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Abstract
We consider one dimensional diffusive search strategies subjected to external 
potentials. The location of a single target is drawn from a given probability 
density function (PDF) fG(x) and is fixed for each stochastic realization of 
the process. We optimize the quality of the search strategy as measured by the 
mean first passage time (MFPT) to the position of the target. For a symmetric 
but otherwise arbitrary distribution fG(x) we find the optimal potential that 
minimizes the MFPT. The minimal MFPT is given by a nonstandard measure 
of the dispersion, which can be related to the cumulative Rényi entropy. We 
compare optimal times in this model with optimal times obtained for the 
model of diffusion with stochastic resetting, in which the diffusive motion is 
interrupted by intermittent jumps (resets) to the initial position. Additionally, 
we discuss an analogy between our results and a so-called square-root principle.

Keywords: optimal search, random walk, diffusion in potential,  
stochastic control, optimal potential, random search, search strategies

(Some figures may appear in colour only in the online journal)

1. Introduction

A random search process, its duration, energetic cost, and optimization are frequently ana-
lyzed in various interdisciplinary contexts [1–3], ranging from diffusion of regulatory proteins 
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on DNA [4–6], foraging patterns of animals [7–20], and page ranking, graph mining and 
general optimization techniques used in computer science [21–25]. Often, the search process 
becomes confined by the domains of restricted motion, or subject to landscapes with distrib-
uted targets. The questions which then arise naturally are how long it takes to locate a target 
and how to determine optimal search motion. When an unsuccessful random search is broken 
off and a new search is started again at the origin, the process is known as a random walk with 
resetting [26]. Such random walks have recently attracted significant research attention; of 
particular interest is how the resetting rate and the features of the diffusive motion (super- or 
sub-) affect the effectiveness of the search [27–29].

The resetting mechanism is an interference from outside and, as such, it is a nonequilibrium 
modification of the system. Accompanied by diffusion in configurational space, search with 
resetting violates detailed balance and leads to a current-carrying nonequilibrium stationary 
state [30] described by the stationary distribution ps(x). The latter can be expressed in terms of 
a Boltzmann weight with an effective potential, ps(x) ∝ exp(−Veff(x)). One is then tempted 
to ask the following question: is the search described by the (equilibrium) Langevin dynam-
ics on Veff(x) just as efficient as a diffusion-with-resetting search? The following approach, 
proposed in [30], has addressed this issue: authors assumed that the target position is fixed and 
studied the first-passage time problem for a diffusive searcher with stochastic resetting with a 
finite rate. Next, optimal search times were compared to those of the equivalent Langevin pro-
cess, i.e. the Langevin process leading to the same stationary state. It was shown that diffusion 
with stochastic resetting gives shorter search times than diffusion in an effective potential.

One thus may be prompted to conclude that equilibrium dynamics is worse as a diffusive 
search strategy than stochastic resetting. In order to show that this is not necessarily the case 
we focus on a slightly different problem: given a distribution of possible target positions 
we separately optimize both the diffusion with stochastic resetting and the diffusion with an 
external potential. The latter optimization is performed in the space of functions, whereas the 
former has only a parameter (the rate of the resetting r) that must be optimized. The diffusion 
coefficient D is fixed and without loss of generality we choose D  =  1.

With the optimization of the potential we choose from a space of functions. With this greater 
flexibility, one may expect that the optimization of the potential leads to shorter MFPTs than 
the mere optimization of the scalar resetting rate. However, as we will show below, there are 
cases in which the resetting scenario is still better, i.e. the nonequilibrium stochastic resetting 
gives shorter MFPTs than any possible equilibrium dynamics search.

2. Problem statement

2.1. Model

A random searcher performs one-dimensional overdamped Brownian motion in the  
potential U:

dXt = −U′(Xt)dt +
√

2dWt, (1)

with X0  =  0. For each realization of the process there exists one target at position G, which 
itself is a random variable with a given PDF fG(x). We introduce the first arrival time

T = inf(t : Xt = G), (2)

which in our case, since the trajectories are almost surely continuous, coincides with the first 
passage time [31]. Our aim is to answer the following questions: what is the optimal potential 
U∗(x) for which the MFPT ⟨T⟩ is minimal? And what is the actual minimum achievable MFPT
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T∗ = min
U

⟨T⟩ (3)

in this setup? Hereafter we assume that fG(x) is not concentrated at the origin, i.e. there is no 
δ function at the origin (and so P(G = 0) := Prob(G = 0) = 0). Our approach can be easily 
generalized to the cases when P(G  =  0)  =  p0  >  0 with the following relation

⟨T⟩ = (1 − p0)⟨T0⟩, (4)

where T0 is defined as T given G ̸= 0, i.e. it is the conditional random variable T|(G ̸= 0).

2.2. Useful definitions

We split fG(x) into two parts:

fG(x) = pH(x) f+(x) + (1 − p)H(−x) f−(−x), (5)

where f+ : R!0 → R!0, f− : R>0 → R!0, p = P(G ! 0), and H(x) denotes the Heaviside step 
function. Note that with these definitions the normalization is preserved, i.e. 

∫∞
0 f±(x)dx = 1.

By F±(x) =
∫ x

0 f±(x′)dx′ we denote one-sided cumulative distribution functions. 
Furthermore, we define functions:

Q±(x) :=
√

1 − F±(x), (6)

g±(x) :=
∫ x

0
Q±(x′)dx′, (7)

and constants:

ρ± := lim
x→∞

g±(x) =
∫ ∞

0
Q±(x′)dx′. (8)

For symmetric (even) fG(x) it is straightforward to show that ρ+ = ρ− and p = 1
2.

3. Results

3.1. General solution for symmetric fG(x)

In the case of a symmetric fG(x) we can solve the problem exactly (for derivation, see appen-
dix A). The optimal potential reads

U∗(x) = −g+(|x|)
ρ+

ln 2 − lnQ+(|x|), (9)

and the optimal MFPT reads

T∗ =
ρ2
+

ln 2
=

1
ln 2

(∫ ∞

0

√
1 − F+(x′)dx′

)2

. (10)

Moreover, for the class of potentials parametrized by an auxiliary variable z:

Uz(x) = −g+(|x|)
ρ+

z − lnQ+(|x|) (11)

we observe a universal behavior of the MFPT
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⟨Tz⟩ = ρ2
+

ez + 2e−z + z − 3
z2 . (12)

Note that in that case the dependence of the MFPT on fG(x) comes only from the scaling fac-
tor. We emphasize that the universal expression (12) is exact and does not involve any approx-
imations. Indeed, a perfect agreement between the predicted averages, see equation (12), and 
the averages calculated from 106 sample trajectories by means of stochastic simulations is 
observed (see figure 1).

3.2. Square-root principle

The formula for the optimal time (10) is mindful of the so-called square-root principle. 
This principle emerges when we consider a simpler, discrete equivalent of a random search. 
Assume there are N states (positions) in which we look for exactly one hidden target. Let pi 
be the probability that the ith state is the target. The search is performed by randomly sam-
pling positions where the probability of picking a position i is qi. The values of qi cannot be 
changed in the course of the search. The question that we want to address is what qi optimizes 
the expected number of trials before finding the target. A straightforward expression can be 
derived for the optimal qi’s

Figure 1. A comparison between the analytical prediction (12) and estimates obtained 
from 106 independent sample trajectories for two different target locations distributions: 
crosses and circles represent results obtained for the two-point distribution and for the 
Laplace distribution, respectively. In the latter case the MFPT has been rescaled by 
the factor 1

ρ2
+
= 1

4
 to match the universal curve. The integration has been performed 

by means of the Euler–Maruyama method with ∆t = 10−3, with additional correction 
to avoid the bias of the MFPT estimator, as explained in [32]. Because of the large 
number of samples, error bars would be smaller than or, in some cases, comparable to 
the markers and thus are not included in the plot.
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q∗i =
1
C
√

pi =

√pi
N∑

j=1

√pj

,
 (13)

i.e. the optimal probability is obtained by taking a square root of the probability pi with a 
proper normalizing factor C. Furthermore, the square of the normalizing factor gives the opti-
mum for the expected number of trials ⟨nd⟩∗:

⟨nd⟩∗ = C2 =

⎛

⎝
N∑

j=1

√pj

⎞

⎠
2

. (14)

This natural and simple problem has been considered in the engineering community, e.g. in 
the context of a scheduling data broadcast [33] and a replication strategy in peer-to-peer net-
works [34].

In the case of a continuous space of possible target locations the problem is a little bit more 
subtle and has been analyzed in [35]. In the limit of a small single trial range the sum in equa-
tion (14) is substituted by an integral and the probability pi by a probability density function 
f(x), leading to

⟨nc⟩∗ = C2 =

(∫

R

√
f (x) dx

)2

, (15)

in analogy to equation (10). Note that, in contrast to the problem that we discuss in this paper, 
the square-root principle has been derived for a nonlocal search in discrete time, i.e. each trial 
is independent from previous trials. In the case of diffusive search only local moves to close 
sites are possible, i.e. only the neighborhood of the last trial has significant probability of 
being visited. This obviously leads to different formulas for the optimal time (or, analogously, 
the optimal number of trials). Nonetheless, the similarity between equations  (10) and (15) 
suggests that the square-root principle may be fundamental in random search processes.

3.3. Properties of ρ+

Let G+ denote the conditional random variable G|G ! 0. Its probability distribution function 
and cumulative distribution function are given by f+ (x) and F+ (x), respectively. It is easy to 
see that ρ+ has the same unit as G+ . How does it relate to moments of G+ ? As F+ (x) is non-
negative and not larger than one, we have:

ρ+ =

∫ ∞

0

√
1 − F+(x)dx !

∫ ∞

0
(1 − F+(x)) dx = ⟨G+⟩. (16)

We next describe the large x behavior of F+ (x) with a power law. More specifically, we let ∣∣F(x)− (1 − C
xα )

∣∣ ! ϵ for x  >  x0. This leads to

ρ+ ≈
∫ x0

0

√
1 − F+(x)dx +

∫ ∞

x0

√
C
xα

dx. (17)

The integral 
∫∞

x0
x−

α
2 dx is finite if and only if α > 2, which coincides with the condition for 

the variance to exist. We therefore conclude that the finiteness of ρ+ is equivalent to the finite-
ness of the variance:

ρ+ < ∞ ⇐⇒ ⟨G2
+⟩ − ⟨G+⟩2 < ∞. (18)
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The dispersion properties of G can also be discussed in terms of entropies. The entropy of a 
system is commonly understood as proportional to the logarithm of the available phase space. 
However, entropy can also be viewed as the amount of information that is associated with 
the outcome of a measurement. Different setups often require different mathematical formal-
isms and different definitions for the entropy have thus been formulated and used [36–42]. For 
our case the quantity ρ+ can be expressed in terms of a, recently proposed, cumulative Rényi 
entropy (CRE) γβ. For a non-negative random variable X this entropy is defined as follows [43]

γβ(X) =
1

1 − β
log

(∫ ∞

0
F̄β

X (x)dx
)

, (19)

where F̄X(x) = 1 − FX(x) is called the survival function. With this definition, the optimal 
MFPT (in the symmetric case) reads

T∗ =
1

ln 2
exp

[
γ1/2 (G+)

]
. (20)

We see that the optimal MFPT is a monotonic function of the cumulative Rényi entropy for 
β = 1/2. So, given a PDF of G, the CRE quantifies the level of difficulty for the random dif-
fusive search. At this point it is convenient to define a new quantity

S̄q(X) =
1

1 − q

(∫ ∞

0
F̄q

X(x)dx − ⟨X⟩
)

, (21)

which is related to the Tsallis entropy [40–42] in a similar way as the cumulative Rényi entropy 
is related to the Rényi entropy. We will thus call it the cumulative Tsallis entropy (CTE). The 
CTE is non-negative and for q → 1 reduces to the cumulative residual entropy [44]

S̄1(X) = −
∫ ∞

0
F̄X(x) log (F̄X(x))dx. (22)

In our case the CTE can be used to express ρ+ as a sum of two components

ρ+ = ⟨X+⟩+
1
2

S̄1/2(X+). (23)

The interpretation of equation (23) is straightforward. The minimal achievable MFPT by a 
random search for a given distribution of G is related to two features of the distribution: the 
expected distance to the target and a dispersion of the distances with respect to the expected 
distance. The latter is quantified by the CTE. It seems that the CTE may serve as a new mea-
sure of dispersion, or randomness, of a probability distribution and it would be desirable to 
research its properties in detail. Also, its generalization to multivariate random variables may 
be useful. This observation will be the subject of another work.

3.4. Special cases

In this part we analyze four special cases of a symmetric fG(x). We calculate the optimal 
potentials and the corresponding optimal search times and we discuss their properties.

3.4.1. Symmetric two-point distribution. This is the simplest nontrivial symmetric probability 
distribution. The target is at position x0 or at position  −x0 with the same probability, i.e.

fG(x) =
1
2
δ(x + x0) +

1
2
δ(x − x0), (24)

Ł Kuśmierz et alJ. Phys. A: Math. Theor. 50 (2017) 185003
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with x0  >  0. It is easy to check that f+(x) = δ(x − x0) and that the CDF is given by the 
Heaviside function F+(x) = H(x − x0). The optimal potential is given by the formula

U∗(x) =

{
− ln 2

x0
|x| for |x| < x0

∞ for |x| ! x0
, (25)

which has been plotted in figure 2(a). The slope ln 2
x0

 represents a compromise. On the one 
hand, a steeper slope will more rapidly drive the searching particle from the initial x  =  0 to 
a position where there is a probability 1

2 of finding the target. But if the target is not there, 
then you want to quickly reach the other possible position. Thermal activation has to get the 
searching particle back over the barrier at x  =  0 and too steep a slope will delay such barrier 
crossing. The infinite potential barrier is also quite easy to understand: since the target is either 
at the position x0 or  −x0, searching outside the interval [−x0, x0] is a waste of time. The optimal 
time reads:

T∗ =
x2

0
ln 2

. (26)

Intuitively, this distribution is ‘easy’, because there are only two possible positions of the 
target. More precisely, this distribution should lead to the shortest possible MFPT for a 
given expected distance ⟨G+⟩. That this is the case we can verify by inspecting the form 
of ρ+:

ρ+ = x0 = ⟨G+⟩. (27)

In relation to equation (16), we see that this case actually leads to equality. At the same 
time we see that the CTE for this case reads S̄1/2(G+) = 0, i.e. the two-point distribution is 
the least dispersed distribution. No other distribution with the same ⟨G+⟩ can give rise to a 
shorter MFPT.

3.4.2. Symmetric uniform distribution. The uniform distribution is the simplest guess in 
bounded environments. We parametrize it by the expected distance to the target λ = ⟨G+⟩:

fG(x) =

{
1

4λ for |x| ! 2λ
0 for |x| > 2λ

. (28)

Straightforward calculations lead to ρ+ = 4λ
3  and the following form of the optimal potential

U∗(x) =

⎧
⎨

⎩

((
1 − |x|

2λ

) 3
2 − 1

)
ln 2 − 1

2 ln (1 − |x|
2λ ) for |x| ! 2λ

∞ for |x| > 2λ.
 (29)

Due to the compact support of fG(x) there is also an infinite potential well, but not as sharp as 
in the case of two-point distribution (see figure 2(b)). The optimal time is given by the formula

T∗ =
16λ2

9 ln 2
, (30)

and it is almost twice the corresponding value for the two-point distribution.

3.4.3. Laplace distribution. The Laplace distribution maximizes the Shannon entropy for a 
given λ = ⟨G+⟩. Thus it is a natural choice if the only information about the distribution we 
have is ⟨G+⟩. Its PDF has the form

Ł Kuśmierz et alJ. Phys. A: Math. Theor. 50 (2017) 185003
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fG(x) =
1

2λ
e−

|x|
λ , (31)

from which we easily calculate the optimal potential (see figure 2(c))

U∗(x) =
(

e−
|x|
2λ − 1

)
ln 2 +

|x|
2λ

, (32)

and the optimal time

T∗ =
4λ2

ln 2
, (33)

which is exactly four times larger than the corresponding value for the two-point distribution. 
Although the Laplace distribution maximizes the Shannon entropy, it does not maximize the 
MFPT for a given ⟨G+⟩, as seen from the next example.

Figure 2. Visualizations of the relation between the optimal potential (dashed line and 
shaded area under the curve) and the distribution of a distance to the target fG(x) (solid 
line). For readability the optimal potentials have been shifted so that their minimum 
values are zero. (a) two point distribution, (b) uniform distribution, (c) Laplace 
distribution, (d) power-law distribution with ϵ = 2 and µ = 3.
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3.4.4. Power-law distribution. Our last example is a power-law distribution of the following 
form

fG(x) =
µϵµ

2(|x|+ ϵ)µ+1 , (34)

with µ > 0 and ϵ > 0. Parameters µ and ε determine the tail behavior and the scale, respec-
tively. The optimal potential, given by the formula

U∗(x) =
µ

2
ln

(
1 +

|x|
ϵ

)
+

(
ϵ

ϵ+ |x|

)µ
2 −1

, (35)

grows only logarithmically for large |x|, see figure 2(d). The optimal time reads

T∗ =
4ϵ2

(µ− 2)2 ln 2
=

(
µ− 1
µ− 2

)2 4λ2

ln 2
, (36)

where λ ≡ ⟨G+⟩, as before, denotes the expected value of the positive part of the distance to 
the target distribution.

Note that in the limit µ → ∞ with ϵ = λ(µ− 1) the power law distribution asymptotically 
approaches the Laplace distribution. It is easy to check that in this limit the results of the 
Laplace distribution are recovered. Comparing equations (36) and (33) we see that, for a fixed 
λ, the power-law distribution with any µ leads to a higher value of the optimal MFPT than 
the Laplace distribution. Indeed, it is to be expected, since the heavy tails of the distribution 
should make the search more difficult.

3.5. Comparison with diffusion with stochastic resetting

In this section we compare optimal MFPTs of the diffusion with stochastic resetting (T∗
r ) and 

of the diffusion in a potential (T∗
U). The MFPT of the diffusion with stochastic resetting with 

a fixed position of the target (x) has been calculated in [26] and reads:

⟨Tr(x)⟩ =
1
r

(
e
√

r|x| − 1
)

, (37)

where r represents the resetting rate. We average this expression over a distribution of possible 
target positions

⟨Tr[ fG]⟩ =
∫ ∞

−∞
fG(x)⟨T(x)⟩dx. (38)

For symmetric distributions this leads to

⟨Tr[ f+]⟩ =
f̃+ (−

√
r)− 1

r
, (39)

where f̃ (s) stands for the Laplace transform of f(x). The optimal MFPT, T∗
r , is obtained by 

finding the minimum of ⟨Tr[ f+]⟩ as a function of r. Results for different distributions have 
been summarized in table 1. It turns out that the resetting performs better for the uniform 
distribution and for the Laplace distributions. On the other hand, Langevin dynamics on a 
potential appears to be the better strategy for the two-point distribution and for the power-law 
distribution. Given a distribution, no simple criterion for which of the two search strategies is 
optimal could be formulated. With our methods, the ad hoc approach with full derivations is 
the only one.

Ł Kuśmierz et alJ. Phys. A: Math. Theor. 50 (2017) 185003
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4. Conclusions and discussion

We have derived an expression for the potential which optimizes the search time for a single 
target whose position is distributed according to a symmetric PDF. The optimal MFPT is 
given by a nontrivial measure of the dispersion, which can be rewritten in terms of the cumu-
lative Rényi entropy or the cumulative Tsallis entropy. We have compared the optimal search 
times of our diffusive search scenario with the optimal search times obtained in a traditional 
diffusion-with-stochastic-resetting scenario. We have shown that whether one or the other is 
optimal depends nontrivially on fG(x).

This study raises additional questions and opens up new possibilities for further research. 
The introduced cumulative Tsallis entropy appears naturally in the described problem but it is 
not clear how to generalize it to multivariate random variables. It would be thus interesting to 
analyze optimal potentials in a multidimensional diffusive search, in which the optimal MFPT 
may involve the desired generalization.

Stochastic resetting has been assumed to take place with the same intensity across the 
whole space. A more general process with r  =  r(x) could exploit the information about fG(x) 
more effectively. We speculate that, for a given fG(x), the optimal non-homogeneous resetting 
r∗(x) is always more effective than the search in the optimal potential, but a proof is not yet 
known.

Gaussian diffusion is only one example of random search processes used in the context of 
random search strategies. Lévy flights and Lévy walks [45–47] have been proven to outper-
form normal diffusion in different setups of random search strategies [9, 12, 48, 49]. A search 
with Lévy flights and resetting could be a superior strategy in both discrete [27] and continu-
ous [28] time. How Lévy flights perform in the framework of optimal potentials is also still 
to be determined.

We have compared the MFPTs of diffusion with stochastic resetting to the MFPTs of dif-
fusion in a potential. Of course, resetting and a potential can also be used in conjunction. 
Stationary distributions of a Brownian particle with stochastic resetting in a potential land-
scape have been studied [50], but first passage times in such systems are yet to be explored. 
Surely the combination of a potential and resetting can lead to better search efficiency. Indeed, 
it can be shown that the MFPT of such a system has the global infimum at 0, if the optim-
ization of r and U is performed jointly. This is easy to understand: the optimal way to perform 
a search in this case is to run as fast as possible in one of the possible directions, and reset from 
time to time. This corresponds to a steep potential with the maximum at the initial position.  

Table 1. A comparison of T∗
r  and T∗

U for four different PDFs of target locations. 
Distributions are normalized, i.e. ⟨|X|⟩ = ⟨X+⟩ = 1 (note that in both models the 
optimal time scales as ⟨X+⟩2). The level of difficulty of the search grows from the top 
to the bottom. However, the MFPT grows in a different manner for each model, leading 
to changes in supremacy between the two models.

fG
Optimized  
function T∗

r >=< T∗
U

Two-point f1(z) = ez−1
z2

f1(z∗) ≈ 1.54 > 1
ln 2 ≈ 1.44

Uniform f2(z) = ez−1−z
z3

f2(z∗) ≈ 2.19 < 16
9 ln 2 ≈ 2.56

Laplace f3(z) = 1
z−z2 f3(z∗) = 4 < 4

ln 2 ≈ 5.77
Power-law — ∞ ⩾ (

µ−1
µ−2

)
2 4
ln 2

Ł Kuśmierz et alJ. Phys. A: Math. Theor. 50 (2017) 185003
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By changing the steepness of the potential and r together one can achieve an arbitrarily short 
MFPT. In practice, however, energy constraints would limit the feasibility of such a search.

Recently it was proven [51] that optimal sharp (i.e. deterministic and periodic) resetting 
leads to shorter MFPTs than optimal stochastic resetting. Could it be that it is also better 
than any potential? Indeed, optimal sharp resetting for the two-point distribution fG gives 
a shorter MFPT (≈1.34) than the corresponding values for the optimal stochastic resetting 
and the optimal potential (see table 1). Note, however, that the proof in [51] does not apply 
to our model with nontrivial distributions of target locations, because in [51] it is assumed 
that the entire process starts again after each reset. This corresponds to drawing a new value 
of G after each reset. In contrast, in our scenario the target stays at its location until it is 
found. The MFPT of a sharp resetting process for a fixed period of resets scales with the 
distance to the target as xex2/2, thus the MFPT for both power-law and Laplace distributions 
is infinite.

Nontrivial boundary conditions such as impenetrable walls can change the results of the 
search optimization qualitatively. For example, a nonzero stochastic resetting rate is not 
always advantageous for a search in bounded spaces [52]. In the so-called narrow escape prob-
lem [53–55] it has been shown that the dependence of a mean escape time is a nonmonotonic 
function of the range of interaction with the spherical boundary [56]. Note that impenetrable 
walls are equivalent to infinite potential barriers, so they introduce constraints on the poten-
tials used in the optimization.

We have focused here on the first moment of first passage times, but higher moments, and 
especially the variance, may be useful in characterizing search processes. For instance, it has 
been shown that in the case of the optimal stochastic resetting of almost any stochastic process 
(where the target will almost surely be hit in finite time), the MFPT is equal to the standard 
deviation of first passage times [57]. Whether any similar universality of higher moments 
holds in our scenario will be a subject of future investigation.

Higher moments of first passage times are indirectly related to the so-called ‘mortal 
 walkers’ [58–60], Mortal walkers have a limited time to arrive at the target. In practical appli-
cations this could be the case if the searching particle is a nucleus that is subject to radioactive 
decay. If the walker ‘dies’ before finding the target, we effectively get an infinite MFPT. With 
the lifetime of the walker another characteristic timescale is added to the setup. This addition 
changes the optimal potential for a diffusive search and it also changes the optimal rate for sto-
chastic resetting. For example, in the case of short lifetimes of mortal walkers one can expect 
the optimal potential for the two-point distribution to be steeper in order to allow the mortal 
walker to arrive at the target within the limited time. Mortal walkers could be the subject of 
another interesting research venue.

‘Vicious walkers’ [61–65] perform diffusion on a line. They are ‘vicious’, because when 
two walkers meet they annihilate each other. Survival times of vicious walkers in external 
potentials have been studied [66], but to our knowledge there has been no analysis of a 
collective of searching vicious walkers. The general analysis of multiple searching parti-
cles that diffuse and interact may have practical significance as this is what bacteria are 
commonly understood to do. Such analysis, however, is another subject for possible future 
study.
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Appendix. Derivation

A.1. General case

Here we include a sketch of the derivation. For a given PDF fG(x), the mean first passage time 
(MFPT) is calculated from the formula

⟨T⟩ =
∫ ∞

−∞
⟨T|G = xt⟩ fG(xt)dxt. (A.1)

Since ⟨T|G = xt⟩ depends on the sign of xt, we split the integral into two parts, using defini-
tion (5)

⟨T⟩ = p
∫ ∞

0
⟨T|G = xt⟩ f+(xt)dxt + (1 − p)

∫ 0

−∞
⟨T|G = xt⟩ f−(−xt)dxt.

 

(A.2)

The MFPT to a given point for a particle undergoing brownian motion in a potential is given 
by the formula [67]:

⟨T|G = xt⟩ =
{∫ xt

0 dxeU(y)
∫ y
−∞ dxe−U(x) for xt ! 0

∫ 0
xt

dxeU(y)
∫∞

y dxe−U(x) for xt < 0
. (A.3)

To proceed, we split the potential into the positive and negative parts 
U(x) = H(x)U+(x) + H(−x)U−(−x), and plug (A.3) into (A.2). After simple algebraic 
manipulations we arrive at the following expression:

⟨T⟩ = p
∫ ∞

0
dxeU+(x)Q+(x)2

(∫ ∞

0
dye−U−(y) +

∫ x

0
dye−U+(y)

)

+ (1 − p)
∫ ∞

0
dxeU−(x)Q−(x)2

(∫ ∞

0
dye−U+(y) +

∫ x

0
dye−U−(y)

)
,

 
(A.4)

with Q±(x)2 = 1 − F±(x). In the next step we treat the MFPT as a functional of U+ (x) and 

U−(x), and calculate variational derivatives δ⟨T⟩
δU+(x0)

 and δ⟨T⟩
δU−(x0)

. Equating them to zero leads 

to the set of integral equations:
{

pe2U+(x)Q+(x)2
(∫∞

0 dze−U−(z) +
∫ x

0 dze−U+(z)
)
= (1 − p)

∫∞
0 dzeU−(z)Q−(z)2 + p

∫∞
x dzeU+(z)Q+(z)2

(1 − p) e2U−(x)Q−(x)2
(∫∞

0 dze−U+(z) +
∫ x

0 dze−U−(z)
)
= p

∫∞
0 dzeU+(z)Q+(z)2 + (1 − p)

∫∞
x dzeU−(z)Q−(z)2 .

 (A.5)

These coupled equations can be rewritten as decoupled differential equations. Solving these 
equations lead to the general solution with three arbitrary constants (z−, z+, C0). The optimal 
potential takes the following form

⎧
⎨

⎩
U+(x) = − g+(x)

ρ+
z+ − lnQ+(x) + C0

U−(x) = − g−(x)
ρ−

z− − lnQ−(x)
. (A.6)

The potential of the form (A.6) leads to the following expression for the MFPT
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⟨T(z+,z−,C0)⟩ = p
ρ2
+

z2
+

(
e−z+ + z+ − 1

)
+ (1 − p)

ρ2
−

z2
−

(
e−z− + z− − 1

)

+
ρ+ρ−
z+z−

(
peC0(1 − e−z+)(ez− − 1) + (1 − p)e−C0(1 − e−z−)(ez+ − 1)

)
.

 (A.7)

A.2. Symmetric fG(x)

As mentioned before, a symmetric target distribution leads to p = 1
2 and ρ+ = ρ−. Additionally, 

for x  >  0, also Q+(x) = Q−(x) and g+(x) = g−(x) hold. This symmetry should bring about 
symmetry of the optimal potential, which we further assume.
With these assumptions we obtain the general solution of the form (11). We plug this solu-
tion into formula for the MFPT (A.4) and arrive at the following expression for the MFPT in 
function of z and ρ+

⟨Tz⟩ = ρ2
+t(z) := ρ2

+
ez + 2e−z + z − 3

z2 . (A.8)

In the last step we find the minimum of t(z), which turns out to admit a simple form
{

z∗ = ln 2
t(z∗) = 1

ln 2
. (A.9)
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