering, submitted to J. Stat. Phys. 

(1995). 

[6] R.D. Astumian, P.B. Chock, T.Y. Tsong and H.V. Westerhoff, 

Phys. Rev. A 39 (1989) 6416. 

[7] R. Bartussek, P. Hanggi and J.G. Kissner, Europhys. Lctt. 28 

(1994) 459. 

[8] J. Rousselet, L. Salome, A. Ajdari and J. Prost, Nature 370 

(1994) 113. 

[9] A. Ajdari and J. Prost, C.R. Acad. Sci. 315 (1992) 1635. 


