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Abstract: The standard textbooks contain good explanations of how and why equilibrium thermo-
dynamics emerges in a reservoir with particles that are subjected to Gaussian noise. However, in
systems that convert or transport energy, the noise is often not Gaussian. Instead, displacements
exhibit an α-stable distribution. Such noise is commonly called Lévy noise. With such noise, we see a
thermodynamics that deviates from what traditional equilibrium theory stipulates. In addition, with
particles that can propel themselves, so-called active particles, we find that the rules of equilibrium
thermodynamics no longer apply. No general nonequilibrium thermodynamic theory is available
and understanding is often ad hoc. We study a system with overdamped particles that are subjected
to Lévy noise. We pick a system with a geometry that leads to concise formulae to describe the
accumulation of particles in a cavity. The nonhomogeneous distribution of particles can be seen as
a dissipative structure, i.e., a lower-entropy steady state that allows for throughput of energy and
concurrent production of entropy. After the mechanism that maintains nonequilibrium is switched
off, the relaxation back to homogeneity represents an increase in entropy and a decrease of free energy.
For our setup we can analytically connect the nonequilibrium noise and active particle behavior to
entropy decrease and energy buildup with simple and intuitive formulae.

Keywords: Lévy noise; nonequilibrium thermodynamics; active particles; entropy production;
dissipative structures

1. Introduction

The thermodynamics and statistical physics of particles at equilibrium is a standard
part of the undergraduate curriculum. The First and Second Law of Thermodynamics
are powerful concepts that lead the way to the explanation of many real-life phenomena.
Further development led to notions such as the Boltzmann Distribution, the Fluctuation-
Dissipation Theorem, Onsager’s Reciprocal Relation, and Microscopic Reversibility [1].
Even setups that are close-to-equilibrium can often be successfully analyzed with these
ideas. No general theory, however, is available for systems that are far-from-equilibrium.
None of the above laws and notions apply in that case.

Imagine a liquid in which “active” particles are suspended. Such “active” particles
can be bacteria that propel themselves, i.e., swim. These can also be particles that are
manipulated through fields from the outside. Obviously, energy is pumped into such
systems and no First Law or any of the concepts mentioned in the previous paragraph
applies. Over the last two decades, setups with active particles have been the subject of
much experimental and theoretical research.

There are many different ways to model the movements of active particles. One can,
for instance, assume that the particle has the same speed all the time and that the change
of the direction of motion follows a diffusion equation [2]. The “Run-and-Tumble” model
is a more discrete version of this and it is inspired by the way that Escherichia coli bacteria

Entropy 2022, 24, 189. https://doi.org/10.3390/e24020189 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020189
https://doi.org/10.3390/e24020189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1987-3138
https://doi.org/10.3390/e24020189
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020189?type=check_update&version=1


Entropy 2022, 24, 189 2 of 18

move [3]. Here the particle or bacteria covers a finite-length straight segment at a constant
speed. After coming to a stop, it lingers for a moment. It “tumbles” and then picks a new
random direction for the next run. There are also different ways to let the active particle
interact with the wall of the reservoir in which it swims.

In our analysis below, we focus on the 2D random walk: At every timestep, a direction
is picked randomly and a displacement is drawn from a zero-centered distribution (cf.
Figure 1). We let the random walks happen in a confinement. Whenever the particle hits
the wall, it comes to a standstill. Subsequently, it only moves away from the wall again if a
random displacement makes it move inside the circular confinement.

If displacements are drawn from a zero-average Gaussian distribution, we eventually
see a homogeneous distribution of particle positions over the entire domain. However, if
we instead draw distances from a so-called α-stable distribution (sometimes called a Lévy-
stable distribution) [4–7], a nonhomogeneous distribution develops.

The Gaussian distribution has an exponential tail, i.e., p2(ξ) ∝ exp
[
−ξ2/2σ2] as

ξ → ±∞. Here σ denotes the standard deviation of the Gaussian. The rapid convergence
to zero of the exponential tail means that the probability to make a big jump is very small
and effectively negligible. Figure 1a shows this clearly.

For an α-stable distribution, the asymptotic behavior is described by a power law:

pα(ξ) ∝ |ξ|−α−1 as ξ → ±∞. (1)

Here α is the so-called stability index for which we have 0 < α < 2. For α = 2, the Gaussian
is re-obtained. The power law converges slower than the exponential. A result of this is
that outliers, i.e., large “Lévy jumps”, regularly occur (see Figure 1b). Ultimately, the Lévy
walk resembles a run-and-tumble walk, but, following Equation (1), the Lévy jumps have
no characteristic length and the average length of a Lévy jump actually diverges.

Figure 1. Random walk in a circular domain. Whenever the particle hits the wall, it comes to a
standstill and later only moves again when a computed step leads to a movement inside the circle.
For every step, the direction is picked randomly and the displacement is drawn from a (a) Gaussian
distribution or from a (b) Lévy-stable distribution. The circle has a radius of 20. Both distributions
are symmetric around zero. The Gaussian distribution has a standard deviation of

√
2. For the

Lévy-stable distribution, we have α = 1 and a scale factor of σ = 1.

The Central Limit Theorem [8] tells us that the Gaussian distribution is what ensues
when an outcome is the result of multiple stochastic inputs. However, the theorem only ap-
plies if all of the constituent stochastic inputs have a finite standard deviation. For stochastic
inputs with infinite standard deviations, the α-stable distribution is what results.

The α-stable distribution is a standard feature of the Mathematica software package
and the programming for a simulation as the one leading to Figure 1b is a matter of just a
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few lines of code. The probability density of the α-stable distribution is given by a big and
cumbersome formula [9] and we will not elaborate on it.

Alpha-stable distributions do not just provide a good model for the behavior of active
particles. It turns out that power-law tails commonly occur in systems that are far-from-
equilibrium with no active particles involved. Almost 60 years ago, Benoit Mandelbrot
discovered that variations in the price of cotton futures follow a distribution with an α = 1.7
power-law tail [10,11]. More power-law tails and α-stable distributions were identified
in the 1990s [12–14] when desktop computers became available that could rapidly and
easily perform the necessary data processing. As of yet, there is no complete and general
theory to explain how and why α-stable distributions are connected to far-from-equilibrium.
In this sense, the α-stable distributions are like 1/ f -noise [11,15]. The connection of far-
from-equilibrium with α-stable distributions and 1/ f -noise is still for the most part, a
phenomenological one.

Nevertheless, as mentioned above, nonequilibrium characteristics do emerge when,
instead of Gaussian noise, Lévy noise is added to particle dynamics. Take a particle
doing Brownian motion on a potential V(x). Microscopic reversibility means that every
trajectory x(t) from an initial position xi to a final position x f and taking a time ∆t, is
traversed equally often in forward and backward direction. Microscopic reversibility is an
equilibrium feature that is implied by the fact that there can be no arrow of time for a system
at equilibrium, i.e., there must be time-reversal symmetry. In 1953, Onsager and Machlup
gave mathematical rigor to this idea when they proved that with Gaussian noise, the most
likely trajectory up a potential barrier is the reverse of the most likely trajectory down
that same barrier [16–18]. It can also be rigorously proven that for Lévy noise, the most
likely trajectory up a potential barrier is not the reverse of the most likely trajectory down a
potential slope [19]. The presence of Lévy noise breaks the time-reversal symmetry that is
implicit in equilibrium [20].

For the setup that is depicted in Figure 1b, the violation of time-reversal symmetry is in
the interaction of the particle with the wall. Elastic collisions have time-reversal symmetry
and had we taken the particle in Figure 1b to collide elastically with the wall, forward and
backward trajectories would have been indistinguishable. Lévy jumps are rare, but because
of their length, they are likely to end at the wall. Once the particle is located at the wall,
the probability that the first subsequent step is already a Lévy jump away from the wall is
small. Moreover, only a step that leads to a movement inside the reservoir will be processed
in the simulation. Thus, the particle can “linger” near the wall after hitting it. In the end it
appears as if it is easier to get to the wall than it is to get away from it, i.e., it looks as if there
is reduced mobility near the wall. Figure 2 shows how this is the case on a 1D interval.

In the previous paragraph, we put the finger on something that applies generally
for active particles in a confinement. They do not distribute homogeneously, but instead
accumulate near a wall. It furthermore appears that the accumulation is stronger if the
wall has a stronger inward curvature [21]. Active particles tend to get stuck in nooks and
corners of a confinement and even more so if the nooks and corners are tighter. This is the
phenomenon that we will elaborate on below.

The way Lévy particles distribute on a confined 1D segment (cf. Figure 2) can be
described with a Fractional Fokker–Planck Equation [22]. The steady-state solution of that
equation is available [23]. We show in Appendix A how this solution readily generalizes
to higher dimensional setups. Below we examine how Lévy particles distribute over two
connected reservoirs where one reservoir is a scaled down version of the other. We will see
a deviation from the homogeneous distribution that is obtained when the noise is Gaussian
and when equilibrium theory applies.

Suppose we have a volume V with N indistinguishable particles in it. We partition the
initially empty V into two reservoirs of a volume V/2 each. Next the particles are inserted.
Each reservoir has a probability of 1/2 to receive each particle. Eventually, the probability
for all particles to end up in one particular reservoir is 2−N . The probability for an equal
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distribution over the two reservoirs is ( N
N/2)2

−N . The binomial coefficient ( N
N/2) grows very

rapidly with N.

-0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. A Lévy walk on the interval −1 ≤ x ≤ 1 (cf. Equation (3)). The value of the stability index
is α = 0.8. Whenever the particle hits x = ±1, it stays there until an iteration occurs in the direction
away from the wall. The red curve shows the analytic solution (cf. Equation (4)). The normalized
histogram is the result of a numerical simulation of Equation (3); the timestep was ∆t = 0.001, there
were 107 iterations, and the scale factor of the symmetric, zero-centered Lévy distribution was taken
to be one.

The reason that the air in a room never spontaneously concentrates in one half of the
room is that there is just one way to put all molecules in one chosen half and ( N

N/2) ways to
distribute them equally. In other words, the macrostate in which all air is concentrated in
one particular half of the room has one microstate and the macrostate with a homogeneous air
distribution over the entire room has ( N

N/2) microstates. The entropy of a macrostate can be
defined as a scalar value that is proportional to the logarithm of the number of microstates
of that macrostate [1]. In this case, it is obvious that the homogeneous distribution leads to
maximal entropy.

With a partition and a pump it is, of course, possible to bring all of the air molecules to
one half of the room. Such a process requires energy and with standard thermodynamics,
the involved energies can be calculated. That energy-consuming, active particles can
accumulate in a smaller subvolume does not violate laws of nature, and it is also possible
to calculate the entropy change associated with such accumulation. We will perform such a
calculation.

The ultimate goal would be a Lévy-noise-equivalent of entropy. This would be a
quantity that takes its extreme value when Lévy-noise-subjected particles reach a steady
state distribution. The Kullback–Leibler divergence [24] is a positive scalar value that
can be thought of as a “distance” between two given distributions. The Kullback–Leibler
divergence between the steady state distribution and another distribution could be a
good candidate. With tools like Noether’s Theorem, alternative formulations of active-
particle statistical mechanics and of the Fractional Fokker–Planck Equation have been
derived [25,26], with work in this direction appearing to be promising.

No general formalism is developed in this article, but we present a setup where the
entropy decrease associated with the accumulation can be readily described with simple
and intuitive formulae. The nonhomogeneous steady-state distributions that develop
in the presence of nonequilibrium noise can be interpreted as dissipative structures [27].
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The deviation from homogeneity decreases the entropy. However, active particles pump
energy into the system and the dissipative structure ultimately facilitates a steady-state
dissipation of energy and production of entropy.

2. The 1D and 2D Random Walk in a Confined Domain

For a particle in 1D, Brownian motion is commonly described with a Langevin equation:

ẋ(t) =
√

2D ξ2(t), (2)

where x(t) is the time-dependent position of the particle, • ≡ d/dt, D is the diffusion
coefficient, and ξ2(t) is a stochastic function that describes the effect of collisions with
molecules in the medium. To account for the effect of such collisions, a random number
θ2,i is drawn at the i-th timestep. In a simulation with finite timesteps of ∆t, we then take
∆xi =

√
2D ξ2,i(ti)∆t =

√
2D∆t θ2,i. If ∆t is large enough to contain a significant number

of collisions, then the aforementioned Central Limit Theorem [8] can be invoked to justify
drawing the θi’s from a zero-average Gaussian distribution. Upon taking 〈θ2

2,i〉 = 1, we
readily come to the traditional equation for the average squared distance that is diffused in
a time interval ∆t: 〈∆x2〉 = 2D∆t.

The equation 〈∆x2〉 = 2D∆t does not contain a characteristic timescale. It is in order
for the scale-free diffusion equation to ensue that we need to “adjust” the θ2,i’s and take
ξ2(ti) = θ2,i/

√
∆t in Equation (2).

In case of the 1D Lévy flight, we have for the stochastic ordinary-differential-equation
and its discretized version, respectively:

ẋ = σ ξα(t) and ∆xi = σ θα,i ∆t1/α. (3)

Now the values for θα are drawn from a symmetric, zero-centered α-stable distribution with
a value of one for its scale factor. The Lévy flight is still scale-free, but because 〈θ2

α,i〉 → ∞
for 0 < α < 2, there is no longer a traditional diffusion equation and σ is a mere scale factor.

Figure 1 shows simulations of 2D random walks. At every timestep, a direction is
chosen randomly from a flat distribution between zero and 2π. The displacement is the
result of a random draw from a Gaussian distribution (Figure 1a) or from an α-stable
distribution (Figure 1b). Both the Gaussian walk and Lévy walk are isotropic, i.e., taken
from the center of the circle, all directions are equivalent. A generalization to more than
2 dimensions is readily formulated and simulated. The random walks then occur inside
a ball with a finite radius. Whenever the domain boundary is hit, the particle comes to
a standstill. For α = 2, the random walk is symmetric under time reversal. However,
as was already mentioned in the Introduction, for 0 < α < 2 the time-reversal symmetry is
broken. It is not hard to understand why this is the case. When the particle is followed in
forward time, we will often see a Lévy jump that makes the particle come to a standstill at
the domain boundary. More rare will be a large jump from the domain boundary into the
interior. When a movie of the moving particle is played backward, it will be the other way
round. The forward and backward played movie are distinguishable.

Figure 2 shows the position distribution that results after a many-step 1D simulation
on −1 ≤ x ≤ 1 for α = 0.8. For α = 2, a flat distribution results. However for 0 < α < 2,
the Lévy jumps that terminate at x = ±1 and the decreased mobility there lead to an
increased probability density near x = ±1. The Langevin Equation, Equation (3), can
be equivalently formulated as a fractional Fokker–Planck Equation for the evolution of
a probability distribution, i.e., ∂t p(x, t) = σα∂α

x p(x, t). The stationary distribution is then
obtained as the solution of the ordinary differential equation that results when the left hand
side is set equal to zero. The fractional derivatives are nontrivial, but in Ref. [23], a solution
for the 1D case is presented:

pst(x) =
21−αΓ(α)
Γ2(α/2)

(
1− x2

)α/2−1
, (4)
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where Γ(.) denotes the gamma function. Figure 2 shows this solution together with the
results of the Langevin simulation. In Appendix A, we show with symmetry arguments
that the normalized (1− r2)α/2−1-form generalizes to the nD case, with r being the distance
from the center of the ball.

It is worth noting that the U-shaped function as in Equation (4) and Figure 2 has been
encountered in other systems in stochastic dynamics. For α = 1, the Lévy stable distribution
is actually the Cauchy distribution, p1(ξ) = (1/π)(σ/(σ2 + ξ2)). For α = 1 and upon
taking x = 2u− 1, Equation (4) turns into p(u) = (1/π)(u(1− u))−1/2, where 0 ≤ u ≤ 1.
This is called the arcsine distribution because the cumulative distribution yields an arcsine:∫ u

0 p(u′) du′ = (2/π) arcsin
√

u. In 1939, it was the same Paul Lévy who derived that the
arcsine distribution emerges in the following case [28]. Let a 1D Brownian walk of duration
t start at x = 0. Next look at the fraction of time that the Brownian particle spends on
the positive semi-axis. It is found that these fractions follow an arcsine distribution. This
is called the arcsine law. Recently it has been discovered that arcsine laws occur more
generally [29]. Driven mesoscopic systems are obviously out-of-equilibrium, but also in
such systems, an arcsine law results when one considers, for instance, fractions of time that
a current stays above its average value. Arcsine laws in nonequilibrium setups is currently
a much researched topic [30,31] and Equation (4) may be a manifestation of something
deeper and more general.

3. Two Connected Semicircular Reservoirs

Imagine a semicircular 2D domain with radius R1 as in Figure 3. There is a small
opening with a width d that gives access to a semicircular domain with radius R2. We
have R2 < R1. Next imagine a large number of particles in this system. The particles
are subjected to Lévy noise. In Appendix B, it is derived how there is a net flow into the
smaller reservoir if both reservoirs have the same homogeneous particle density. Thus,
when starting from thermodynamic equilibrium, a higher density develops in the smaller
reservoir once Lévy noise starts being applied.

Figure 3. Two semicircular reservoirs with a small opening between them. The system contains
a large number of noisy particles. At each timestep, each particle moves in an arbitrary direction
with a displacement that is drawn from a Gaussian distribution or a Lévy-stable distribution as in
Figure 1a,b. If a particle hits a semicircular wall, it comes to a standstill and only moves again if a
computed displacement leads to motion inside the system. If a particle hits the straight vertical wall,
it bounces elastically. For Gaussian noise, the system goes to an equilibrium with equal concentration
on both sides of the opening. However, when the particles are subjected to Lévy noise, the steady
state has an accumulation in the smaller reservoir.
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3.1. Distribution over the Two Reservoirs in Case of Lévy Noise

If the noise in the setup of Figure 3 is Gaussian, then the system will relax to an
equilibrium with equal concentration in the two reservoirs. Each particle then has a
probability P1 = R2

1/(R2
1 + R2

2) to be in the larger reservoir and a probability P2 = R2
2/(R2

1 +
R2

2) to be in the smaller reservoir. The probability to be in a certain reservoir is in that
case, simply proportional to the volume of that reservoir. In 2D, the “volume” is the area
Vi = πR2

i /2.
Next consider Lévy particles. The distribution will now be different. As was shown in

the previous section and in Appendix A, Lévy particles tend to accumulate near the walls
and in the smaller “nooks and corners”. With Lévy particles, the probability to be in the
smaller reservoir will be larger than the reservoir’s fraction of the total volume.

For a stochastic simulation, we let the semicircular walls be “sticky” again, i.e., the
particle comes to a standstill upon hitting the wall and only displaces again if a subsequent
computed step leads to motion inside the system. If the linear vertical wall in the middle is
hit, an elastic collision occurs. Thus, that wall is “bouncy”.

We will use the 2D solution for a circle, pst(r) = (α/(2π))
(
1− r2)α/2−1, to come

to an estimate of the steady-state distribution for the setup in Figure 3. We move to a
description where ρi(ri), with i = 1, 2, denotes the normalized particle density in reservoir
i at a distance ri from the opening. With:

ρi(ri) =
α

πR2
i

(
1−

(
ri
Ri

)2
)α/2−1

(5)

it is readily verified that:

∫ Ri

ri=0

∫ π/2

φ=−π/2
ρi(ri)ri dri dφ = 1. (6)

With a large number of particles in the setup, there will be a relaxation to a distribution with
a fraction ϕ1 in reservoir 1 and a fraction ϕ2 in reservoir 2. Obviously we have ϕ1 + ϕ2 = 1.
For any distribution over the two reservoirs we have:

ρ(r1, r2) = ϕ1ρ1(r1) + ϕ2ρ2(r2). (7)

It is easy to see that
∫ ∫

ρ(r1, r2) = 1, where the integration is over the entire 2-semicircle
system in the figure.

The steady state occurs if there are as many 1 → 2 transitions as there are 2 → 1
transitions. We will next derive what values of ϕ1 and ϕ2 lead to steady state. In the
above figure, imagine a semicircular strip of width dri at a distance ri from the opening.
The number of particles in the strip is ρi(ri)πridri (i = 1, 2). We assume that for r > r0,
we are in the region where the power-law-description of the tail of the Lévy distribution
(pα(r) ∝ r−(α+1) as r → ∞) applies. The probability that the displacement during one
timestep is larger than r is then proportional to r−α. For small d and sufficiently large r0,
the angle θ, cf. Figure 3, will be small and we have d = θr. For a Lévy jump to lead to
a particle transiting to the other reservoir, the jump must also be in the right direction.
This brings in a factor (d/r) cos φ, where φ is the indicated angle of the position on the
semicircle with the horizontal. Integrating over φ from −π/2 to π/2, the full direction
factor is found to be 2d/r. All in all, during one timestep we have for the number of
cross-reservoir transitions from a distance between r and dr:

dntr
i (ri, ri + dri) ∝ ϕi

d
ri

r−α
i ρi(ri)ri dri. (8)
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Integrating from r0 to the boundary Ri, we obtain for the number of Lévy-jump-associated
transitions from reservoir i:

Ntr
i ∝

ϕi

R2
i

∫ Ri

ri=r0

r−α
i

(
1−

(
ri
Ri

)2
)α/2−1

dri. (9)

The proportionality constant (associated with the ∝) and the r0 (the radius from which the
power law is taken to describe the Lévy-stable distribution) are the same for both reservoirs.
At this point, it is also important to realize that for the Lévy jumps to dominate the number
of 1→ 2 and 2→ 1 transitions, R1 and R2 must both be much larger than r0.

Mathematica will readily give an analytical solution for the integral Equation (9).
The solution involves the hypergeometric function [32]. Before working out Equation (9)
in its full generality, we make a further simplification that will not affect the solution too
much: As Ri � r0 for both i = 1 and i = 2, we take r0 = 0 to be the lower limit of the
integral. With 0 < α < 1, the integral will not diverge with ri → 0. Next, the all-important
reservoir radius Ri can be scaled out of the actual integral and incorporated in the prefactor:

Ntr
i ∝

ϕi

R2
i

R−α
i Ri

∫ Ri

ri=0

(
ri
Ri

)−α
(

1−
(

ri
Ri

)2
)α/2−1

d
(

ri
Ri

)
. (10)

Upon taking u = ri/Ri and v = u2 (so dv = du2 = 2u du and thus du = 1/(2
√

v) dv),
further simplification is achieved:

Ntr
i ∝ ϕiR−1−α

i

∫ 1

v=0
v−α/2−1/2(1− v)α/2−1 dv. (11)

The integral on the right-hand side is the well-known Euler integral, which is also known as
the beta function [32]. Ultimately, this integral depends only on α. It is finite for 0 < α < 1
and as it is the same for both reservoirs, we find:

Ntr
i ∝ ϕiR−1−α

i . (12)

The steady state condition is ϕ1R−1−α
1 ≈ ϕ2R−1−α

2 . With ϕ1 + ϕ2 = 1 we then get:

ϕ1 ≈
R1+α

1

R1+α
1 + R1+α

2

, ϕ2 ≈
R1+α

2

R1+α
1 + R1+α

2

, and
ϕ1

ϕ2
≈
(

R1

R2

)1+α

. (13)

The better approximation is obtained by not fully carrying through the r0 = 0 simpli-
fication of the last paragraph. That the simple approximation according to Equation (13)
fails for larger values of α is partly due to scaling issues. For the analytic approximation
to be consistent with the numerics, we need ∆t1/α to be significantly smaller than r0 (cf.
Equation (3) with σ = 1). Setting r0 = 0 leads to a range where this is no longer true. As α
becomes larger, this range becomes larger. Keeping r0 > 0 in Equation (9), we find after
some algebra and use of Mathematica for the equivalent expression of Equation (12):

Ntr
i ∝ ϕi

[
R−1−α

i −
√

π

Γ( α
2 )Γ(

3−α
2 )

r1−α
0
R2

i
2F1

(
1− α

2
, 1− α

2
;

3− α

2
;
( r0

R i

)2
)]

, (14)

where 2F1(a, b; c; z) is the aforementioned hypergeometric function. It is readily verified
that the second term in the square brackets dominates for α→ 2 and small r0. This is due to
the r1−α

0 term. The hypergeometric function is defined as a power series [32] and under the
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r0 � 1 condition we can still take (r0/Ri)
2 ∼ 0 and hence 2F1(.) ≈ 1. The ratio of particles

in the two reservoirs is then:

ϕ1

ϕ2
≈
(

R1

R2

)1+α√π Rα−1
2 − rα−1

0 Γ( 3−α
2 )Γ( α

2 )√
π Rα−1

1 − rα−1
0 Γ( 3−α

2 )Γ( α
2 )

, (15)

which reduces to (R1/R2)
1+α (cf. Equation (13)) if we take α < 1 and r0 → 0 concurrently.

Note, furthermore, that the equilibrium distribution, i.e., ϕ1/ϕ2 = (R1/R2)
2, is properly

approached if we concurrently take α→ 2 and r0 → 0. Both the approximations according
to Equations (13) and (15) are depicted in Figure 4 and compared with the results of
a stochastic simulation. Finally, it is worth pointing out that Equation (15) is still an
approximation. The power law, Equation (1), that characterizes the Lévy-stable distribution
is not valid for small values of ξ. For values of ξ near zero, the distribution is Gaussian-like
and this is what is relevant for the behavior of particles close to the opening, i.e., r → 0.
Gaussian diffusion near the opening will lead to a continuous and differentiable steady-state
concentration profile near the opening. This is also what Figure 5 shows.
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Figure 4. For the setup of Figure 3 with R1 = 10 and R2 = 1, we let ϕ1 and ϕ2 represent the
fraction of particles in reservoir 1 and 2, respectively, at steady state. The curves depict the analytic
approximations, Equation (13) (dashed) and Equation (15) (solid), of ϕ1/ϕ2. Each dot is the result of
a stochastic simulation of 40,000 particles for 4× 105 timesteps (with ∆t = 0.001) following a 2× 105

timestep relaxation period. For the approximation according to Equation (15), we let r0 = 0.05 and
find good agreement with the result of the stochastic simulation.

Figure 4 shows the ratio ϕ1/ϕ2 as a function of α and compares the result of a stochastic
simulation with Equations (13) and (15). We took R1 = 10 and R2 = 100. For α → 0,
the simple approximation according to Equation (13) leads to ϕ1/ϕ2 = 10. For the more
sophisticated approximation according to Equation (15), the ϕ1/ϕ2 value at α→ 0 can be
brought arbitrarily close to 10 by taking R1 and R2 much larger than r0. There is 10 times as
much “sticky wall” in the large reservoir and this result tells us that for α→ 0, all particles
are concentrated at the sticky walls as would intuitively be expected.

The result that is derived in Appendix B hints at the reason that α = 1 is “almost like”
α = 2. As we move away from the opening, the probability to hit the opening decreases
as r−α. However, with a homogeneous distribution of particles, the number of particles
at a distance between r and r + dr increases proportional to r. For an n-dimensional setup,
the increase is proportional to rn−1 (for n = 2 we have circular strips and for n = 3 we
have spherical shells). All in all, we find that the number of “hits” from a distance r is
proportional to rn−α−1. Note that for n = 3, the entire range of α leads to an increase of
“hits” with r. We have not done any further investigation of the 3D case. We see that for
n = 2, an increase of “hits” with r only occurs if α < 1. For 1 < α < 2, the number of “hits”
decreases with r and in that case transitions mostly happen from the region around the
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opening. This decrease with 1 < α < 2 also means that the particle exchange through the
opening does not “feel” the different radii of the different reservoirs anymore.
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Figure 5. The figure on the left depicts a steady-state distribution for 50,000 Lévy particles in a
two-reservoir confinement as depicted in Figure 3 after 105 timesteps. We have R1 = 2, R2 = 1,
and the opening has a width d = 0.1. For the figure on the right we started with a steady-state
distribution and ran the simulation for another 105 iterations. We took a horizontal strip through
the center with a width of 0.02 and partitioned it into 300 bins. Particles in each bin were counted
and the results of the subsequent 105 iterations were added. The solid line represents the resulting
normalized 1D histogram. The dashed reference curve is the solution Equation (4). For the left
reservoir, the domain was scaled to a length 2. Normalization of the combination of analytic solutions
was done such that the probability to be in the left reservoir is 2/3. It is readily verified that this leads
to continuity at the location of the opening.

Equation (4) describes and Figure 5 shows a nonhomogeneous distribution: As we
move away from the opening, the concentration actually increases. This should add to
the exponent n− α− 1 that we derived in a previous paragraph. Some of this effect is
incorporated in the approximation that led to Equation (15). Both that approximation and
the simulations show an asymptotic approach to (R1/R2)

2 as α→ 2 and r0 → 0.

3.2. Entropies and Energies Associated with Lévy Noise

The nonhomogeneous distributions shown in Figure 2 and 5 essentially function
as dissipative structures [27]. The depicted nonhomogeneous steady-state distributions
represent a lower entropy than homogeneous distributions. However, these lower-entropy
structures facilitate the transfer and dissipation of energy at steady state. The transferred
energy comes in through the non-thermal motion of the active particles. It is next dissipated
and released. Ultimately the low-entropy dissipative structures help the energy throughput
and the entropy production.

As a result of the divergent standard deviation of the α-stable noise, the energy that
is dissipated per unit of time is in principle infinite. The finite container size, however,
truncates the Lévy jumps and make the aforementioned standard deviation of the jump
sizes finite. We will not elaborate on this. What we will instead focus on in this subsection
is the entropy decrease that is associated with the apparent nonhomogeneous distribution
shown in Figure 5.

Imagine that the steady flow of energy that maintains the dissipative structure is
suddenly halted. Such halting is straightforward if the active-particle-motion is, for instance,
driven by magnetic forces or by optics. The distribution in Figure 5 will then homogenize.
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Such homogenization implies an increase in entropy and a concurrent decrease in free
energy. Below we will find remarkably concise analytic expressions for the entropy change.

The relaxation towards homogeneity is two-part. First there is an intra-reservoir
relaxation inside each of the two reservoirs to a spatially homogeneous spread. Next there is
the slower relaxation between the two reservoirs towards a ratio ϕ1/ϕ2 = V1/V2 = R2

1/R2
2.

The entropy change associated with the intra-reservoir relaxations is hard to compute
for the semicircular reservoirs of Figure 3 and 5. However, for a circular reservoir as in
Figure 1, it is easier and no resort to numerics is necessary. We take pini(r) = (α/2π)(1−
r2)α/2−1 as the initial distribution and p f in(r) = 1/π as the final homogeneous distribution.
It is well known that for a discrete set of probabilities, pi, the associated entropy is given
by S = −Σi pi log pi. However, this summation cannot be straightforwardly extended to
an integral for the case of a continuous probability density p(r). An obvious issue is that
density is not dimensionless and that a logarithm can only be taken of a dimensionless
quantity. In Ref. [33], it is explained how a sensible definition is only obtained after
introducing another probability density that functions as a measure. We then obtain what
is known as the relative entropy or Kullback–Leibler divergence [24]:

DKL(p f in||pini) =
∫

r≤1
p f in(r) log

(
p f in(r)
pini(r)

)
dr. (16)

When working out this integral, it is important to realize that the integration is from r = 0
to r = 1 over the area of a circle and that a term 2πr needs also be included. With the above
expressions for pini(r) and p f in(r), we find after some algebra that DKL(p f in||pini) = −1 +
α/2 + log(α/2). No such easy analytic solution ensues for more than two dimensions or
even in the 1D case. The Kullback–Leibler divergence can be thought of as a kind of distance
between two probability densities. However, it is generally not symmetric in the two
involved distributions. In our case, we find DKL(pini||p f in) = −1 + 2/α + log(2/α). Both
DKL(p f in||pini) and DKL(pini||p f in) are remarkably simple expressions; they are continuous
and concave up as α increases and reduce to zero for α = 2.

The speed of the inter-reservoir relaxation depends on the size of the opening. For the
small opening that is necessary for our approximations to be accurate, it will generally
be slower than the intra-reservoir relaxation. For the inter-reservoir relaxation, the basic
quantity is the probability to be in either of the two reservoirs. We go back to the basics to
calculate what the entropy is for a given distribution over the two reservoirs.

In the Statistical Physics context, entropy is commonly defined as proportional to the
logarithm of the number of microstates [1]. Imagine that there are N identical particles in
the setup of Figure 3 and 5. Here N is taken to be very large. In case of equilibrium, the
number of particles in a reservoir is proportional to the volume Vi = πR2

i /2 of a reservoir.
With ϕi N identical particles in reservoir i, the number of microstates in each of the two
reservoirs is given by:

Ωi =
Vϕi N

i
(ϕi N)!

. (17)

The numerator has the ϕi N-exponent because it is for each particle that the number of
microstates is proportional to the volume. The microstate is the same, however, when two
or more particles are exchanged. The denominator takes this into account and denotes the
number of permutations among ϕi N particles. With the definition S = log Ω and using
Stirling’s approximation [1] (log N! = N log N, if N is very large), we derive:

Si = ϕi N log
(

Vi
ϕi N

)
, (18)

where “log” denotes the natural logarithm. As was mentioned before, at thermodynamic
equilibrium the fraction of particles in a reservoir is proportional to the volume of that reser-
voir, i.e., ϕi ∝ Vi. The argument of the logarithm in Equation (18) is then the same constant
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for both reservoirs. This leads to Si ∝ ϕi, as should be expected from an equilibrium-
thermodynamics perspective.

We take for the total volume and the total entropy Vtot = V1 + V2 and Stot = S1 +
S2, respectively. It is next derived from Equation (18) that Stot = N(ϕ1 log(V1/ϕ1)+
ϕ2 log(V2/ϕ2))− N log N. The additive N log N-term is the same for all values of α.
As it is only differences in entropy that matter, we discard this term. For the entropy
per particle, stot = Stot/N, it is next found:

stot = ϕ1 log
(

V1

ϕ1

)
+ ϕ2 log

(
V2

ϕ2

)
. (19)

Figure 6 depicts stot as a function of α following Equation (19). We took Vtot = 1
(leading to V1 = R2

1/(R2
1 + R2

2) and V2 = R2
2/(R2

1 + R2
2)) and R1 = 10R2. For the dashed

curve, Equation (13) was used to come to the values of ϕ1 and ϕ2. For the solid curve
the improved approximation, Equation (15) was used with r0 = 0.05. The curves appear
almost indistinguishably close. It is important to realize that this entropy also represents
free energy. The free energy release associated with the equilibration can be obtained by
multiplying the entropy (cf. Equation (19)) with the temperature. Again we emphasize
that Equation (19) is related to just the inter-reservoir relaxation and does not incorporate
intra-reservoir relaxation.

⍺

entropy

Figure 6. Given the setup of Figure 3 with Vtot = 1 and R1 = 10R2, the curves show the entropy per
particle, stot, as a function of the stability parameter α of the Lévy noise. The nonequilibrium noise
leads to a concentration difference between the two reservoirs. The associated entropy decrease stot is
obtained by substituting into Equation (19) the approximate ratio according to Equation (13) (dashed
curve) and according to Equation (15) (solid curve). For Equation (15) we took r0 = 0.05, i.e., the
value that led to good agreement with the stochastic stimulation (cf. Figure 4).

There is more thermodynamic way to derive the right-hand side of Equation (19) as the
energy per particle that is invested in the building of the dissipative structure. With intra-
reservoir equilibrium established, the chemical potential µ that is driving flux through the
opening is the logarithm of the concentration ratio [1]. If we let φ be the fraction of the
particles in the smaller reservoir, then we have µ(φ) = log

(
φ
V2

)
− log

(
1−φ
V1

)
. The energy

that is dissipated when an infinitesimal fraction dφ follows the potential and flows through
the opening is µ(φ) dφ. The entire equilibration takes φ from ϕ2 to V2. After some algebra
and setting the temperature and the Boltzmann constant all equal to unity, it is found that
the resulting total-equilibration-energy integral reduces to −stot (cf. Equation (19)).

Equations (13) and (19) are concise and intuitive. Equation (13) is already a fairly
accurate approximation. Given the geometry of the system and the value of α, Equation (13)
gives the distribution over the two reservoirs. Equation (19) tells us what entropy decrease
and what free energy “investment” is associated with the concentration difference between
the reservoirs that gets established due to the active particle movement. It gives a measure
for how far the system is driven from equilibrium by the active particle motion.
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4. Discussion

In this article we explored a significant consequence of a bath in which particles
velocities are Lévy-stable distributed. With the ordinary Gaussian velocity distribution
that is associated with equilibrium systems, the maximization of entropy leads to particles
homogeneously distributing in the confined domain. With a Lévy-stable distribution for the
velocities, larger concentrations occur near the walls and in the smaller cavities. We have
analytic expressions for the distribution of Lévy particles in the circular and the spherical
domain. For the two connected reservoirs as depicted in Figure 3, we have derived a good
approximation for the concentration difference between the reservoirs at steady state. We
have presented an accounting of the entropies, and ensuing energies, for such divergence
from equilibrium.

We have interpreted the nonhomogeneous particle distribution (cf. Figure 5) as a
dissipative structure, i.e., a lower-entropy arrangement of particles that facilitates a larger
dissipation of energy and concurrent larger production of entropy. There is nothing about
heat conduction in the equations. However, it is tempting to hypothesize that with the
particles being closer to the surface area, the system would be better able to transfer heat to
the environment and do so at a larger rate.

In the 1990s, experiments were performed in which DNA, RNA, and proteins were
manipulated on the molecular scale. This commonly involved breaking of molecular
bonds. The involved energies were significantly larger than the kBT that can be considered
as the quantum of thermal energy. In such far-from-equilibrium processes, Onsager’s
reciprocal relations and other close-to-equilibrium concepts are no longer valid. Fortunately,
at about the same time, theory was developed to handle fluctuations in far-from-equilibrium
conditions. The Fluctuation Theorem [34] and the Jarzynski Equation [35,36] could very
accurately account for the results of experiments in which microscopic beads were pulled
by optical tweezers [37] and experiments in which RNA was forcibly unfolded [38,39].
However, it should be realized that the Fluctuation Theorem and the Jarzynski Equation
apply when far-from-equilibrium events take place in an equilibrium bath with a temperature.
In many experiments and real-life systems, the bath is the very source of nonequilibrium.
The Fluctuation Theorem and the Jarzynski Equation are of no help in that case and new
theory needs to be developed. An obstacle here is constituted by the fact that there is no
equivalent of temperature for the Lévy-stable distribution of velocities that is commonly
associated with the nonequilibrium bath. For a Gaussian velocity distribution, the standard
deviation is proportional to the square root of the temperature. However for a Lévy-stable
distribution, the standard deviation diverges and, technically, the temperature works out
to be infinite. In this article we have tried to contribute to the development of description
and understanding of what can happen in nonequilibrium baths.

As was explained in the Introduction, baths consisting of Lévy particles lead to similar
physics as baths in which active particles are suspended. In both cases there is a continuous
input of energy into the system and there is no longer a Fluctuation-Dissipation Theorem
to guide the understanding and description. Swimming bacteria are a prime example of
active particles. That swimming Escherichia coli bacteria can indeed be accumulated in
cavities as has been experimentally demonstrated [40].

In a recent paper, results are presented of a numerical simulation of an active-particles-
containing liquid [41]. A passive particle in this liquid was followed as a probe. This passive
particle turned out to display Lévy-stable distributed displacements. What was simulated
in this work was merely the Navier–Stokes equations and that passive particles exhibit
these Lévy-stable distributed displacements is therefore a purely hydrodynamic effect due
to active-particle-activity. That interesting and unexpected hydrodynamics can develop in
liquids with immersed swimming bacteria has also been experimentally established [42].

The density profiles in Figure 2 and 5 are mindful of the coffee ring effect. When a
coffee drop on a surface evaporates, the stain that is left behind is darkest towards the
edge [43]. This effect is common with liquids that carry solutes. There are technological
applications where it is important to control the coffee ring effect. The simple explanation
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for the effect goes as follows. The drop has the shape of a disk. It has a fixed radius and
the height of the drop vanishes near the edge. With a uniform evaporation across the
surface area of the drop, there must be a net outward radial flow to replenish lost fluid near
the contact line. Solute is carried along with this flow and ultimately deposited near the
contact line. Much theoretical, numerical, and experimental research has been devoted to
the effect in the last quarter century (see Ref. [44] and references therein). It is common to
use equilibrium concepts like Einstein’s Fluctuation-Dissipation theorem when trying to
account for the phenomenon. However, an evaporating drop is not in a thermodynamic
equilibrium. It is certainly possible that solute particles exhibit the large jumps that are
commonly encountered in nonequilibrium systems. The accumulation at the edge could
then also be due to the mechanism that we discussed in this article.

In plasma physics, it is common to assume that the particles in a dense plasma follow
the well-known Maxwell–Boltzmann distribution for particle speeds [1]. However, this
equilibrium assumption may not always be valid, especially if the plasma is short lived and
associated with an energy pulse. At Lawrence Livermore Lab, a table-top-size construction
was developed to generate pulses of fast neutrons from high-energy deuterium collisions
in plasma. Such collisions lead to the nuclear reaction D + D →3He + n [45]. In the
experiments, it appears that the number of produced neutrons exceeds the theoretical
predictions by more than an order of magnitude. The reason for this is most likely that the
Maxwell–Boltzmann distribution only applies at thermodynamic equilibrium.

Plasmas in which energy is converted or transferred are of course not in a thermody-
namic equilibrium. In containers with plasma, a homogeneous distribution is therefore
unlikely and accumulation at the edge as described in this work is possible. This is im-
portant because it means that fusion reactions in a plasma will occur at different rates at
different positions. Through feedback mechanisms, such inhomogeneities may rapidly
augment and possibly develop into serious instabilities.

Engineered microswimmers is probably the field where our results could ultimately
be most applicable. There are good methods and technologies for manipulating suspended
micrometer size particles from the outside with acoustic, magnetic, or optic signals (see
e.g., Refs. [46,47]). Today the exciting new developments are in the medical application of
such microrobots. Clinical uses for imaging, sensing, targeted drug delivery, microsurgery,
and artificial insemination are envisaged and researched [48]. The microswimmers and
microrobots are particles that are operating in a very noisy environment. Accumulations as
described and explained in this article are likely to be encountered.
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Appendix A. Extension of the 1D Solution to nD

Consider the steady-state solution p(r) = C(α)
(
1− r2)α/2−1, where C(α) is the nor-

malization factor (cf. Equation (4)). In this Appendix we will use symmetry arguments to
show that this form generalizes to higher dimensional setups.

First consider the 1D ball depicted in Figure A1a and imagine a large number of
particles distributed according to Equation (4). Next take two small intervals on the right
side of r = 0: r1 < r < r1 + dr and r2 < r < r2 + dr, as depicted. At steady state and within
any time interval ∆t, there is as much flow from the r1-interval to the r2-interval as that
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there is from the r2-interval to the r1-interval, i.e., J12 = J21. This is detailed balance [1].
Next we define a transition rate, k12, that is the probability per unit of time for a particle
in the r1-interval to transit to the r2-interval. The rate k21 is analogously defined. Detailed
balance implies that k12 p(r1) = k21 p(r2) and thus:

k12

k21
=

p(r2)

p(r1)
=

(
1− r2

2
1− r2

1

)α/2−1

. (A1)

(a)

(b)

(c)

Figure A1. A Lévy walk in a confined domain. Whenever the particle hits the confinement wall,
it comes to a standstill there. The 1D steady-state probability distribution (a) is solved in Ref. [23]:

pst(r) ∝
(
1− r2)α/2−1. Between any two small intervals along the 1D domain, steady state implies

p(r1)k12 = p(r2)k21, where the k’s denote transition rates. In 2D (b) there is circular symmetry.
If we take any narrow bar through the origin and look exclusively at traffic inside that bar, pst(r) ∝(
1− r2)α/2−1 applies again. Next, we take a state R3 outside the bar (c) and include transitions

between r1 and r2 that go via any area R3. As the circular symmetry implies the absence of vortices,
transitions k′12 and k′21 that go via R3 must also follow p(r1)k′12 = p(r2)k′21. From here it follows that

pst(r) ∝
(
1− r2)α/2−1 also applies to higher dimensional setups. See the text of this Appendix for

more detail.

Next consider the 2D setup depicted in Figure A1b. A bar of width δ is going through
the center of the circle. We take two little areas at distances r1 and r2 from the center.
Consider only trajectories between these two areas that stay within the bar. The traffic
inside the bar should mimic the 1D system that was considered in the previous paragraph
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and Figure A1a. Now consider also the transitions between the two little areas that proceed
through trajectories that are not restricted to the narrow bar. Without loss of generality, we
take an area R3, cf. Figure A1c, and we consider trajectories between r1 and r2 that pass
through R3.

It is important to realize that the circular symmetry implies that there can be no
vortices within the circular domain. Flow along any simple, closed curve within the unit
circle would imply that there are points with net flow in the angular direction. Thus,
along the r1, r2, R3-loop there must be as much clockwise flow as there is counterclockwise,
i.e., Jcw = Jccw. This implies k12k23k31 = k13k32k21 [49] and thus:

k12

k21
=

k13k32

k23k31
. (A2)

The “state” R3 can be taken to be anywhere within the circle and be of any size and shape.
We can conclude that the ratio k′12/k′21 for transitions along any path between r1 to r2 within
the circle must be equal to the ratio k12/k21 for transitions with trajectories inside the bar.

It follows that, for any dimensionality, the probability density at radius r must be pro-
portional to

(
1− r2)α/2−1. For a normalized probability density in n dimensions we derive:

p(n, r) =
Γ
( n+α

2
)

πn/2Γ
(

α
2
)(1− r2

)α/2−1
. (A3)

For n = 2 the prefactor reduces to a simple α/(2π).

Appendix B. Traffic between the Larger and the Smaller Semicircular Reservoir

Consider the setup in Figure 3 and 5 and let a homogeneous particle density ρ be same
in both reservoirs. In this Appendix we show that, if the particles are subject to Lévy noise,
accumulation in the smaller reservoir develops. Imagine a semicircular strip of width dr at
a distance r from the opening. There are ρπrdr particles in this strip. We let the power-law
approximation, cf. Equation (1), be valid for r > r0. Here r0 is much larger than the width
of the opening d and much smaller than the radii R1 and R2. The angle θ is small and with
θ expressed in radians we have d = θr. For a particle in the semicircular strip at distance
r > r0, there is a probability that a Lévy jump will bring it to the other reservoir. To achieve
such transition, the jump needs to be larger than r. For such a jump, the probability is
proportional to r−α. In order to go through the opening, the jump must also be in the
right direction. This leads to a factor (d/r) cos φ (cf. Figure 3). After the integration from
φ = −π/2 to φ = π/2, we derive a “direction factor” of 2d/r, i.e., ∝ 1/r. Putting together
all of the effects specified in this paragraph, we have the following formula for the number
of transitions during a small timestep from a distance between r and r + dr:

dntr(r, r + dr) ∝
1
r

r−αr dr = r−α dr. (A4)

Next we integrate from r0 to the boundary Ri (i = 1, 2) and find for the number of Lévy-
jump-associated transitions from reservoir i:

Ntr
i ∝

∫ Ri

r0

r−α dr ∝ sgn(1− α)
(

R1−α
i − r1−α

0

)
. (A5)

Care must be taken in case of α = 1. In that case Ntr,α=1
i ∝ log Ri − log r0. We thus conclude

that for 0 < α ≤ 1, the number Ntr
i diverges as Ri is taken to infinity. For 1 < α < 2, a

constant value for Ntr
i ensues if Ri → ∞.

The proportionality constant (associated with the ∝) and r0 (the radius from which
the power law is taken to describe the Lévy distribution) are the same for both reservoirs.



Entropy 2022, 24, 189 17 of 18

Thus, if both reservoirs in Figure 3 and 5 have the same uniform ρ, then we find for the net
number of particles ∆Ntr = Ntr

1 − Ntr
2 that transits from the larger to the smaller reservoir:

∆Ntr ∝ sgn(1− α)
(

R1−α
1 − R1−α

2

)
. (A6)

If 0 < α ≤ 1 and if values for R1 and R2 are large, then there is accumulation in the
smaller reservoir.

For 1 < α < 2, there will again be accumulation in the smaller reservoir, but the effect
becomes smaller as R2 and R1 grow and will become negligible as R1,2 → ∞. Effectively,
the geometry of the reservoirs is irrelevant for large R1 and R2. In that case it is particles
near the opening that dominate the traffic through the opening.

In the main text, the above derivation is carried out for the case of a density ρi(ri)
(i = 1, 2) that depends on the distance ri from the opening.

Finally, it is worth pointing out that the above derivation readily generalizes to higher
dimensional reservoirs. In the 3D case, we face hemispheres. The number of particles in a
hemispheric shell is ρ2πr2dr. For the nD case, the shell contains a number of particles that
is proportional to rn−1dr. We thus have for dntr

nD:

dntr
nD(r, r + dr) ∝

1
r

r−αrn−1 dr = rn−2−α dr. (A7)

This leads to:

Ntr
i,nD ∝

∫ Ri

r0

rn−2−α dr ∝
(

Rn−1−α
i − rn−1−α

0

)
. (A8)

and
∆Ntr

nD ∝
(

Rn−1−α
1 − Rn−1−α

2

)
. (A9)

This is an interesting result. For 3 and more dimensions, we do not need to discriminate
between different ranges of α. Lévy noise with any α (0 < α < 2) will in that case lead to
a significantly higher density in the smaller reservoir and the effect will be stronger for
higher values of R1,2.
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