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Abstract –A system at equilibrium exhibits microscopic reversibility, i.e. any path in phase
space is just as often traversed in one direction as that it is traversed in the opposite direction.
We show how it is justified to characterize white Gaussian noise as equilibrium noise: when an
overdamped particle in a potential is subjected to such noise, microscopic reversibility can be
proven for most probable paths that lead from one potential well to another. However, when
the overdamped particle is subjected to white Lévy noise, time reversal symmetry is broken and
microscopic reversibility is violated, even when the noise is symmetric. We, furthermore, derive
how for an overdamped particle inside a parabolic potential microscopic reversibility is violated
in the presence of Lévy white noise. Similar to Brownian vortexes, Lévy flights can be associated
with the presence of Lévy vortexes in phase space.

Introduction. – Consider an overdamped Brownian
particle in a potential V (x). For |x| → ∞ we have V →∞.
The potential landscape has a number of minima, or wells,
that we associate with “states” in a chemical space.

In 1925 Gilbert Lewis realized that for Brownian par-
ticles in a potential landscape, equilibrium means more
than just a stationary probability distribution over a num-
ber of states [1]. The system should be invariant under a
time reversal transformation, t → −t. Net cyclic flows
should thus be forbidden. At the end of his article, Lewis
asks us to imagine a movie of a specific particle. He next
points out that at equilibrium there is no way to discrim-
inate between a forward played and a backward played
movie. Lewis’ realization has the following implication.
Consider a particular phase space trajectory for the parti-
cle: (x̃(t), ˙̃x(t)) with ti < t < tf . Here ti is the initial time
and tf is the final time. Along any such trajectory there
should be just as much flow in the forward direction, from
(x̃(ti), ˙̃x(ti)) to (x̃(tf ), ˙̃x(tf )), as there is in the backward

direction, from (x̃(tf ),− ˙̃x(tf )) to (x̃(ti),− ˙̃x(ti)).

The terms “detailed balance” and “microscopic re-
versibility” have been used in different contexts and in
occasionally inconsistent ways [2]. Our use [3, 4] is the
customary one when the subject is states, rates, and tra-

jectories in a chemical space. The requirement that net
flow between any two states is zero is called “detailed bal-
ance.” The stricter requirement that net flow along any
phase space path is zero is called “microscopic reversibil-
ity.” The latter notion is due to Onsager, who, in 1931,
derived his reciprocal relationships from it [5, 6].

In what follows we first focus on the most probable path
between two points. It is obvious that equilibrium de-
mands that the most probable path in the forward time
direction runs along the same trajectory as the most prob-
able path in the backward time direction. We will show
how Gaussian noise can be associated with microscopic
reversibility and how the presence of more general Lévy
fluctuations can lead to violation of microscopic reversibil-
ity. In our example the Lévy noise itself is symmetric in
the sense that each fluctuation in the positive direction is
as likely as its negative-direction counterpart. However,
following the Langevin formalism for an overdamped par-
ticle in a potential, the application of non-Gaussian Lévy
noise is found to lead to a breaking of the time rever-
sal symmetry. Microscopic reversibility for most probable
paths is violated, so forward and backward kinetics are
distinguishable.

The suitably scaled 1D Langevin Equation for a noise-
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subjected, overdamped particle on a potential V (x) is:

ẋ = −dV (x)

dx
+ ξα(t). (1)

As a generic example to illustrate the different responses
to Gaussian and Lévy noise, we consider a piecewise linear
potential V (x) as drawn in Fig. 1. Piecewise linear setups
commonly exhibit unique features due to their sharp cor-
ners. However, when noise is present, corners are effec-
tively “smoothed” and piecewise linear systems no longer
behave atypically.

x=0$ x=1$ x=2$

Fig. 1: A double-well, symmetric, piecewise linear potential.
We consider an overdamped particle in this potential. The
particle is subjected to Lévy noise.

The term ξα(t) in Eq. (1) represents the noise. We
assume a low noise limit so barrier crossings are rare
events. Upon discretization of Eq. (1) the contributions
ξα(t)∆t ≡ ∆Lα(t) are independent increments or “kicks.”
In analogy to Gaussian white noise, which is the time
derivative of the Wiener process [3], general Lévy white
noise can be defined as the time derivative of the alpha-
stable free Lévy flight (LF), i.e. ξα(t) = L̇α(t). For
the “kicksize” distribution pα(ξ) of the symmetric alpha-
stable LF, analytic expression is in terms of the charac-
teristic function (p̃α(k) ≡

∫
pα(ξ) exp [ikξ] dξ) [7–10]:

p̃α(k) = exp [−σα|k|α] , (2)

where the parameter α (0 < α ≤ 2) is the stability in-
dex and σ is a scale parameter that gives the noise inten-
sity. For α = 2 the case of Gaussian noise is retrieved
where σ represents the standard deviation divided by

√
2.

With Gaussian noise, tails are rapidly decaying and fol-
low p2(ξ) ∝ exp

[
−ξ2/4σ2

]
. For α < 2 we have a prob-

ability density distribution with a “fat” power-law tail,
pα(ξ) ∝ |ξ|−(1+α). Note that such a fat tail results in a
diverging variance for the distribution.

A prominent property of LFs and of Gaussian diffusion
is the fractal nature of the trajectory. The scaling law that
goes with the self-similarity is Lα(σt) = σ1/αLα(t). The
fractality carries over to the kicksizes ξα(t) that feature
in Eq. (1). There we have ξα(σt) = σ(1−α)/αξα(t). For
a discretized representation of Eq. (1), this means that
the kicksize ξα(ti) depends on the length of the timestep
∆t, i.e. ξα(ti) = θα,i/(∆t)

(α−1)/α, where the θα,i’s are
drawn from a standard (σ = 1) alpha-stable distribution.
Ultimately, the Wiener process (α = 2) looks like a “hairy”

trajectory. LFs (α < 2), however, exhibit large random
jumps [7, 10] and superdiffusion [11–13].

The Gaussian distribution is important and ubiquitous.
This is because whenever a distribution comes about as
the cumulative effect of a large number of stochastic in-
puts that each have a finite variance, the Central Limit
Theorem tells us that this distribution will be Gaussian
[3]. In an analogous way the alpha-stable Lévy distri-
butions with α < 2 “attract” sums of random variables
with diverging variance [14]. Hence, LFs occur in the de-
scription of fluctuation processes that are characterized by
bursts or large outliers. “Noise with pulsatory outbursts”
appears to be inherent to phenomena far from equilibrium,
such as, e.g., plasma turbulence [15] and financial market
dynamics [16, 17]. Lévy noise is also commonly detected
in physiology [18] and solar physics [19]. Climate changes
have been modelled with LFs and overdamped dynamics
as in Eq. (1) [20].

LFs can also emerge in the mathematical description
of equilibrium situations [21]. Consider, for instance, a
molecule that is diffusively hopping along a flexible poly-
mer from one monomer to a neighboring one. Let the
position of the molecule along the polymer chain next be
characterized by a chemical coordinate x. If the polymer
folds back and touches itself, then the molecule can, when
at the “intersection,” hop to a far away part of the chain.
The small jump in Euclidian space corresponds in that
case to a Lévy jump along x. This process may play a role
in protein dynamics on DNA strands [22].

If the noise, ξα(t), is symmetric, then the resulting sta-
tionary probability density for the Brownian particle in
the potential of Fig. 1 will be mirror-symmetric around
x = 1. This is because without a symmetry-breaking fea-
ture in the setup, Curie’s Principle (a symmetry or asym-
metry of a cause is always preserved in its effects [23])
demands a symmetric distribution. This means that for
both Gaussian noise and Lévy noise, the probability dis-
tribution for the particle will be symmetric around x = 1.
For the two-state system of Fig. 1, stationarity obviously
implies detailed balance, i.e. just as much flow from the
left to the right well as from the right to the left well.

Microscopic reversibility is a stricter condition than de-
tailed balance. Microscopic reversibility means that any
path in phase space is traversed in one direction just as
often as in the opposite direction. Microscopic reversibil-
ity and time-reversal symmetry are equilibrium charac-
teristics that imply each other. Microscopic reversibility
implies detailed balance, but not the other way round [4].
Below we show analytically how, in the case of Lévy noise,
microscopic reversibility is broken for the potential de-
picted in Fig. 1.

Noise-Induced Barrier Crossing. – We first con-
sider white noise with a Gaussian “kicksize” distribution.
This is the α = 2 case of Eq. (2). The “kicks” ξ2(tj) that
occur every ∆t are independent, have zero average, and a
standard deviation of

√
2/∆t. To go up the barrier from
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x = 0 to x = 1, we need an unlikely sequence of kicks.
What we will next calculate is “the most likely such un-
likely sequence.”

To calculate the most probable escape path (MPEP)
from x = 0 to x = 1, we write Eq. (1) as ẋ − F = ξ2(t),
where F is the constant force, and we identify the proba-
bility that the required sequence of kicks is realized as

P [ξ2(t1), ξ2(t2), ..., ξ2(tn)] ∝
n∏
j=1

exp

[
−1

4
ξ2
2(tj)∆t

]

= exp

−1

4

n∑
j=1

ξ2
2(tj)∆t

 .(3)

Maximal P occurs when the sum in Eq. (3) is minimal.
Suppose we go up the linear slope with a sequence of n
kicks that are all of the same magnitude κ. We then have

P ∝ exp
[
−n

4
κ2∆t

]
. (4)

Next assume a slight variation where one kick has a mag-
nitude κ+ ∆κ and another kick has a compensating mag-
nitude κ − ∆κ. The net effect would be the same: you
would get up the slope in the same time. However, since
(κ+∆κ)2 +(κ−∆κ)2 = 2κ2 +2(∆κ)2, the sum in Eq. (3)
would be larger and the probability P would be smaller.
So equal kicksizes constitute the MPEP because the aver-
age of the squares is larger than the square of the average.
Essentially, this is a manifestation of Jensen’s Inequality
which says that for any concave up function f(x), we have
〈f(x)〉 > f(〈x〉) [24]. All in all, the MPEP is a smooth
upslide with a constant speed v.

Next we prove that the upslide with v = −F (where F =
−dV/dx), i.e. the reverse of the deterministic downslide,
is the most probable. Minimizing∑

ξ2
2(t)∆t =

∑
(ẋ− F )2∆t, (5)

we take the right hand side and treat it as an integral:

S =

∫ T

t=0

(ẋ− F )2 dt, (6)

where t = 0 represents the instant at which the trajectory
starts and t = T is when the top is reached. Going from
x = 0 to x = 1 we have ẋ = v and v needs to be positive.
With T = 1/v we now minimize

S =

∫ 1/v

t=0

(v − F )2 dt = v − 2F + F 2/v. (7)

Differentiating w.r.t. v and setting the derivative equal to
zero, we find that the minimum for S occurs when v2 =
F 2. The positive solution (note that F is negative on
(0,1)) is v = −F .

Figure 2a shows this most probable path in phase space.
For microscopic reversibility to be true, there should be

just as much traffic at speed v = −F from x = 0 to x = 1
as that there is from x = 1 to x = 0. It is obvious that the
most probable downslide is the deterministic one. After
all, ξ = 0 is the most likely Brownian kick size. The
downward v = F (the green dotted arrow) and the upward
v = −F (red arrow) thus form a “microscopic reversibility
pair.”

Next we determine the MPEP for Lévy noise, i.e. when
α < 2 in Eqs. (1)and (2). Moving up the barrier is a
rare event that requires kicks from the power-law tail,
pα(ξ) ∝ (1/|ξ|)1+α

, of the distribution. For the proba-
bility of moving up the barrier with a certain sequence of
n kicks, we next write down

P [ξα(t1), ξα(t2), ..., ξα(tn)] ∝
n∏
j=1

∣∣∣∣ 1

ξα(t1)

∣∣∣∣1+α ∣∣∣∣ 1

ξα(t2)

∣∣∣∣1+α

...

∣∣∣∣ 1

ξα(tn)

∣∣∣∣1+α

(∆t)n.(8)

Again, we begin our analysis by assuming a path with
kicks that are all of the same size κ. For the probability
of such a path we have:

P ∝

[(
1

κ

)1+α
]n
. (9)

Following the same procedure as with Gaussian noise and
replacing two kicks of size κ by one kick of κ + ∆κ and
another kick of κ−∆κ, where ∆κ < κ, we observe that[

1

(κ+ ∆κ)

1

(κ−∆κ)

]1+α

=

(
1

κ2 −∆κ2

)1+α

>

(
1

κ2

)1+α

(10)
In other words, the sequence with κ + ∆κ and κ − ∆κ
has a higher probability and constitutes a more probable
path. Once more it is Jensen’s Inequality that determines
whether a deviating escape path is more or less proba-
ble, but for α 6= 2 the decision goes the opposite way as
compared to the α = 2 case.

With Eq. (10) it can also be understood that for any
two kicks, κ1 and κ2 where κ1 > κ2, we can create a more
probably path by taking κ1 + ∆κ and κ2 −∆κ (∆κ > 0).
Carrying this line of thinking to its ultimate conclusion,
we see that for Lévy noise with its power-law tail, the
MPEP is a “flight” path that lasts just one timestep ∆t.
The speed of the upslide is thus v = 1/∆t (which actually
implies infinite speed for the ∆t→ 0 limit). It has indeed
been observed and explained that, for Lévy noise, escaping
over a barrier is a matter of waiting for a single pulse that
is sufficiently large [25]. Above we justified this for the
case of a piecewise linear potential.

For the case of Gaussian noise, MPEPs have been de-
rived for barriers of any shape with an elegant approach
in which the above Eqs. (3), (5), and (6) are made the
basis of a minimizing-the-action procedure. That proce-
dure leads to Euler-Lagrange equations for the MPEPs
[26–28]. Microscopic reversibility then appears to be valid
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Fig. 2: The left panel (a) shows how there is microscopic re-
versibility in the case of Gaussian noise. The most probable
escape path from x = 0 at t = ti to x = 2 at t = tf (solid red
arrow) is the exact time reverse of the most probable escape
path from x = 2 to x = 0 (dashed green arrow). The right
panel (b) shows how microscopic reversibility is violated with
Lévy noise. No longer are the two trajectories each others time
reverse and there are Lévy vortexes in the phase plane.

for any shape potential. However, presently there are no
meaningful Lévy-noise-equivalents of Eqs. (5-7).

For symmetric Lévy noise the most probable kicksize is
given by the modal value of the corresponding probability
density function, i.e. ξα = 0. In this it does not differ
from the Gaussian-noise case. This implies that, for both
Gaussian noise and for Lévy noise, the most probable path
down the slopes in Fig. 1 is a deterministic downslide, i.e.
a trajectory described by ẋ = −dV/dx.

Putting together all the results that we have obtained
above, we find, first of all, that microscopic reversibility
applies for Gaussian noise. Figure 2a shows how the most
probable 0-to-2 path is the exact time reverse of the most
probable 2-to-0 path.

For Lévy noise, however, microscopic reversibility is bro-
ken. The most likely trajectory over the barrier is one
where the upslide has a speed v = 1/∆t as the unit inter-
val is traversed in one single timestep. The downslide is
again a deterministic one with a speed v = |F |. Figure 2b
shows how the two most probable paths do not fall along
the same curve!

Lewis’ idea of forward and backward played movies is
instructive here. With Gaussian noise it is obvious that
a backward-played movie of the most probably path lead-
ing from 0 to 2 is indistinguishable from a forward-played
movie of the most probable path from 2 to 0. The same
constant speed is observed. With Lévy noise, on the other
hand, the 0-to-2, backward-played movie looks very dif-
ferent from the 2-to-0 forward-played movie. The forward
played movie has the fast part first and the slow part sec-
ond. For the backward played movie it is the other way
round.

Different authors have observed, discussed and studied
how, for Brownian motion, nonequilibrium can give rise to
rotational flows or “Brownian vortexes” [5, 29–31]. Such
cycling implies a production of entropy. Figure 2b shows
how, in our case, LFs lead to the presence of Lévy vortexes

in the phase plane. The divergence-free flow in our phase
plane could, in principle, be associated with the curl of a
vector potential A, i.e. J = ∇×A. It is a future research
challenge to more explicitly relate LFs to cyclic phase-
space flow and a vector potential A that describes Lévy
vortexes.

Lévy Noise Inside a Parabolic Potential. – The
example in this section is to illustrate that it is not just in
piecewise linear potentials that Lévy noise leads to break-
ing of microscopic reversibility and formation of Lévy vor-
texes. With a different mathematical formalism we show
below how, within a quadratic potential V (x) = x2/2, the
same phenomena occur. A quadratic potential can be con-
sidered generic as it generally describes the lowest order
behavior around a minimum in a continuous potential.

For the Brownian particle inside the quadratic potential
we have after appropriate scaling:

ẋ = −x+ ξα(t). (11)

The corresponding Fractional Fokker-Planck Equation
[32] reads:

∂tp(x, t|x0) = ∂α|x|p(x, t|x0) + ∂x (xp(x, t|x0)) , (12)

where x(t = 0) = x0 and the time evolution after t = 0 is
considered. The function p(x, t|x0) represents the proba-
bility density for a particle to be at position x at time t,
given that it is at x = x0 at t = 0. In Eq. (12) the super-
script α denotes the taking of a fractional Riesz deriva-
tive. Equation (12) is readily solved in Fourier space:
p̃(k, t|x0) = exp[ikµ(t) − |k|ασα(t)], where µ(t) = x0e

−t

and σ(t) = [(1− e−αt) /α]
1/α

. From there we find for the
solution of Eq. (12):

p(x, t|x0) =
1

γ(t)
pα

(
x− µ(t)

σ(t)

)
. (13)

We denote the stationary state as ps(x) =
limt→∞ p(x, t|x0).

We next focus on α = 1. In that case the alpha-
stable distribution is the simple and well-known Cauchy

distribution: p1(x) =
[
π
(
1 + x2

)]−1
. We define three

regions on the parabolic potential as in Fig. 3. Region
A is a small neighborhood around x = 0: A = [−a, a].
Region C constitutes the outer edges of the parabola:
C = 〈−∞,−c]∪ [c,∞〉. Region B is made up of the inter-
vals in between: B = R \ (A ∪ C). For the net amount of
probability that flows from region A to region C in time
∆t we have:

∆PA→C(∆t) (14)

= P (X∆t ∈ C;X0 ∈ A)− P (X∆t ∈ A;X0 ∈ C) .

Here X0 is taken from the stationary distribution. With
the expression for the Cauchy distribution, the joint prob-
ability is readily evaluated:

P (X∆t ∈ C;X0 ∈ A) =

∫
C

∫
A

p(x,∆t|x0)ps(x0) dx0 dx
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!c# !a# !a# !c#
A! B!!B! C!C!

Fig. 3: We consider a particle subjected to Lévy noise inside
this parabolic potential, cf. Eqs. (11-13). We define the three
regions A (solid), B (dashed), and C (dotted). In the text
it is derived how microscopic reversibility is violated and how
vortex behavior emerges: particles “shoot up” from A to C in
a short time and take a longer time to slide back to A.

=
1

π2

∫
x∈C

dx

∫
y∈A

dy
1− e−∆t

(1− e−∆t)2 + (x− ye−∆t)2

1

1 + y2
.

It is now straightforward to derive that we have at first
order in ∆t:

∆PA→C(∆t) ≈ (15)

4

π2

(∫ a

0

dy

1 + y2

c

c2 − y2
−
∫ ∞
c

dy

1 + y2

a

y2 − a2

)
∆t.

Expanding for small a, a concise expression is found:

∆PA→C(∆t) =
4a∆t

π2
arctan

(
1

c

)
+ higher order in a,∆t.

(16)
For a stationary state, i.e. t→∞, there should be constant
probabilities, p(A), p(B), and p(C), to be in the regions A,
B, and C, respectively. What the above derivation shows is
the following. Consider traffic between region A and C and
look at how fast the intermediate segment B is traversed.
It appears that microscopic reversibility is broken as the
segment B is traversed faster on the way up than on the
way down. For a small ∆t, upward trajectories that are
completed within ∆t are more common than downward
trajectories. Had there been microscopic reversibility, the
expression for ∆PA→C(∆t) (cf. Eqs. 15 and 16) would have
yielded zero at all orders.

In other words, particles in a parabolic potential that
are subjected to alpha-distributed noise “shoot up and
slide down.” Lewis explained flow on an energy landscape
by comparing it to traffic between cities [1]. Carrying on
this analogy, we can compare the flow in the parabolic
potential with traffic from A to C being by airplane and
traffic from C to A by car.

Thermodynamic Consequences. – For a two-state
system, steady state and detailed balance are the same
thing. But with three states they may be different. To

explore possible steady-state circular flow, we thus con-
sider the setup in Fig. 4, where A, B, and C indicate three
states along a circular track. If the slopes are not symmet-
ric, then we have a ratchet potential. It has been shown
that net flow occurs for an overdamped particle in such
a ratchet potential if Lévy noise with α 6= 2 is present
[33–35]. Both microscopic reversibility and detailed bal-
ance are violated in that case. However, when the slopes
are symmetric, there is no way to geometrically discrimi-
nate between the two directions. If the applied Lévy noise
is also symmetric, then Curie’s Principle forbids net ro-
tation. This implies that detailed balance is maintained
among the states A, B, and C in Fig. 4. But following the
analysis associated with Figs. 1 and 2, we see that micro-
scopic reversibility is violated! Imagine again a movie of
the system. In a forward played movie it is observed that
the most likely trajectory that brings the particle from one
state to another covers the first half of that trajectory fast
and the second half slow. For a backward played movie
it is the other way round. Of course, for Gaussian white
noise the most likely state-transition-trajectories have con-
stant speed again. Time-reversal symmetry and micro-
scopic reversibility are preserved in the Gaussian case. But
this example shows how, with LFs, it is possible to break
microscopic reversibility (and thereby time reversal sym-
metry), while preserving detailed balance.

B"
A"

C"

A" B" C" A"

0" 2π/3" 4π/3" 2π"

""A"
""B"

C"

Fig. 4: Three states along a circular track. The two spatial
directions are indistinguishable. The applied Lévy noise is also
symmetric. In the text it is explained how detailed balance
is preserved while time reversal symmetry and microscopic re-
versibility are violated for the most likely trajectories going
from one state to another.

Biophysicists have long been curious about to what ex-
tent microscopic reversibility applies to the activities of
biomolecules. With the development of the patch clamp
technique, about three decades ago, researchers acquired
the ability to follow the opening and closing of an indi-
vidual ion channel. From there it is relatively straightfor-
ward to compare forward and backward open-and-closed
records and see whether they follow the same statistics.
Doing such analyses, both compliance with microscopic
reversibility [36] and violation thereof [37] has been discov-
ered (for a review, see [38]). For the electrical noise across
a cell membrane it appears that the nonequilibrium part
due to noisy ion traffic can be about a thousand times as
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intense as the thermal, equilibrium part [39]. The mecha-
nisms pointed out in this Letter may therefore be relevant
for the behavior of ion channels.

Mechanical noise in a living cell has only recently be-
come experimentally accessible. But it has quickly become
obvious that cytoplasmic mechanical activity is far from
equilibrium and that the total noise intensity far exceeds
the basic thermal kT -level [40, 41]. With small probes
it has furthermore been found that the large fluctuations
that are typical for Lévy statistics occur in both cytoskele-
tal networks and surrounding cytoplasmic fluid [42,43].

All in all, we may conclude that when microscopic re-
versibility is turned into a central principle for molecular
machines [44], phenomena may remain unexplained and
nanoengineering opportunities may be passed up [45].

With LFs the concepts of thermalization and equilib-
rium need be addressed with much care [46,47]. Langevin
equations driven by Lévy white noises lead to non-
Gibbsian distributions. Furthermore, Lévy noise has infi-
nite variance and so there is no fluctuation-dissipation re-
lation to connect the variance of the noise to the strength
of the friction. In this Letter an analytic connection was
made between the noise statistics and the ensuing statis-
tical mechanics in a nonequilibrium regime. Our results
are for simple potentials, but further extension and gen-
eralization should be possible.
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