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Abstract. The volume traded daily for 17 stocks is followed over a period of about half a century. We look at
the volume of stocks traded in a certain time interval (day, week, month) and analyze how long that traded
volume keeps monotonically increasing or decreasing. On all three times scales we find that the sequence
of traded volumes behaves neither like a sequence of independent and identically distributed variables,
nor like a Markov sequence. A compressed exponential survival function with the same parameters at all
timescales is firmly established. A day with an increase (decrease) of traded volume is most likely followed
by a day with a decrease (increase) of traded volume. We show how the apparent self-similarity results
because the small day-to-day anticorrelation carries over when larger time intervals are considered. The
observed small anticorrelation can be explained as a consequence of market forces and trader reactions.

1 Introduction

For the obvious monetary reasons, stock movements and
stock prices have been subject to very intense analyses.
However, there is also a good scientific rationale behind
such studies. The stock market is an evolving complex
system, but, more so than for biochemical or ecological
systems, there is the availability of an abundance of data.
Publicly available numbers actually constitute the input
and the output of the stock market.

The focus of this article will be on volumes of traded
stock. The relation between price and volume is still the
subject of much research and speculation [1,2]. Traded
volume can be taken as a measure of liquidity and investor
interest and a price change of a stock is often considered
more significant if at the same time a large volume of that
stock is being traded. Getting a better understanding of
volume dynamics is the goal of our analysis.

Subsequent price changes of a stock turn out to be
uncorrelated when time intervals of more than about 15
minutes are taken [3,4]. There are many independent in-
puts that determine the price change and, by the Cen-
tral Limit Theorem, we expect a Gaussian distribution
for price changes of stocks. The expected Gaussian distri-
bution of price changes, however, turns out not to emerge
when the prices of actual stocks are followed to sufficient
accuracy and statistical significance. It is found that the
distribution of price changes of actual stocks is too lep-
tokurtic, i.e., the tails are too fat to be successfully fit
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with a Gaussian. About half a century ago Mandelbrot
found good fits with power laws [5,6]. Much of the mod-
eling and fitting since has centered around power law for-
malisms [3,7]. Mandelbrot emphasized that these power
laws are scale free, i.e., they do not have a characteristic
timescale and the same law is found for different timesteps.
The resulting self-similar or fractal structures are central
in his major text on the subject [6].

Below we take the volume that is traded during a day
and compare it to the volume that is traded during the
next day. We will not concern ourselves with the exact
distribution of the increments. For our analysis we take
only the sign of the change and disregard the magnitude.
From a modeling perspective, this approach is justified
by the fact that traders commonly react to “decrease” or
“increase” before they react to actual numerical values.
By looking at just the sign, we simplify the analysis. To
ensure that we have sufficient data for statistically signif-
icant results we go back about half century. We also fol-
low the volumes traded during time intervals other than a
day (week, month). The question we next wish to answer
is: does an increase (decrease) of a stock’s traded volume
make an increase (decrease) in the next timestep more
likely? When the context is the price of the stock, this is
called “momentum” and traders are familiar with how a
price increase (decrease) can trigger subsequent price in-
creases (decreases). The memory and momentum in the
market is what is supposed to give rise to bubbles and
crashes [8]. In what follows we will use the notion of “mo-
mentum” also when analyzing subsequent increments of
traded volume.
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In the simplest possible case, without any memory, a
sequence of traded stock volumes would be a sequence
of independent and identically distributed (IID) numbers.
The volume V of traded stock is bounded from below by
zero and bounded from above by a limit that is set by how
fast stocks can change hands. Assume that for the volume
of traded stock during ∆t, there is a constant probabil-
ity distribution on this interval. Suppose next that during
every time interval, the traded volume is a random draw
from this distribution. This would imply an IID sequence.

Imagine doing three draws from an IID sequence and
let these draws represent traded volume. Next randomly
label these draws as 1, 2, and 3. There are six possi-
ble ways, i.e. permutations, to do this labeling. We now
have V1, V2, and V3. The case that V3 > V2 > V1, i.e. two
subsequent increases, is just one of the six possible permu-
tations (ignoring equality) and has a probability of 1/6.
Thus, the probability of two subsequent increments that
are both positive is 1/6.

Extending the reasoning of the previous paragraph,
we find that the probability of t or more subsequent
increments of the same sign equals

S(t) = 1/(t + 1)!. (1)

Equation (1) is valid for any distribution! So by looking at
just the sign of the increments and not at the exact values,
we circumvent a major source of computational difficulty.
We will include the IID sequence in our graphs as a point
of reference. There is no memory as we move from one
volume in the IID sequence, Vj−1, to a next volume Vj .
However, it is important to realize that there is an anti-
momentum effect associated with the IID sequence when
we consider subsequent increments ∆Vj = (Vj−Vj−1) and
∆Vj+1 = (Vj+1−Vj). This can be easily intuited by imag-
ining the distribution to be a Gaussian with average Vavg.
Take three subsequent volumes Vj−1, Vj , and Vj+1 that
are drawn from that distribution. For Vj−1 the average
outcome is Vavg . An increase, i.e. ∆Vj = (Vj − Vj−1) > 0,
implies that Vj > Vavg . Now the next draw, Vj+1, is more
likely going to be to the left than to the right of Vj . This
means that the positive increment, ∆Vj > 0, will with
more than 50% probability be followed by a negative in-
crement, ∆Vj+1 = (Vj+1 −Vj) < 0. This effect generalizes
to any distribution and is actually implicit in equation (1).

We also include in our analysis a model with a one-
step-deep memory. To do so we take the sign of the dif-
ference ∆Vj = (Vj − Vj−1) and next formulate a Markov
model for the sign of ∆Vj+1. Suppose that a stock’s traded
volume has increased from day (week, month) j−1 to day
(week, month) j, i.e. ∆Vj > 0. In this simple approach,
the probability that it will move to the decreasing state in
the next timestep, i.e. Vj+1 < Vj , can be represented by
a transition rate. In other words, we consider a Markov
system:

I ! D, (2)

where I represents the state in which the stock’s traded
volume is increasing and D represents the state in which
the stock’s traded volume is decreasing. The transition

rate from I to D is αID. The transition rate from D to I
is αDI .

With the mechanism of Schematic (2) it is important
to realize that, in terms of the Vj ’s, the “memory of the
market” goes back one step, as both Vj and Vj−1 are nec-
essary to establish the sign of ∆Vj = Vj − Vj−1. In terms
of the ∆Vj ’s, however, there is no memory. The sign of
∆Vj+1 depends only on the sign of ∆Vj and on a transi-
tion rate α, i.e. we have a two-state Markov process.

The Markov setup (2) allows for the description of mo-
mentum effects. When the transition rates, αID and αDI ,
are small, it is hard to get out of the state that you are
in. That means that an increase (decrease) of traded vol-
ume is more likely if traded volume is already increasing
(decreasing), i.e., it means momentum.

With this Markov model the probability S(t) that a
stock survives in the same state for t days or longer is

S(t) = exp [−t/τ ] , (3)

where τ = 1/αID for the increasing state and τ = 1/αDI

for the decreasing state. If increase or decrease of traded
volume were determined by a coin toss with an unbiased
coin, we would have αID = αDI = ln 2 and S(t) = 2−t for
both states. For τ ̸= 1/ ln 2 we have a biased coin toss, i.e.
the survival probability is different from 1/2 at t = 1. Also
the biased-coin-toss Markov sequence will be included in
our graphs as a point of reference.

An awareness of the past that goes deeper than just
one step can be implemented through time-dependent
transition rates in Schematic (2). In that case we no longer
have a Markov process. A common way to implement such
a memory is by taking power law behavior, i.e. α ∝ tk−1,
for both the involved rates. For future convenience we
adopt the form

α(t) =
k

τ

(
t

τ

)k−1

. (4)

Here t is the time that the stock has been in its present
state and α(t) is the transition rate out of that state at
time t. For the decrease of S(t) over the next time interval
dt we then have dS(t) = −α(t)S(t)dt. We now find for the
probability S(t) that a stock survives in the same state
for t days or longer:

S(t) = exp

[
−

(
t

τ

)k
]

. (5)

This is the survival function for the well-known Weibull
distribution [9]. We can conceive of k as a memory pa-
rameter. For k = 1 the Markovian setup of Schematic (2)
and the accompanying exponential survival function (cf.
Eq. (3)) are retrieved. For k > 1 we have a transition
rate out of a state that increases as the system spends
more time in that state. In our case this corresponds to
traders increasingly holding on to a stock as more vol-
ume of that stock is traded. It also implies an increas-
ing urge to start trading a stock if less and less volume
of that stock is traded. S(t) then takes the form of a
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compressed exponential. For k < 1, a stretched expo-
nential, which extends increasing or decreasing trends, re-
sults. Survival curves like equation (5) have been com-
monly found in the analysis of the failure of devices like
light bulbs. This is because the failure rate of a device of-
ten depends on the age of the device [10]. Time-dependent
transition rates as in equation (4) and the resulting com-
pressed and stretched exponentials as in equation (5) have
furthermore been employed in the analysis of the kinetic
behavior of proteins [11,12].

With equations (4) and (5), the memory of the system
goes back to the moment that the system came into the
state (I or D) that it is in. So it is a short-term memory.
The time varying transtion rates, furthermore, imply that
the aforementioned momentum can grow or decay as the
time in a state evolves.

In the next section we will show how equation (5), with
k > 1, leads to a good fit of the data. Sections 3 and 4
contain theoretical analysis of the results. Section 5 is the
Discussion section.

2 Data analysis

For the seventeen stocks listed in Table 1, we take data
going back four to five decades. The day-to-day volumes
are freely available on the world wide web1. For each se-
quence of subsequent increases (decreases) we record how
long it lasts and how many times a sequence of that length
occurs in the entire datafile. We organize the data in a
survival histogram as explained in Figure 1. Ultimately,
we have 18 sets of more than 104 data points each. Our
analysis of the two-state system mimics an analysis that
is commonly performed on ion channels that flip between
an open and a closed state [12]. Having more than 104

sampling points in the original record has generally been
found to be sufficient to get good estimates of transition
rates or to establish a self-similar nature.

Equation (5) can be represented as a linear function by
taking the logarithm of the negative logarithm of S(t) for
the vertical coordinate and taking ln t for the horizontal
coordinate:

ln [− lnS(t)] = k ln t − k ln τ. (6)

The slope can be identified with the memory parameter k.
The rate parameter τ can next be determined from the in-
tercept with the vertical (ln t = 0) axis. Figure 2 shows fits
of equation (6) to the cumulative record of “All” stocks. It
is apparent that the Weibull exponential, cf. equation (5),
with k ≈ 1.2 is a good fit. In all six graphs neither the
IID sequence (cf. Eq. (1)), nor the Markovian coin toss
(cf. Eq. (3)) can account for the data.

For the three different timescales (daily, weekly, and
monthly) Figure 3 depicts k and τ values for our sev-
enteen stocks. At all three timescales and for both the

1 Yahoo! Finance, http://finance.yahoo.com. After enter-
ing the symbol for a stock, go to “Historical Prices” via the
menu on the left. Next, at the bottom of the page, there is a
link to a CSV file with the pertinent data

Table 1. The seventeen stocks selected for analysis. We also
include the sum of all stock data.

Symbol Stock Starting Date

BA Boeing January 2, 1962
CAT Caterpillar January 2, 1962
CVX Chevron January 2, 1970
DD DuPont January 2, 1962
DIS Disney January 2, 1962
GE General Electric January 2, 1962

HON Honeywell January 2, 1970
HPQ Hewlett-Packard January 2, 1962
IBM IBM January 2, 1962
JNJ Johnson and Johnson January 2, 1962
KO Coca Cola January 2, 1962

MCD McDonald’s January 2, 1970
MMM 3M Corp January 2, 1970
MRK Merck January 2, 1970
PG Procter and Gamble January 2, 1970

UTX United Technologies January 2, 1970
XOM Exxon-Mobil January 2, 1970

(All) All stocks January 2, 1962

I

D
D2 D1 D1 D2

I4 I1 I1 I?

1

2

3

4

1 2 3 4 5 t

Fig. 1. An increasing/decreasing record and the correspond-
ing histogram of survival times. The green bars correspond to
the “increasing times,” where we have one interval of four units
and two intervals of one unit. The “decreasing times” are rep-
resented by the red bars. There we have two intervals of two
units and two intervals of one unit.

increasing and the decreasing state, we find k to be signif-
icantly different from unity, i.e. there is a notable deviation
from Markov behavior. Merging the seventeen data files
for the stocks, we find the results for the cumulative “All”
in Table 1. These estimated k and τ for the “All” file are
tabulated in Table 2. Figure 3 and Table 2 lead to the con-
clusion that we have a remarkable self-similarity. Over a
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Fig. 2. For the traded volume per day, per week, and per month of all of the stocks together (last entry in Tab. 1), we followed
the procedure explained in Figure 1 and recorded and tabulated how long the runs of subsequent increases and decreases
lasted. Shown in red are the datapoints (ln(− ln S(t)), ln t), where S(t) is the survival function for t = 1, 2, 3, . . . days. The 95%
confidence interval are indicated and are generally smaller than the size of the point. The result appears significantly different
from what an IID sequence (dashed lines, cf. Eq. (1)) and a biased Markovian coin toss (dotted lines, cf. Eq. (3)) would give.
The solid line represents the fit of a compressed exponential (cf. Eq. (5)). The values of k and τ that give the best fits are
indicated in Table 2.

range of timescales and for both increasing and decreasing
runs, a compressed exponential with k = 1.215 (±0.058)
is observed.

As a further test of self-similarity, we evaluate our data
sets using the three-sample Anderson-Darling test [13]
on the data sets daily-weekly-monthly for decreasing and
increasing sequences for each stock and for the combi-
nation of data for all stocks. The test determines to
what extent two or more distributions are identical. All
data set triplets (daily-weekly-monthly) for individual
stocks for both increasing and decreasing states passed
the Anderson-Darling test at the 0.01 level. The com-
bined data for all stocks passed for the decreasing state
but failed for increasing. Collectively, these results provide
strong support for self-similar behavior for all the individ-
ual stocks and partial support for the combined data set.

The numbers that are collected in Table 2 are in-
dicative of a significant anti-momentum effect. A Marko-
vian coin toss would give rise to (k, τ) = (1, 1/ ln 2) =
(1.00, 1.44). This would obviously lead to S(1) = 0.50,
S(2) = 0.25, S(3) = 0.125, etc. The (k, τ) = (1.2, 1.16)
that we find for the daily data, leads to S(1) = 0.43,
S(2) = 0.15, and S(3) = 0.044 for the first three days. So
there is an apparent anticorrelation, i.e. when the system
is in one state, the probability to be in the other state at
the next timestep is always larger than 1/2. This is sug-
gestive of a restoring force that drives the traded volume
per day (week, month) back to an average. It is interesting
to note that, where we find an anti-momentum for traded
volumes, momentum and “superdiffusion” have been ob-
served for the movement of stock prices (in particular, the
S&P 500 index) [14].
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Fig. 3. The results of fits of the Weibull parameters k and τ (cf. Eq. (5)) for the volume of traded stock for three different
timescales: daily (top), weekly (middle), and monthly (bottom). We find a compressed exponential at all timescales for both
the increasing and the decreasing state. With the average k of 1.2 on all timescales we find the process to be self-similar. Error
bars indicate 95% confidence intervals.

Table 2. The values for k and τ when the volume data for all
stocks together are fit to equation (6). To obtain these num-
bers a linear regression was performed. The 95% confidence
intervals for τ were calculated. We took the further of the two
ln τ end points to determine the confidence intervals.

k values Increasing Decreasing

Daily 1.246 (±0.045) 1.194 (±0.025)

Weekly 1.197 (±0.030) 1.295 (±0.139)

Monthly 1.163 (±0.099) 1.196 (±0.059)

τ values Increasing Decreasing

Daily 1.124 (±0.070) 1.169 (±0.043)

Weekly 1.087 (±0.041) 1.216 (±0.231)

Monthly 1.108 (±0.123) 1.170 (±0.097)

3 Self-similarity

Self-similarity, i.e. repetition of the same pattern on dif-
ferent timescales, appears to be a key feature of our data.

The basis of equation (1) is an IID sequence. Of course,
if the traded volume is an IID sequence on the day-to-day
timescale, then it will also be an IID sequence on the week-
to-week and on the month-to-month timescale. After all,
in all cases you are doing independent draws from a distri-
bution. Because we take only the signs and not the exact
values of the day-to-day increments, the sequence for the
day-to-day timescale does not determine the sequences for
week-to-week and month-to-month.

For the case of a Markov sequence, it is obvious that
the day-to-day unbiased coin toss, S(t) = 2−t, leads to
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the same S(t) = 2−t on the week-to-week and month-
to-month timescales. In that case the probability distri-
bution associated with t = 1 is always 50-50. However,
our data show a small anticorrelation from one point in
time to the next. Within the accuracy achievable with
our datasets, the anticorrelation appears to have the same
value at all of the three considered timescales.

Below we show how an anticorrelation for short time
intervals carries over to the longer time intervals. With
S(t) = exp [−t/τ ] and τ = 1/ ln 2, we have a 50-50 distri-
bution at time t = 1. We describe a small anticorrelation
from one timestep to the next by taking τ = (1− ε)/ ln 2,
where ε is small. A first order Taylor approximation gives
S(t) ≈ exp [−(ln 2)t] (1 − ε(ln 2)t) for small deviations
from the unbiased case. With δ = ε(ln 2) and consider-
ing one step (t = 1), we have for the probability to stay
in the same state and for the probability to switch to the
other state, respectively,

P1(same) =
1
2
(1 − δ) and P1(other) =

1
2
(1 + δ). (7)

We let Pn(same) be the probability that the system is in
the same state at time n as that it was at time n = 0.
Likewise, Pn(other) is the probability that the system is
in the other state at time n. To derive the probabilities
Pn(same) and Pn(other) we use

1 = (P1(same) + P1(other))n

=
n∑

j=0

(
n

j

)
P j

1 (same)Pn−j
1 (other) (8)

and realize that we go to the other state in the
course of n steps if (n − j) is odd. After taking
q = P1(other)/P1(same) and rewriting equation (8)
as 1 = fn(q) ≡ Pn

1 (same) (1 + q)n, we can identify
Pn(same) with the even part of fn(q), i.e. Pn(same) =
(fn(q) + fn(−q)) /2. After some algebra we then derive

Pn(same) =
1
2

(1 + (−δ)n) and

Pn(other) =
1
2

(1 − (−δ)n) . (9)

If the increases and decreases are always by the same
amount, then we have for the average net change after
N steps

∆V ∝
N∑

n=1

[Pn(same) − Pn(other)]

=
[
−δ + δ2 − δ3 . . . + (−δ)N

]
= −

δ
(
1 + (−δ)N

)

1 + δ
. (10)

For large N this sum yields ∆V ∝ −δ/(1+ δ). For small δ
we can just take the first-order approximation, which leads
to ∆V ∝ −δ.

This last result is what contains the scale invariance.
If, for instance, there was an increase on day t, then a
decrease is not just more likely on day t + 1. Also over

a subsequent block of days, t + 1, t + 2, . . . , t + N , a net
decrease is more likely than a net increase. For small δ the
anticorrelation between a day and a subsequent block of
days is effectively the same as between a day and the next
day. Of course, the same reasoning applies if we go back-
ward in time (from t to t − 1, t − 2, . . . , t − N) and it is
equally valid when going from a block of subsequent days
to the one day before or after the block. Ultimately, this
means that the same anticorrelation that exists between a
day and the next day also exists between a block of days
of length n1 and a subsequent or previous block of days
of length n2.

The scale invariance happens because the exact form
of the survival curve S(t) is not important when, from
one day to the next, survival-or-not is close to a 50-50
coin toss. For the (anti)correlation between two subse-
quent blocks it is ultimately only the last day of block 1
and the first day of block 2 that matter. Between these
two days the (anti)correlation is of order δ. All the cor-
relations between all the other days together sum up to
order δ2.

The reasoning of the previous paragraph still applies
for a compressed or stretched exponential (cf. Eq. (5)
with k ̸= 1) as long as the (anti)correlation from one day
to the next is small. If we take S(t) = exp[−(t/τ)k] with
τ = (1 − ε)/ ln 2 and k = 1 + κ, then ε and κ describe
the deviation from the unbiased coin toss. Expanding at
t = 1 and only keeping the first order terms in ε and κ, it
is found that:

S(1) ≈ 1
2

[1 − ln 2 (κ ln(ln 2) + ε)] . (11)

The δ that denotes the anticorrelation in equation (7) is
now given by δ = ln 2 (κ ln(ln 2) + ε).

The difference between the biased coin-toss and the
compressed exponential only becomes significant when
considering sequences of three or more days, i.e. when
considering S(2), S(3), . . .. Ultimately, it is only at order
δ2 that non-Markovian behavior and “memory” can be
identified.

Summarizing, the scale invariance can be understood
in the following way. For the unbiased Markovian coin-
toss it is obvious that going to the other state vs. staying
in the same state is 50-50, whether it is day-to-day, week-
to-week, or month-to-month. For a small deviation δ from
the unbiased case, the breaking of the scale invariance
occurs only at order δ2. For sufficiently small δ this is
outside the limits of our accuracy. So though τ in equa-
tions (3) and (5) has the dimension of time, it is ulti-
mately not a characteristic timescale of the system. The
(anti)correlation between neighboring days works out to
also be the (anti)correlation between neighboring blocks
of days.

4 Deriving an underlying map

We model our day-to-day dynamics with an iterative map

xt+1 = T (xt) = xt + f(xt) on x ∈ ⟨0, c⟩. (12)
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The (0, c) interval corresponds to a state X (I or D). We
start with a random seed x0 from a uniform distribution
over this interval. We compute the next iterates using
equation (12). The first iterate xn outside the (0, c) in-
terval signifies a jump to the other state. In that case we
have an n-step stay in state X before “escape” occurs.
For the unbiased Markovian coin-toss case, equation (12)
would simply be the well-known Bernoulli Map [15], i.e.
f(x) = x (so xt+1 = 2xt) and c ∈ R+.

A coin toss with small bias δ corresponds to xt+1 =
2(1 + δ)xt and again c ∈ R+. In that case a fraction
1/(2(1 + δ)) ≈ 1

2 (1 − δ) stays inside the interval upon
an iteration. The escaping fraction then corresponds to
P = 1 − 1/(2(1 + δ)) ≈ 1

2 (1 + δ), as in equation (7).
Giving f(x) a concavity results in deviation from the

well-understood behavior of the Bernoulli map. To derive
the f(xt) that corresponds to our compressed exponential
we follow a standard method [16].

Writing equation (12) as xt+1 − xt = f(xt), we can
identify the left-hand-side with a derivative as long as
(xt+1 − xt) is sufficiently small. From dxt/dt = f(xt),
we then get tesc, which is an approximation for the total
time in state X before the escape:

∫ c

x0

dx

f(x)
= tesc. (13)

The probability density function Ψ(tesc) of the waiting
times is related to the distribution pin(x0) of injection
points. We assume this latter distribution to be uniform,
i.e. pin(x0) = 1/c. From Ψ(tesc)dtesc = pin(x0)dx0, we
then have

1
c

∫ c

x0

dx =
∫ tesc

0
Ψ(θ) dθ = 1 − S(tesc), (14)

where S(t) is the survival function (cf. Eq. (5)). This equa-
tion leads us to x0 = cS(tesc). Substituting this result in
equation (13), we establish a relation between f(x), which
characterizes the map, and the measured survival func-
tion S(t): ∫ c

x0

dx

f(x)
= S−1(x0/c). (15)

This gives us

f(x) = −
[
dS−1(x/c)

dx

]−1

. (16)

It is easy to check that our compressed exponential S(t) =
exp

[
−(t/τ)k

]
leads to

f(x) =
kx

τ
(− ln [x/c])(1−1/k) . (17)

The iteration map now takes the form

xt+1 = T (xt) = xt

(
1 +

k

τ
(− ln [xt/c])(1−1/k)

)
. (18)

We first observe here that c cancels out if we rescale: x′ =
cx. So c is ultimately just a scaling constant that we may

Fig. 4. The map xt+1 = T (xt) (cf. Eq. (18)) for c = 1,
k = 1.2, and τ = 1.15. It is shown how a run starts with a
random number x0 on the unit interval and how the next it-
erates are generated. A run with n iterates comes to an end
when xn = T (xn−1) > c. The distribution of run lengths mim-
ics the distribution corresponding to the survival function S(t)
(cf. Eq. (5)).

set equal to unity without loss of generality. Figure 4 shows
xt+1 = T (xt) for c = 1, k = 1.2, and τ = 1.15.

The dashed line in Figure 4 indicates the value for
which T (x∗) = 1. Any initial value x0 ∈ (x∗, 1) is im-
mediately mapped out of the unit interval. The segment
(0, x∗) is mapped onto the unit interval and x∗ should be
approximately equal to S(1) (cf. Eq. (11)). The values x∗

and S(1) differ by a small amount because equation (13)
is an approximation.

Figure 4 shows that, for our parameter values, the cur-
vature of T (xt) is small on 0 < xt < x∗. Nevertheless, it is
this curvature that is associated with the non-Markovian
behavior and the “memory” of the system. For k = 1,
equation (18) reduces to xt+1 = (1+1/τ)xt. In case k ̸= 1,
the term that multiplies xt on the right hand side of equa-
tion (18) depends on xt itself and it changes as xt grows
in the course of subsequent iterations.

The “memory” can also be understood in the follow-
ing way. Start with the unit interval (0, 1). If k = 1, then
the same fraction (1 − x∗) is mapped out of the unit
interval at every subsequent iteration. If k ̸= 1, i.e. if
there is curvature, then the fraction that is mapped out of
the unit interval changes from one iteration to the next.
This is easily understood after realizing that the curva-
ture on (0, x∗) makes a uniform distribution on (0, x∗)
map onto a nonuniform distribution on (0, 1). With a
nonuniform ditribution on (0, 1), (1− x∗) is no longer the
fraction that is mapped out of the interval at the next
iteration. The relation between the iteration number and
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the “mapped-out fraction” is what ultimately constitutes
the memory of the system.

5 Discussion

There are several versions of the Efficient Market Hypoth-
esis. In one of its weakest formulations, the hypothesis
states that prices follow a random walk with no time cor-
relations. For stock prices such a random walk is indeed
what is found. If the time interval ∆t is taken to be suffi-
ciently large (in practice ∆t ≈ 15 minutes), then price
changes follow a white noise pattern, i.e. a flat power
spectrum and no long or short term correlations. How-
ever, there are market variables that do exhibit a memory.
When the volatility of a stock price (the standard devi-
ation around an average price over a fixed period) is fol-
lowed for a long time, long term correlations are observed
as well as spectral densities that follow a S(ω) ∝ 1/ωγ

pattern, i.e. a power law, where γ is close to unity [3].
The IID sequence (Eq. (1) and the dashed line in

Fig. 2) makes for a random walk where today’s traded
volume is not related to tomorrow’s traded volume, ex-
cept that they are draws from the same distribution. In
the case of the biased coin-toss (Eq. (3) and the dotted
line Fig. 2) there is a very shallow memory. Tomorrow’s
∆Vj+1 depends on today’s ∆Vj and on a probability dis-
tribution. As ∆Vj = Vj − Vj−1, the memory is effectively
one step deep.

The fact that the compressed exponential with k = 1.2
is an almost perfect fit in Figure 2 means that the market
generally exhibits a memory that goes deeper than one
step. Today’s increment in traded volume depends on the
increments of days past! However, it is only at second
order in the small day-to-day anticorrelation δ that the
memory is apparent.

For the traded volume the same compressed exponen-
tial is found in a range of timescales varying from days
to months. We explained this apparent self-similarity as
a consequence of the fact that the day-to-day anticorre-
lation δ is very small. Correlations that are not between
nearest neighbors are of order δ2 and higher and thus are
negligible. The correlation of the traded volume of two
subsequent weeks, week 1 and week 2, ultimately boils
down to the correlation between the Friday of week 1 and
the Monday of week 2.

Stretched exponentials and a transition rate (cf.
Eqs. (4) and (5)) that varies as a negative power of t have
been commonly found in the analysis of ion channels and
other proteins. In many cases, underlying mechanisms and
elegant models that give rise to such decreasing transition
rates have been formulated [11,12,17]. For a compressed
exponential no such simple model suggests itself. How-
ever, we have formulated here a “first order” explanation
for why a compressed exponential with the same charac-
teristics is observed at different timescales.

We repeated our analysis for stock prices. More than
with volume, long term trends, like inflation, may be an
issue with price and such long term trends may interfere

with good statistics. However, we look at the lengths of se-
quences of subsequent increases (or decreases). Sequences
of ten or more subsequent increases (or decreases) are al-
ready extremely rare and ten timesteps is a sufficiently
short span to ignore the long term trends. For both the
increasing and the decreasing state we found k ≈ 1.05
for the day-to-day changes of the closing prices. For the
weekly and monthly closing prices the deviation from the
Markovian k = 1 was not statistically significant. How-
ever, when performing the analysis for the price, a serious
ambiguity occurs. Stock prices stay the same on subse-
quent days in about 5% of all cases. Added to this am-
biguity is the fact that, prior to decimalization in 2000
and 2001, stock prices were given to an accuracy of 1/8 of
a dollar. So there are dilemmas when stock prices remain
the same with more such dilemmas occurring before 2000.
Such dilemmas are not a major issue when volume is con-
sidered. For each of the stocks in Table 1 the daily traded
volume is of the order of 105. That the same volume is
traded on two subsequent days happens only in 0.20% of
all cases. For subsequent weeks and months it is 0.034%
and 0.011%, respectively. In these rare cases where there
was no change in volume, we included that iteration in the
sequence as if it was an increase.

For stock prices, k = 1 and unbiased-coin-toss statis-
tics are the expected outcome. Such an outcome is consis-
tent with the weakest formulation of the Efficient Market
Hypothesis. If the k for a stock price were significantly
different from one, it would imply a pattern and a pre-
dictability of the price. The idea of the Efficient Market
Hypothesis is that if a stock price were to go through
predictable highs and lows, traders would start buying
when low and selling when high. Through a simple supply-
and-demand mechanism these traders’ actions would then
eliminate the pattern.

Other researchers have studied traded volumes with
other methods. In references [18,19] long term correlations
for traded volumes are reported. It is still a puzzle as to
what the underlying mechanism is for such a long term
memory. In this article we have been looking at the sign
of the increments of traded volume. We, effectively, took
the derivative of the time sequence and just followed for
how long it stays positive or negative. We cannot identify
long term correlations as our analysis erases all memory
when the state of the system switches from I to D or D to I
(cf. Fig. 1). However, we do find a short term correlation.

We find an anti-momentum (S(1) < 1/2) that even
grows as the time in a state gets longer (αDI = αID ∝
t0.2). Such anti-momentum is readily explained in terms
of trader behavior. In reference [20] a distinction is made
between buyer-initiated traded volume, Vb, and seller-
initiated traded volume, Vs. Next, it is empirically found
that the price change, ∆p, is a monotonically increasing
function of ∆V = Vb − Vs. In reference [21] a mechanism
is formulated that leads to ∆p ∝ sgn (∆V )

√
|∆V |. The

picture that thus emerges is the following. A trader that
wishes to buy a certain stock drives up the price signif-
icantly when he buys too much volume of that stock in
too short a time. Likewise, a trader that wants to sell a
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certain stock decreases the price significantly by putting
too much volume of that stock on the market all at once.
In wanting to not affect a stock’s price through their own
actions, traders will thus start trading less if too much
volume is traded. We thus have a negative feedback loop,
i.e. an anti-momentum, through which the speed of trad-
ing will converge to an optimum. This optimum is the
compromise where traders move towards their ideal port-
folios at a speed that keeps price movement at a man-
ageable minimum. How anxiety can drive action-versus-
inaction dynamics in general has actually been modelled
with Weibull distributions [22].

For the dichotomous signal f(t) of Figure 1 with resi-
dence times in both states given by the same compressed
exponential (cf. Eq. (5)), we find for the autocorrelation
function [23,24]:

g(∆t) = ⟨f(t)f(t + ∆t)⟩ = exp

[
−2

(
∆t

τ

)k
]

. (19)

The Wiener-Khinchin Theorem tells us that the associ-
ated spectral density, S(ω), is the Fourier transform of
the autocorrelation function g(∆t), i.e.

S(ω) =
∫ ∞

−∞
g(t)eiωt dt = 2

∫ ∞

0
e−2(t/τ)k

cos(ωt) dt.

(20)
This spectrum does not resemble a power law and no
significant part of it is well approximated by a power
law. As was mentioned before, spectral densities of the
power-law-type, S(ω) ∝ 1/ωα, are commonly found in
econophysics [3,19,25]. The spectrum of equation (20) ac-
tually does not look very different from the well-known
Lorentzian spectrum (S(ω) ∝ 1/(ω2

0 +ω2), where ω0 is the
constant characteristic frequency) that is associated with
Markovian transitions [24,26]. In our case the character-
istic frequency ω0 is very close to 1/τ . We worked with
timesteps of length one. This gives us a sampling rate of
one. For 1/τ we have values close to unity (cf. Tab. 2). So
the region ω < 1/τ constitutes the part of our spectrum
that we have data for and this part is flat.

Much of the scientific analysis of stock prices and stock
traffic has concentrated on long term correlations and on
the large fluctuations in the tails of the distributions. This
is sensible as enigmatic market crashes are such large and
rare fluctuations. Our focus, however, has been on how
trade and traders operate on the short term. We follow the
sign of the day-to-day change in traded volume. We have
shown how the day-to-day pattern carries over when larger
time intervals are considered. The pattern we have iden-
tified can be qualitatively understood as a consequence of
market forces and trader behavior. It is not yet clear how
the numerical values that we found for k and τ (cf. Eq. (5)
and Tab. 2) exactly emerge. We speculate that an agent-
based model could lead to an understanding of the origin
of these numbers. But this would be a subject for future
research.
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