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1/f Noise has been observed in currents through ion channels, in currents through pores
in lipid bilayers, and in the voltage noise of live cells. In the case of the ion channels
and bilayer pores, a mechanism has been proposed and corroborated. The mechanism
appears robust and may share an underlying logic with Zipf’s Law and Gambler’s Ruin.
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1. Power Laws in the Kinetics of Ion Channels

In the course of the 1970s, the idea became firmly established that it is ion channels
that are behind a cell membrane’s permeability to ions [1]. Ion channels are large
membrane proteins and they are generally specific to just one kind of ion. The first
models to describe the kinetics of an ion channel were simple C ! O, i.e., the chan-
nel has a closed state (C) and an open state (O). The two rates between the states
are constant in time. These rates can depend on parameters like pH, ligand con-
centration or membrane potential. It is because of this that the passive flow of ions
can be regulated.

The Markovian C !O scheme with its constant rates predicts exponentially
distributed dwelling times in both states, i.e., f(t) ∝ exp[−kt], where f(t) is the
probability density for the duration of the open or closed state and k is the rate out
of that state. A Markovian C ! O scheme, furthermore, leads to a power spectrum
for the fluctuating current that is Lorentzian [1, 2]. The power spectrum S(ω) is
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useful as it describes how the energy in the C ! O fluctuation is distributed over the
different frequencies. S(ω) dω is proportional to the power that the signal carries
between the frequencies ω and ω + dω. For C ! O, we have S(ω) ∝ (ω2

c + ω2)−1,
where ωc is the characteristic rate or relaxation rate of the C! O scheme, i.e.,
ωc = kCO + kOC [1, 2]. With a log scale for the frequency, this simple Lorentzian
power spectrum looks like two plateaus, where the “jump” from the higher
plateau to the lower plateau at S(ω) = 0 occurs at the characteristic rate of the
system.

Single channel patch clamp experiments showed that, in many cases, the open
and closed time distributions looked more like a power law, i.e., f(t) ∝ t−α, where
α is a constant [3]. Power spectra of such ion channels commonly exhibited no
characteristic rate, but, instead, 1/f behavior (i.e., S(ω) ∝ 1/ωγ, where γ is close
to unity) over a significant frequency range. For many channel data, it is possible to
come up with an ad hoc fix and fit experimental results to reasonable satisfaction
with schemes like C !O !O or C ! O !C or even more complicated ones. But
on a more fundamental level it has been suggested that reality may be better
described by a C !O scheme, where the transition rates decrease in time like
k(t) ∝ t−β. The underlying idea is the following. A protein is a very complicated
molecule and, instead of it leaping between a few conformational states, it should
be imagined as diffusing in many dimensional conformational spaces [3]. Going from
a closed state C to an open state O, the channel crosses an activation barrier in
its conformational space. Along a one-dimensional reaction coordinate, the energy
profile can be depicted as follows:

(1)

The position of a Brownian particle in this potential would represent the state of
the protein. So, right after opening, when the imagined particle is still very close
to the barrier, the probability to close again is very high. Over time, the average
position of the particle moves further and further away from the barrier and the rate
for the O→C transition consequently decreases. The aforementioned kOC(t) ∝ t−β

thus results. To describe the diffusive behavior of a particle in this potential, one
takes a Markov system

C ← O1 !O2 !O3 ! · · · !ON , (2)

where the larger subscript indicates a larger distance from the barrier. Here, all
the rates are taken to be identical and equal to λ. In measuring a current through
an ion channel, the digital sampling takes place at a finite rate. It is, furthermore,
common to apply a filter for the suppression of noise. Because of the sampling and
filtering, it is legitimate to describe the diffusive behavior in potential (1) by the
kinetic scheme depicted in (2), and take the filter frequency as the rate λ. This is
because events with a timescale faster than 1/λ will not be observed anyway.
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After absorbing λ into the timescale (i.e., taking all the rates equal to 1), and
writing pn(t) for the probability that the system is in state On at time t, we can
set up the following master equations associated with scheme (2):

ṗ1(t) = −2p1 + p2

ṗn(t) = pn−1 − 2pn + pn+1 for 1 < n < N (3)

ṗN (t) = pN−1 − pN .

We imagine that an opening, i.e., a transition from C to O1, occurs at t = 0. So we
have p1(0) = 1 and pn(0) = 0 for n ≥ 2. The probability P (t) for the channel to
remain open at time t equals:

P (t) =
N∑

n=1

pn(t). (4)

In the analysis of experimentally obtained open-closed recordings, it is common
to depict the distribution of open times in a histogram. When normalized, such a
histogram is a probability density function f(t) of open times. The aforementioned
P (t) represents the probability that the pore stays open till a time larger than t (i.e.,
P (t) =

∫ ∞
t f(τ) dτ). P (t) and f(t) are thus related through f(t) = −Ṗ (t) = p1(t).

It is actually possible to obtain an analytic solution of (3) in terms of modified
Bessel functions. However, our concern is with the large t asymptotic behavior.
After undoing the absorption of λ into the timescale, it is found that:

f(t) ≈ t−3/2

2
√

πλ
. (5)

This approximation applies when t >∼ (1/λ). Since the experiments do not cover the
shorter timescales anyway, this is the formula against which the obtained histograms
are to be checked. This result is also shown in the references [4] and [5].

The distribution f(t) is related to the transition rate k(t) out of the open state
in the following way: k(t) = f(t)/P (t) = − d

dt ln P (t). This leads to k(t) ≈ (2t)−1.
The relation k(t) ≈ (2t)−1 is the same in scaled and in unscaled units of time.

The robustness of the t−3/2 asymptotic behavior when the system is tweaked has
been researched extensively [6]. In a series of articles in the early 2000s, Goychuk and
Hänggi returned to the potential depicted in (1) [7–9]. They analyzed the diffusive
motion with a Fokker–Planck equation. They again found the same asymptotic
behavior described in Eq. (5). Even if the O-state in (1) is not perfectly flat but
instead, exhibits some minor variations, the same power laws ensue. All in all, the
derived “−3/2” asymptotic behavior of Eq. (5) appears to be very stable under
small perturbations.

In the final sections of this article, we will extensively discuss the −3/2 power
law. We will see how the above derived −3/2 originates in a structure that is more
universal than just the asymptotics of the potential shown in (1).
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2. 1/f Noise from Lipid Bilayer Pores at the Freezing Transition

Around the same time that the existence of ion channels became firmly established,
some curious properties of the lipid bilayer membrane were discovered.

The lipid bilayer, in which the ion channels are embedded, constitutes the main
part of the cell membrane. The image on the far left of Fig. 1 shows the structure
of the lipid bilayer under “normal” conditions. The polar phospholipid headgroups
are sticking out into the aqueous solutions on the intra- and extracellular side.
Apolar tails consisting of chains of about 15 carbons are pointed towards each other.
The cell membrane is only about 5 nanometers thick, and it is held together by
hydrophobic and hydrophilic forces. Water passes through the cell membrane easily,
but “normally” the bilayer structure is almost completely impermeable to ions.

In 1973, experimental work by Papahadjopoulos et al. showed that the perme-
ability to ions of the lipid bilayer membrane exhibits a sharp peak right at the
melting transition [10]. Under physiological conditions, the cell membrane is a 2D
liquid, i.e., phospholipids diffuse freely in the plane of the membrane. When frozen,
the lipid tails get entangled with and bound to each other. We then effectively
get a gel in which the individual phospholipids no longer diffuse. In the same way
that near 0◦C blocks of ice can float in water, we can have solid rafts “floating”
in the liquid membrane near the phase transition temperature. These rafts can
rapidly shrink and grow. Because the freezing point of a cell membrane is generally
only a few degrees below the physiological temperature, the study of the enhanced
ion permeability of a cell membrane near the phase transition carries biological
significance.

On the molecular level, Brownian fluctuations in the free energy E are of the
order of kBT , where kB represents Boltzmann’s constant and T is the absolute tem-
perature. The solid-to-liquid phase transition involves a large change in entropy S. A
large change in entropy must be accompanied by a large change in the enthalpy H as
E = H−TS. Through Kubo’s fluctuation theorem, i.e., cP = (〈H2〉−〈H〉2)/kBT 2,
it can be understood how these increased enthalpy fluctuations are related to the
increased cP (the heat capacity at constant pressure) at the phase transition [11, 12].
Also, the volume and the surface area change by a few percent when melting occurs.

Fig. 1. The likely scenario for the formation of a pore in a lipid bilayer membrane. Through a
random fluctuation, an open corridor first develops. Next, phosphate headgroups reorient to form
a polar lining that facilitates easy flow of water and ions through the pore. The drawing on the
far right is a top view of the pore. The other drawings are cross sections through the center of the
pore. The figure is adapted from [36].
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In computer simulations of a lipid bilayer membrane at the phase transition, it has
been shown that fluctuations in the liquid are particularly large in the vicinity of
the solid-liquid interface [12]. It is thus near these interfaces that pore formation
will most likely occur. Figure 1 shows how, for a pore to form, it is necessary for
phospholipids to first “fluctuate” away from each other. Subsequently, phospho-
lipids can reorient and the phosphate headgroups can collapse into the lining of
the pore. The hydrophilic pore lining next allows for the easy passage of water and
ions. The two images on the right of Fig. 1 show a side view and a top view of the
pore, respectively.

In order for a pore in a lipid bilayer to allow for the passage of water and small
ions, it has to exceed a diameter of about 0.5 nm. On the other hand, the creation of
a pore structure as on the right of Fig. 1 requires an investment of energy. The cross
sectional side view shows how, at the lining of a pore, the surface is highly curved
and how the ends of the tails are crowded together. Making a larger diameter would
create more pore edge and would require more energy [13]. The hydrophilic ion-
conducting pore is therefore most likely going to be at the minimal possible radius
that allows for such conduction. Such a fixed conductance level is indeed what is
observed. Records of electropores in lipid bilayers near the freezing transition look
very much like ion channel records — there appear to be fluctuations between an
open state and a closed state [5, 12, 14–16].

In the liquid state, a pore generally rapidly closes again [13]. But near the phase
transition and especially near a solid raft, the phospholipids in the pore lining
may freeze. Such freezing would stabilize the pore. The freezing of more and more
phospholipids around the pore would correspond to moving to the right in the open
state in (1) and (2). For a pore to be able to seal again, the phospholipids should
all melt again, i.e., the system should move back to O1.

Figure 2 shows n open time histogram for a pore in a lipid bilayer membrane.
The reader is referred to [5] and [17] for the details on how the data and the figure
were obtained. The straight line in Fig. 2(a) represents the prediction in Eq. (5).
Not only do we see the predicted −3/2 slope in the graph, even the prefactor
of Eq. (5) is borne out. Figure 2(b) shows the associated power spectrum of the
electropore. In [18], it is shown how fluctuations between the open and the closed
state follow S(ω) ∝ 1/ω1/2 if both the closed and the open state have an underlying
Markovian array (and the associated f(t) ≈ (2

√
πλt3/2)−1) like our open state in

(1) and (2). A straight line with the predicted slope of −1/2 is drawn in Fig. 2(b)
for reference. The data in Fig. 2 were taken with a 300Hz filter. So no phenomenon
faster than about 3ms can be observed. It is because of this that the data points
appear to “collapse” at a timescale faster than 3ms. As data were taken for less
than a minute, there is also an obvious cutoff for the lower frequencies.

“Dangling ends” of the polymers in the lipid bilayer moving into the center of the
pore and blocking the flow of water and ions have been offered as an explanation for
the observed 1/f noise in biological [19] and artificial channels [20]. Such blocking
by dangling ends can well follow the kinetics we described above with (1) and (2).
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(a) (b)

Fig. 2. From [5], an open time histogram (2a) and a power spectrum (2b) for an electropore in a
lipid bilayer. The straight line in (2a) is the theoretical prediction Eq. (5). The straight line in (2b)
has predicted slope −1/2 and is for reference. Details on how data were obtained and processed
can be found in Refs. [5] and [17].

If, after initial blockage, the further moving of the polymer into the center of the
pore does not involve any significant change in energy, then such “further moving”
would be like a diffusing away from the activation barrier as in (1). This would
lead to a “−3/2” power law distribution (cf. Eq. (5)) for also the closed times. And
it would explain the observed −1/2 slope in Fig. 2(b). Also the diffusion of more
dangling ends into the pore’s center after the initial blockage by just one dangling
end, could be described with kinetics similar to (1) and (2). After all, if two polymer
ends are blocking the flow through a pore, they both have to pull back into the
lining for the pore to be open again.

3. 1/f Noise Across the Membrane of a Living Cell

In the mid-1960s, Verveen and Derksen recorded 5–10 minutes of cell membrane
electrical noise at a Ranvier node of an unstimulated nerve cell [21]. For myelinated
nerve cells the node of Ranvier is where the action potential is generated. There is a
high concentration of ion channels there and, in the days before patch clamp, it was
a good place to measure electrical activity. What they found was 1/f noise over
about two decades (between 10Hz and 1000Hz). S(ω) ∝ ω−1 was a remarkably
good fit.

In 2004, Diba et al. utilized much improved equipment to replicate this result
[22]. In the article by Diba et al., it is pointed out that there are many different
ion channels present in the cell membrane with many different characteristic rates.
They argue that the 1/f appearance comes about as the cumulative effect, i.e., the
sum of many individual Lorentzians. The argument echoes that of Bernamont [23].
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In 1937, Bernamont explained 1/f noise in electrical currents as a consequence of a
variable rate for the electron’s transition rate from the conduction band to a bound
state. He assumed that the rate would depend on the speed of the flowing electron.

It seems unlikely that, in so many experiments and setups, amplitudes and
characteristic times of different Lorentzians would, time and time again, “con-
spire” to yield the 1/f appearance after these Lorentzians are put together. Mech-
anisms like the one in the above system (2) may be behind many instances of
1/f noise. The aforementioned 1/f noise found with electropores in the lipid
bilayer, may well contribute significantly to the 1/f noise across the membrane of a
living cell.

4. Combinatorics Behind the “−3/2” Power Law

To see the universality of the −3/2 power law, we need to go back to scheme (2).
The master equation (3) that ensues from (2) is set up with the Markov assumption,
i.e., the idea that transition rates are constant. We thus end up dealing with flows
that are described by a set of coupled linear differential equations. Such continuous
dynamics is not much different from a discrete dynamics where we let time run
in fixed steps and at each step, an imagined particle has to go to either the left
or the right. That the asymptotics for both systems have to be the same can be
understood as follows.

The f(t) in Eq. (5) describes how, for large open times t, the frequency of occur-
rence of such open times decreases with t. For large t’s many transitions between
different states are made in the system depicted in scheme (2). The individual tran-
sitions are Markovian and the dwell time in each of the states has an exponential
distribution. Consider a transition X1 → X2 with a rate k. If a particle is in state X1

at t = 0, then the average time after which transition occurs equals 1/k. It is easy to
prove that for an exponential distribution of transit times, this average equals the
standard deviation. So the standard deviation also equals 1/k. The variance is the
square of the standard deviation and equals (1/k)2. Going back to scheme (2), we
realize that for the longer open times, many transitions between the different states
are involved. If all the rates are equal to 1 (which leads to f(t) ≈ (2

√
πt3/2)−1),

then the average time in any state equals 1/2. This is because every open state in
scheme (2) has two outgoing transitions, so effectively k = 2 for the outgoing rate.
For an opening involving m steps within the sequence of O-states in scheme (2),
the average open time will be m(1

2 ). For subsequent stochastic processes, the vari-
ances add up. So the variance in the open times will be m(1

2 )2 and the standard
deviation will be

√
m(1

2 ). It is obvious that for long open times (large m and large
t), the standard deviation becomes negligible in comparison to the average. So, the
limit of the Markovian system behaves clockwork-like and can be described with
the proposed discrete system.

For the proposed discrete stepper, it is possible to simply list the sequences of
steps and identify the number of steps with the open time of the pore. But before
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Table 1. The Catalan numbers, Cn and how they relate to system (2).
“R” corresponds to a step to the right in the kinetic scheme (2) and
“L” corresponds to a step to the left. The first “R” in each sequence
is the initial step from state C to state O1. “m” denotes the total
combined number of R’s and L’s in a sequence. “n” equals m/2 − 1
and enumerates the Catalan numbers Cn. Cn gives the number of
possible sequences of m symbols. With a residence time of 1/2 in
each state, t = n + 1

2 = 1
2 (m − 1) gives the total duration of an

opening that corresponds to a sequence of m steps.

n m t Possible permutations Cn, # of permutations

0 2 1
2 RL 1

1 4 3
2 RRLL 1

2 6 5
2 RRRLLL, RRLRLL 2

3 8 7
2 RRRRLLLL, RRRLRLLL, 5

RRRLLRLL, RRLRRLLL,
RRLRLRLL

. . . . .

. . . . .

. . . . .

starting that endeavor, it is important to realize again that there are two transitions
out of any open state in the system depicted in (2). If both these transitions have a
rate that equals unity, then the average time after which a step occurs equals 1/2. In
Table 1, m denotes the number of transitions involved in an opening. It is obvious
that only even m’s are allowed. The variable n = m/2− 1 ranks the open times. R
denotes a step to the right and L denotes a step to the left. The first R corresponds
to the 0 → 1 transition that commences a pore opening. After that transition, a
time of 1/2 is spent in each state. So we get t = n + 1/2 = 1

2 (m − 1) for the total
open time.

For a particular sequence of m symbols, the probability of that sequence to
occur equals (1

2 )m−1 = (1
2 )4−n = (1

2 )4−t+(1/2) = 4−t. There is a “−1” in the
(m − 1) exponent because an opening always starts with an R. Subsequently, each
transition is like the result of a coin toss where each outcome has a probability
of 1/2. A particular sequence of duration t thus has a probability that decreases
exponentially with t = n + 1/2. We will next see that a power law eventually
emerges because this exponential decrease is compensated for by an exponential
increase with n of the number of permutations.

With Table 1, the central question is: how does the number of permutations
exactly increase with n? Fortunately, many problems in applied science have boiled
down to the identical combinatorics problem. [24] is a textbook that lists 80 such
problems in applied science. A classic example is the following. If we associate R
with a left parenthesis, i.e., “(”, and L with a right parenthesis, i.e., “)”, then the
sequences in Table 1 correspond to legitimate nestings of matching parentheses. A
mathematical formalization of this is called a Dyck Language [25]. The numbers
of allowed permutations are named the “Catalan Numbers” (Cn), after the 19th
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century Belgian mathematician Eugène Catalan:

Cn =
1

n + 1

(
2n
n

)
. (6)

The Wikipedia page on Catalan Numbers [26] offers five ingenious proofs of this
formula. We are interested in the n → ∞ limit and, for that purpose, we apply
Stirling’s approximation (n! ≈

√
2πn(n

e )n). We then find

Cn ≈ 4n

n3/2
√

π
. (7)

The probability for an n-rank opening (which implies that there are m = 2n + 2
steps involved) equals pn = 1

2Cn4−n. With t = n + 1
2 , this leads to pt = Cn4−t.

Substituting Eq. (7) and n = t − 1/2, we find in the t → ∞ limit

pt ≈
1

2
√

π
t−3/2, (8)

which is exactly the asymptotic behavior that we derived earlier for the associated
Markov system.

5. A Connection to Zipf’s Law

One could think of the sequences in the fourth column of the Table 1 as words in a
2-letter alphabet. Elaborating on this idea, we can get some insights in Zipf’s Law.
In 1932, George Kingsley Zipf first formulated this empirical law [27] and it has
puzzled researchers ever since. Given a large amount of text in any language, it is
possible to rank words from the most frequently occurring to the least frequently
occurring. If one then graphs the logarithm of that frequency versus the logarithm
of the rank, the data are found to follow a straight line with a slope close to −1,
i.e., f(r) ∝ r−1, where f is the frequency and r is the rank. Zipf’s Law appears
to hold in many different languages. It also appears to hold when craters on the
moon are ranked according to their size or when cities in a country are ranked
according to their population sizes. Zipf’s Law can be distilled from the data in
many very different systems: DNA sequences, internet traffic, etc. [28] is a website
where hundreds of articles on the subject are brought together. But Zipf’s Law is
still very much an empirical discovery. Many attempts have been made to formulate
basic underlying dynamics that give rise to Zipf’s Law. Ad hoc explanations have
been found to apply in some cases [29]. No satisfying general theory, however, has
been formulated.

In his characteristically cryptic manner, Mandelbrot shows, in Chapter 38 of
his groundbreaking “The Fractal Geometry of Nature,” that a kind of Zipf’s Law
emerges when a random generator is allowed to produce strings using M letters and
one space [30]. In such a setup, a word of N letters will always occur more frequently
than a word of N +1 letters. So word rank can then be equated with word length. In
1992, Wentian Li worked out the details of the associated statistics [31]. He let the
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space and the symbols of the M -letter alphabet have equal probability and deduced
Zipf’s power law: f(r) ∝ r−α, where α = ln(M +1)/ lnM . It is obvious that for the
customary 26-letter alphabet, α will be very close to one. Li’s result could be taken
to indicate that Zipf’s Law is purely a consequence of random statistics. However,
one can also take it as an affirmation of Zipf’s “Principle of Least Effort” [32], i.e.,
support for the idea that language evolution has maximized efficiency in the sense
that the words that we need the most often are also the shortest words.

For M = 2, i.e., a two letter alphabet with a space, Li’s result implies α = 1.58.
There are minor, “dialectal,” differences between our two-letter language (Table 1)
and the Li’s two-letter language. Not unlike natural languages, our case has restric-
tions. In our case, there are always more R’s than L’s as the word “grows.” Our
words end when, with the last letter, the number of L’s has caught up with the
number of R’s. That a slight difference in the rules for word formation leads to
slightly different powers, 1.50 versus 1.58, is not surprising.

6. Gambler’s Ruin, 1/f Noise, and Zipf’s Law

The kinetic scheme (2) also models a form of “Gambler’s Ruin.” In the 17th cen-
tury, Christiaan Huygens initiated the study of games of chance and he researched
problems like the following:

Let a player be given an amount of money M by the house. A fair coin toss
(50% chance of winning and 50% chance of losing) determines whether he gets an
extra M or whether he loses M . The game is repeated as long as our player has
money to play with. At every trial, the same amount M is betted. It is obvious that
the initial state is O1. Next, every win is a transition to the right (R) and every loss
is a transition to the left (L). If the house has an infinite amount of money, then
the player is guaranteed to eventually lose his money. The duration of the game (or
the “opening”) may be infinitely long and the average duration, 〈t〉 =

∫
τf(τ)dτ ,

actually diverges for f(τ) ∝ τ−3/2. But it can be proven that P (t) (cf. Eq. (4)) goes
to zero as t → ∞ and this means that a return to C (cf. (2)), i.e., the eventual loss
of the initially donated amount of money M , is inevitable.

Standard references are not uniform in their definition of what constitutes 1/f
noise. For a power spectrum that behaves like S(ω) ∝ 1/ωα, α = 0 corresponds to
white noise and α = 2 corresponds to brown noise. Brown noise is obtained when
white noise is integrated over time to yield a simple random walk. The Wikipedia
page [33] takes an in toto approach and labels the entire interval 0 < α < 2 as
corresponding to 1/f noise. The much cited paper by Milotti [34] is more restrictive
in its recommendation: 1/2 < α < 3/2. By most definitions, the spectrum shown
in Fig. 2(b), with α = 1/2, would qualify as 1/f noise.

The electropore noise that we observe falls in a general category. Nonequilibrium
systems, i.e., systems in which energy is dissipated, commonly exhibit 1/f noise.
Our electropore system is nonequilibrium as there is an electric potential between
the two sides of the membrane that drives current through the pore whenever it is
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open. In spite of the ubiquitousness of 1/f noise, no general theory has been formu-
lated that convincingly explains all these 1/f noise occurrences as a consequence of
a universal mechanism [35]. Ad hoc explanations for particular instances is all that
physics has come up with. In this sense, 1/f noise is very different from the white
noise that we generally find in equilibrium systems and that can be understood
as a consequence of Brownian motion. The Johnson-Nyquist noise that resistors
exhibit when there is no imposed current or voltage, is a good example of equilib-
rium noise. Johnson-Nyquist noise is just a manifestation of the Brownian motion
of charge carriers and of Einstein’s fluctuation-dissipation relation. This is the rea-
son that kBT , the characteristic energy of Brownian motion, features prominently
in the Johnson-Nyquist formula [35].

Zipf’s Law is, in many ways, like 1/f noise. Nonequilibrium dynamical processes
(like evolution, language development, population dynamics, etc.) appear to com-
monly produce distributions that follow Zipf’s Law. Like 1/f noise, Zipf’s Law has
defied all attempts at the formulation of a general underlying theory. Its omnipres-
ence is still somewhat of an enigma. With the kinetic scheme (2) and the ensuing
“words” in Table 1, we have made explicit, for a particular case, that there is a link
between 1/f noise and Zipf’s Law. That link may be indicative of a more general
connection — a general connection that could be a fruitful venue of future research.
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