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Gauging the Strength of Power Frequency
Fields Against Membrane Electrical Noise

Martin Bier*
Department of Physics, East CarolinaUniversity, Greenville, North Carolina, USA

The possible physiological effect of power frequency fields (60 Hz in the US, 50 Hz in most other
countries) is still a hotly debated issue. These relatively slow fields distribute themselves across cell
membranes and a common approach has been to compare the strength of these fields to the strength of
the electric noise that the membrane generates itself through Brownian motion. However, there has
been disagreement among researchers on how to evaluate themembrane electric noise. In the first part
of this article three major models are discussed. In the second part an ab initio modeling of membrane
electric fields finds that different manifestations of Brownian noise lead to an electric noise intensity
that is many times larger than what conventional estimates have yielded. Finally, the legitimacy of
gauging a nonequilibrium external signal against internal equilibrium noise is questioned.
Bioelectromagnetics 26:595–609, 2005. � 2005 Wiley-Liss, Inc.
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INTRODUCTION

Power frequency sources (60 Hz in the US, 50 Hz
in the rest of the world) of electromagnetic (EM)
radiation are ubiquitous in modern industrial society.
Household appliances like electric razors and electric
blankets can expose the consumer to an electric field of
about 500 V/m. Such fields are fairly insignificant.
There is, for instance, already a stationary field of about
100 V/m between the earth’s surface and the sky. But
high voltage power lines can carry up to about 500 000
V. Right near a power line the field can be as strong as
12 kV/m. In the close vicinity of a high voltage distri-
bution station fields of 16 kV/m may be present. Much
public anxiety has focused on high voltage power lines.

The frequency range between 30 and 300 Hz is
known as the extremely low frequency (ELF) regime.
The photons associated with the ELF regime, unlike
ultraviolet light, do not have enough energy to ionize or
otherwise disrupt biomolecules. Commonly present
ELF fields, furthermore, do not carry enough energy to
cause heating. EM radiation can only be directed if the
emitting equipment has dimensions that are comparable
to the wavelength of the signal. Power frequency
radiation has wavelengths of many thousands of miles.
So Coulomb’s Law, which is valid for a stationary field,
can also be applied to evaluate the field strength in the
vicinity of power frequency sources. The human body
has a higher conductivity than the surrounding air.
Electric fields are therefore compensated by internal
charge movement and turn out much smaller inside the

body than outside. This effect is stronger at lower
frequencies. In the ELF regime, the attenuation is 7 to
8 orders ofmagnitude [Foster and Schwan, 1989;Adair,
1991]. The liquid inside and outside of the cells that
make up the human body is very much like salt water. It
hasmany dissolved ions and these ions canflow towards
the membrane and compensate for an external field
within microseconds. At microwave frequencies (i.e.,
GHz), the water molecules inside and outside of a cell
are rapidly oscillated and can heat up tissue. But at
power frequencies, all of the imposed field gets effec-
tively distributed across the cell membranes. For the
identification of a possible physiological ELFeffect, the
focus has therefore been on what may happen when, on
top of the normal transmembrane potential of a living
cell, there is a small low frequency modulation. Such a
modulationmay affect the catalytic action ofmembrane
proteins.
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Epidemiological studies on the effect of pro-
longed ELF exposure have been largely inconclusive
[NIEHS, 1999; IARC, 2002]. Many studies have been
conducted, but, so far, the occurrence of most ailments
appears to not be demonstrably correlated to prolonged
ELF exposure. Much public attention has centered on a
possibly increased risk of childhood leukemia.Werthei-
mer andLeeper [1979] reported such increased risk.But
themagnitude of the alleged ELF effect was close to the
margin of error of the study. In the subsequent quarter
century many thorough studies have been conducted
without the issue becoming decisively settled. The
inconclusiveness of long-term epidemiological studies
is in large part due to the big margin of error, which, in
turn, is due to the fact that it is hard to assess the
subjects’ long-term exposure to ELF as well as the
subjects’ long-term exposure to other cancer causing
factors. The involved ailments, moreover, are rare and
large sample populations are required to get to statis-
tically significant results.

There has also been a fair amount of confusion in
the discussion of a biophysical mechanism that could
possibly account for an ELF effect. Weaver and
Astumian [1990] claimed in a 1990 Science paper that
the Brownian motion of charges in and around the cell
membrane creates a thermal noiseband that far exceeds
the magnitude of the modulation by an external power
frequency field. They argued that no physiological
effect can occur if there is no way for a membrane to
even ‘‘feel’’ the ELF modulation. Kaune [2002] pre-
sented a different model for the thermal noise in a cell
membrane. In the ELF regime his noiseband vanished
and thus allowed for the ‘‘detection’’ of typical power
frequency fields by the cell membrane. Very recently,
however, Vincze et al. [2005] suggested revisions to
Kaune’s model. With these revisions the thermal noise
power becomes larger and effectively white, that is,
noise strength is independent of frequency. In themodel
of Vincze et al. [2005], ELF fields would once again be
drowned out by thermal noise.

In the next section of this article it will be pointed
out what the different assumptions are on which the
three competing models are based. In a subsequent
section, we will attempt to develop a correct picture of
membrane electricity by going through an ab initio
modeling. In a final Discussion section, the legitimacy
of comparing nonequilibrium, externally imposed noise
to internal equilibrium noise is questioned.

WEAVER^ASTUMIAN VERSUS KAUNE
VERSUS VINCZE^SZASZ^SZASZ

When a small particle or large molecule is
immersed in a fluid, the random collisions with

molecules from the medium cause Brownian motion.
Brownianmotion is responsible for diffusion. Diffusion
is described by x2ðtÞ

� �
¼ 2Dt, where x is the displace-

ment from the t¼ 0 position. x2ðtÞ
� �

represent the
average square of the displacement. When a force F is
pulling the small particle through the fluid with a speed
v, the same random collisions that cause diffusion are
responsible for the friction b in F¼ bv. Diffusion and
friction are thus connected. Quantitatively the connec-
tion is expressed by Einstein’s fluctuation-dissipation
theorem, that is D¼ kT/b. Here k represents the
Boltzmann constant and T is the absolute temperature;
kT is roughly the average energy present in the
Brownian motion of one particle.

In an electrical resistor it is again random
collisions that cause the resistance that a flowing
electron ‘‘feels.’’ As in the hydrodynamic case, these
random collisions also cause random fluctuations
between the two ends of a resistor [Feynman et al.,
1966]. On a timescale larger than the average time
between collisions, the amount of charge that accumu-
lates in the infinite reservoir A in Figure 1 is given by
q2ðtÞ
� �

¼ 2ðkT=RÞt. Obviously the resistance R is
playing the role that the friction b plays in fluid
dynamics.

More well known than the above formula for
q2ðtÞ
� �

is the related formula for the average of the

Fig. 1. Aresistor is connected to thegroundand toanother infinite
reservoir A.Thenet voltagebetween thereservoirsremainszero.
DuetoBrownianmotionofelectronsintheconductionbandthereis
a zero average fluctuating current through the resistor. The net
charge accumulating in the reservoir is the result of these fluctua-
tions in the same way that diffusive displacement is the result of
randomBrowniankicks.Wehave q2ðtÞh i ¼ 2ðkT=RÞt for theaver-
agesquare chargeaccumulationin time t.
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square of the voltage x across a resistance R, cf.
Figure 2a, in a frequency window Df:

x2
� �

¼ 4kTRðDf Þ: ð1Þ

The noise spectrum of ‘‘fluctuation-dissipation noise’’
is white when you consider time scales larger than the
average time between collisions. This means that each
frequency in the spectrum contributes with an equal
amplitude. So the frequency itself does not figure in
Equation 1. Equation 1 was first derived by Nyquist
[Nyquist, 1928; Feynman et al., 1966] to explain noise
that had been observed by Johnson [Johnson, 1928].

Now consider Figure 2b and go to Fourier space.
In Fourier space there is a harmonic oscillation at each
frequency o. The resistor generates noise with a flat
spectrum. For large frequencies, the oscillation is too
fast for the charge on the capacitor to keep up. At high
o the oscillating voltage Vm across the capacitor will
therefore be smaller than the oscillating voltage x across
the resistor. Therewill, furthermore, be a phase lag, that
is, the voltage across the capacitor will follow the
resistor voltage with some delay. We have

Vm ¼ x
1þ iotm

: ð2Þ

Here tm¼RmCm represents the characteristic time of
the RC circuit. We have used the subscripts ‘‘m’’
because the RC circuit of Figure 2b is indeed how the
cell membrane is generally modeled (cf. Fig. 3).

In a first analysis itmakes sense to look at the basic
equilibrium behavior of the membrane, that is, the
behavior that the membrane would exhibit if it separat-
ed two identical solutions. The equilibrium fluctuations
constitute an omnipresent noiseband. Nonequilibrium
noises from opening and closing ion channels and from
operating ion pumps only add to the basic thermal noise.
We will discuss such nonequilibrium contributions in

Fig. 2. a:Between the two endsofa linear resistor there is a zero
average fluctuating noise voltage x.The noise spectrum is white.
Within a frequency band Df we have x2

� �
¼ 4kTRDf. b: When

capacitorplatesarepresent it isat high frequency thatVm, thevol-
tageacross the capacitor, cannot keepupwith thevoltage x com-
ing from the resistor. The cutoff occurs at 1/tm, where tm is the
characteristic timeof the circuit tm¼RmCm.

Fig. 3. Thestandardway tomodel themembraneasanelectricalcircuit isshownontheleft.Rmand
Cmare the resistance and capacitance between the inside and outside of the cell.The resistoralso
providesa thermalelectromotive force.Theequivalent circuit isshownontheright.
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the Discussion section. Weaver and Astumian [1990]
argue that what a membrane protein ‘‘feels’’ is the
transmembrane potential Vm. They take the Rm of
typical cells. They observe that in the ELF regime
iotmk k is much smaller than 1 and thus effectively

negligible (cf. Eq. 2). They apply Equation 1 to
calculate hV2

m
i. For the frequency bandwidth they take

Df¼ 10 Hz and Df¼ 100 Hz. They thus find that the
thermal noise generally exceeds the transmembrane
effect of reasonable power frequency fields by several
orders of magnitude.

Kaune proposes a revision of the Weaver–
Astumian model [Kaune, 2002]. Kaune argues that
the accumulated surface charge on the membrane is
only part of the noise picture. Random Brownian
motion of charges inside themembrane causes inhomo-
geneous charge distributions. These inhomogeneous
charge distributions, in turn, cause fields. Ultimately it
is these thermal intramembrane electric fields together
with the, also thermally created, fluctuations in the
transmembrane field that drive charge movement, that
is, cause current. This net field is what the all important
membrane proteins eventually ‘‘feel.’’ The membrane
is like a thin sheet (about 5 nm thick and 109 nm2 in
surface area for a cell with a 10mmradius). There is a lot
of variation in the intramembrane thermal electric field

from one location to another on the membrane surface.
It is therefore essential in the Kaune model that the
membrane is modeled with a large number of parallel
resistors (cf. Fig. 4) instead of the one Rm-resistor of
Weaver and Astumian.

One resistorwith a resistanceRm is equivalent toN
parallel resistors that each have a resistance NRm (cf.
Fig. 4). This is obviously true for the net resistance. It is
still somewhat of a nontrivial exercise to prove that the
N parallel NRm resistors in Figure 4 generate the same
noise across the capacitor as one Rm resistor. At
frequency o each of the N resistors generates a
harmonic oscillation with the same amplitude kx0k.
The phases, however, are random, that is, each
oscillation comes with a factor exp½2pip� ¼ cos 2ppþ
i sin 2pp, where p is a random number between 0 and 1.
Adding oscillations with the same amplitude but
different phases is like adding 2-dimensional vectors
with equal norm and different directions. In Appendix 1
it is shown that, for large N, adding N randomly phased
2D-vectors with the same norm kx0k leads to a vector
of norm

ffiffiffiffi
N

p
kx0k. The eventual voltage generated by all

parallel resistors together will be the average of all
the voltages of the individual resistors. If we let kxmk be
the amplitude of the o-oscillation in the m-th resistor,
then we have for the amplitude of the net voltage

Fig. 4. Themembrane of a living cell is best thought of as a film.Transmembrane currents can flow
anywhere in the membrane, but lateral conductivity is very small. Rather than with the circuit in
Figure3 (withoneRmresistor), themembraneisthereforebestmodeledwithNparallelresistorsthat
eachhavearesistanceNRm.Going fromoneresistor toNparallelresistorsdoesnotaffect thetrans-
membrane noise strength in theWeaver^Astumian model [Weaver and Astumian,1990]. But the
handlingoftheNparallelresistorsisofcrucialimportanceinthemodelsofKaune [2002] andVincze
et al. [2005].
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that eventually ‘‘powers’’ the oscillation across
the capacitor: kx

m
k ¼ ð1=NÞk

PN
m¼1 xmk ¼ kx0k=

ffiffiffiffi
N

p
.

Each individual resistor has a resistance NRm. From
hkx0k2i ¼ 8kTðNRmÞDf (the factor 4 in Eq. 1 becomes
8 when we work with the amplitude instead of the
average), we infer kx0k /

ffiffiffiffi
N

p
. This means that the

eventual xm that generates the oscillation across
the capacitor is independent of N and only depends on
the net resistance Rm. One is therefore free to conceive
of the membrane as carved up into any number of
identical parallel segments. Such a partition does not
affect the generated Vm across the capacitor.

Focusing, once again, on one frequency o in
Fourier space, Kaune gives the following equation for
the current Im through the m-th resistor (cf. Fig. 4):

Im ¼ 1

NR
m

xm �
1

N

XN
n¼1

xn

( )
þ iot

m

1þ iotm

1

N

XN
n¼1

xn

( )" #
:

ð3Þ

Here xm represents the amplitude of the o-oscillation
generated in the m-th resistor. The xm and xv now include
the random phase factors. To obtain the net voltage
through the m-th resistor one has to take the self generated
voltage and subtract the voltage due to the other parallel
resistors. The result has to be divided by NRm to obtain
the current. Each xm comes with its own random phase
factor. It is actually because the resistors oscillate out of
phase that they ‘‘force’’ current in and out of each other.
The first term in curly brackets thus describes current
between resistor m and all the other resistors (dotted
arrows in Fig. 4). Physically, this term describes
the thermal currents inside the membrane, that is, the
intramembrane noise. The second term describes the
currents due to the capacitor. The iotm in the numerator
appears because the current to and from the capacitor is
the time derivative of the charge on the capacitor (which
is proportional to the capacitor voltage, Qm ¼ CmVm).
The amplitude xm ¼

PN
n¼1 xn=N of the net voltage gen-

erated by all resistors together has to be multiplied by
ð1þ iotmÞ�1

to obtain the voltage across the capacitor
(cf. Eq. 2). The capacitor contribution is obviously the
same for each of the N resistors.

Because of the random phase factors, applying the
summation

PN
m¼1 averages out all the intramembrane

thermal noise currents. With Im ¼
PN

m¼1 Im being the
net transmembrane current, we have:

ImRm ¼ iot
m

1þ iotm
x
m
: ð4Þ

Here xm ¼ ð1=NÞ
PN

m¼1 xm is the amplitude of the net
voltage generated by all of the N parallel resistors
collectively. Equation 4 is what Kaune eventually goes
with. He takes the left hand side of Equation 4 and then

takes Em ¼ ðImRmÞ dm= , where dm represents the
membrane thickness, as the net noise generated
electric field in the membrane. For the power spectrum
of the noise he ends up with E2

m / o2t2m ð1þ o2t2mÞ
�

.
This is the result that one would have obtained using
N¼ 1 (cf. Fig. 4). Kaune assumes that the intramem-
brane noise involves an amount of power that is
negligible in comparison to power associated with the
Im-current and he thus essentially comes back to the
N¼ 1 case.

We consider the setup in Figure 4 and focus on one
frequency o. The charge on the capacitor follows
QðtÞ ¼ Qm exp½iot�. For the voltage between the plates
we have VðtÞ ¼ Vm exp½iot� ¼ ð1 CmÞQm exp½iot�= .
For Weaver and Astumian, the ultimate field is
Em ¼ Vm dm= , where dm is the width of the membrane.
Kaune describes the field as associated with the net
transmembrane current. The current is the time
derivative of the charge. So IðtÞ ¼ dQðtÞ

dt
¼

ioQm exp½iot� ¼ ioVmCm exp½iot�. It is thus thatKaune
gets an extra o in the numerator. As was pointed out in
the previous paragraph, this o becomes an o2 in the
power density.

For each frequency o in Figures 3 and 4, the AC
potential that generates the current is the net result of the
white noise potential (cf. Eq. 1) and the voltage on the
capacitor. Looking at the left side picture in Figure 3 it is
easy to see that at low frequencies the charge and
voltage can accumulate on the capacitor and push
against the thermally generated voltage. At high
frequency, that is, faster than tm¼RmCm, the capacitor
has no time to charge up and voltage and current in the
resistor will look as if the capacitor is not there at all. So
where Weaver and Astumian end up with a maximal
noise amplitude at low frequency and an asymptotic
approach to zero at high frequency, Kaune ends up with
the reverse result. Kaune’s noise amplitude goes to zero
when the frequency approaches zero and asymptoti-
cally reaches the white noise level at high frequency.
Power frequencies are low and, if Kaune’s picture is
correct, commonly present power line field levels
would not be drowned out by thermal noise.

It is clear fromFigure 4 that if theo-oscillations of
the N resistors are all out of phase, they will force
current to and from each other. Obviously, there will
then be fluctuation-dissipation noise that will not be
reflected in an effect on the net current Im. Kaune is
aware that the power involved in this intramembrane
noise is hard to evaluate and that the aforementioned
summation takes all this noise out of the picture. He
eventually assumes that the power dissipation due to the
intramembrane noise, that is, the incoherence, is
negligible compared to the power dissipated by the
current Im that goes to and from the capacitor. In
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dropping intramembrane currents from consideration,
Kaune de facto assumes amodel in which theN parallel
resistors in Figure 4 exchange no currents. This would
imply that the N resistors oscillate coherently. Kaune’s
coherence assumption is troubling. In the context of
some of our previous calculations, ‘‘coherence’’ means
that there are no random phase factors and that all N
parallel resistors in Figure 4 oscillate in phase. The
coherence assumption thus eliminates intramem-
brane noise. The math that we did with the random
phase factors would no longer apply in this case and we
would simply have xm ¼ x0, that is, the net potential
generated by the parallel resistors equals the potential
generated in each resistor individually. We saw before
that the net potential xm should be independent of N.
Equation 1, however, dictates kx0k ¼

ffiffiffiffi
N

p
kxmk. It is

impossible to carry through the coherence assumption
without running into absurdities. There is no reason for
separate resistors to oscillate coherently. The physics
should dictate incoherence. The work by Vincze et al.
[2005] was motivated by such considerations.

The Bioelectromagnetics paper of Vincze et al.
[2005] shows a way to mathematically deal with in-
coherent noise. These authors present a matrix for-
malism that eventually leads them to an estimate of the
noise power spectral density that includes the intra-
membrane noise. By taking into account the intramem-
brane thermal electromotive activity that Kaune leaves
out, they derive a much bigger noiseband. Appendix 2
shows a shorter derivation of the main result of Vincze
et al. [2005].

The main result of the analysis of Vincze et al.
[2005] is the formula

1

2

XN
m¼1

N RmImI
�
m ¼ 4 N � 1

ð1þ o2t2mÞ

� �
kTDf : ð5Þ

This formula expresses how the total generated fluctua-
tion-dissipation power in a bandwidth Df in all resistors
together ðPtot ¼ 4NkTDf Þ is distributed over the
intramembrane noise ðPIm ¼ 1

2

PN
m¼1 N RmImI

�
mÞ and the

RmCm-oscillation ðPRmCm
¼ 4kTDf ð1þ o2t2mÞÞ

�
. With

Kaune’s ‘‘coherent noise’’ all parallel resistors in Figure 4
oscillate in phase with each other. With coherent noise,
the resistors are not ‘‘pushing’’ any current into each
other. Coherent noise therefore essentially boils down to
taking the N¼ 1 case. For Kaune, the thermal electric
storm is in the power that does not go toward the
transmembrane field and is dissipated in the membrane.
He thus comes toPIm / o2t2m ð1þ o2t2mÞ

�
. It is obvious

from Equation 5 that the o-dependent PRmCm
becomes

negligible relative toPtot andPIm if N takes on order 101

values or higher. In other words, for high N the

intramembrane noise dominates and appears effectively
white.

Adair [1991] has suggested partitioning a cell
membrane into little 5� 5� 5 nm units and taking each
such cube as a separate resistor. This is a logical step,
since the membrane is already 5 nm thick. For even the
smallest cells such a partition implies anN of order 107.
A large value of N leads to a noise spectrum that is
essentially white (cf. Fig. 5). It can be easily intuited
why this happens. Larger N means more resistors (N)
with larger resistance (NRm). Larger resistance means
more thermal noise andmore resistors also means more
thermal noise. For large N, the power in the RmCm

oscillator (which is independent of N) becomes
negligible in comparison to the power in the intramem-
brane noise. Kaune [2002], Adair [1991], and Vincze
et al. [2005] point out that by picking the fundamental
units too small one could end up with thermal noise
that is sufficiently large to trigger action potentials.
Such an absurdity puts an obvious upper limit on the
estimate of N.

EQUILIBRIUM ELECTRIC NOISE ACROSS
AND ON A MEMBRANE

In discussing mathematical intricacies, as we did
in the previous section, it is easy to be led away from
some of the basic underlying physics. The simple truth
is that a lipid bilayer differs from an ordinary resistor in
some important aspects. A traditional linear resistor has
a conduction band that contains a large number of
electrons. Thermal motion of such electrons causes
the fluctuating currents and voltages discussed in the
previous section. But transmembrane currents are
carried by small ions (Naþ, Kþ, Cl�) from the electro-
lyte solution on either side. The membrane itself
consists for the most part of a bilayer of phospholipid
molecules and does not contain such ions. It is through
Brownian motion that ions can occasionally pass from
one side of this thin (about 5 nm) membrane to another.
Such passages are almost instantaneous. A membrane
that separates two reservoirs of electrolyte solution thus
effectively acts as a resistor. Even though it is only two
molecular layers thick, the lipid bilayer of a cell
membrane sets up a very high activation barrier for the
passage of the aforementioned small ions [Hille, 1992].

The electrical noise across a cell membrane is
therefore a form of shot noise [Schottky, 1918], that is,
delta function-like electrical pulses occurring at
random times. Shot noise was first discovered and
reported in the nonequilibrium context of saturated
vacuum tubes. Recent progress in nanofabrication
technology has revived the interest in shot noise,
particularly since nanostructures and ‘‘mesoscopic’’
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resistors allow measurements on previously inacces-
sible scales [Sarpeshkar et al., 1993; Schoelkopf et al.,
1997; Gomila et al., 2004]. Below I will first show that
the equilibrium, 2-sided shot noise across a lipid bilayer
eventually leads again to Equations 1 and 2.

The textbook by Stryer [1995] gives values for the
lipid bilayer membrane permeabilities of the most
common ions: PNa¼ 10�12 cm/s, PK¼ 5�10�12 cm/s,
and PCl¼ 10�10 cm/s. In such listings the permeability
is usually defined as the number of moles that cross
a square centimeter of membrane in 1 s when the
transmembrane concentration difference of the ion
involved is 1M. Below we will not work in moles per
liter, but simply use the particle density. The membrane
permeability of a monovalent ion S involves both
the diffusion coefficientDs of the particular ion S inside
the membrane and the width dm of the membrane:
PS ¼ DS dm= . The formula for the transmembrane
particle current j ¼ PSDC, whereDC denotes the trans-
membrane concentration difference, is thus a form of
Fick’s Law [Moore, 1972].

In this section,wewill ignore noise that is associated
with the driven nonequilibrium transport through chan-
nels, transporters, and pumps. But even in an equilibrium

situation, without driven transport, the presence of
channels in a lipid bilayer can significantly increase the
permeability. The validity of the approach shown below,
however, is not affected by such a presence. When there
are channels in the lipid bilayer membrane, we simply
have to work with higher ion permeabilities than the ones
listed in the previous paragraph.

It is through Nernst’s Law, that is, Vm ¼
ðkT eÞ½ln ðC1 C2Þ�== [Moore, 1972], that concentrations
and permeabilities can be translated into voltages and
electrical currents. In this formula, e represents one
elementary charge andC1 andC2 are the concentrations
on the two sides of the membrane. Eventually, we will
be interested in equilibrium noise. Close to equilibrium
means C1 C2 � 1= . For small values of e we have
lnð1þ eÞ � e. With C1 � C2 ¼ C and DC ¼ C1 � C2

we get fromNernst’s Law a proportionality betweenVm

and DC: DC ¼ ðCe kTÞVm= . If the particle current is
j ¼ PSDC, then the electrical current is I ¼ ePSDC.
Substitution of the expression for DC yields a form of
Ohm’s Law: I ¼ ðePSC kTÞVm= . So we find that a unit
area of membrane has an electrical conductance of
gm ¼ e2PSC kT

�
Þ

�
or, equivalently, a resistance of

Rm ¼ ðkT e2PSCÞ
�

.

Fig. 5. The noise spectrumexperienced byamembraneprotein according to each of the three dif-
ferent models discussed in this section.Weaverand Astumian [1990] focus on the transmembrane
voltageand finda downward sigmoid.Kaune [2002] focuses on the on the field associatedwith the
transmembrane current and finds an upward sigmoid.Vincze et al. [2005] share Kaune’s focusbut
work with a large number of incoherently operating resistors. For a large number of resistors they
essentially end upwithwhite noise far above the levels of Weaver^Astumian and Kaune.Fifty and
60 Hz fieldsoperate at the left endof the graph.Workingwith Kaune’smodel, the powerof common
ELF fieldsisfoundtobecomparabletothatofthenoise.Intheother twomodels, thenoisedrownsout
anyrealistic ELF fields.
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With a concentration C for the ion S on each side
of the membrane, we have a particle current per unit
area of PsC going both from side 1 to side 2 and from
side 2 to side 1. The passage of ions (i.e., electrical
current) through the membrane is a Poisson process
[Feller, 1957; DeFelice, 1981]. In a small time interval,
Dt, there is a probability 2PSCDt that a unit area of
membrane will be permeated by an ion.

So 2PSC is the average rate at which the ions
pass through a unit area. These passages are pulse like.
The process is similar to a sequence of coin tosses,
where head versus tail corresponds to 1! 2 passage
versus 2! 1 passage. There is a 50-50 distribution on
average, leading to a net flow of jh i ¼ 0. But for a
Poisson process, the variance s2 (the variance is the
square of the standard deviation) equals the number of
passages. We thus have after time T: s2 T ¼ 2PSC

�
.

When we look at time steps Dt that are significantly
larger (about an order of magnitude or more) than
the average time between two pulses, that is,
Dt � ð2PSCÞ�1

we face the cumulative effect of a
number of Poisson pulses within Dt. The central limit
theorem [VanKampen, 1992] then becomes applicable.
This theorem tells us that the number of ions that passes
through the membrane during Dt will be almost
Gaussian distributed with a zero average and a standard
deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PSCDt

p
. For the number of ions

passing during the i-th timestep, we have DnðtiÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
2PSC

p
xðtiÞ Dt. Here xðtiÞ ¼ yi=

ffiffiffiffiffi
Dt

p
, where yi

are numbers drawn randomly from a zero average
Gaussian distribution with a standard deviation of one.
We see that n(ti) follows a classical random walk that
can be described with a Langevin type equation
_nn ¼

ffiffiffiffiffiffiffiffiffiffiffi
2PSC

p
xðtÞ.

By scaling with a factor e, the charge of the
monovalent ion, we can go from particle traffic to
charge traffic, that is, electrical current. We then get a
Langevin type stochastic differential equation for the
transmembrane electrical current

_qqm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2PSC

p
xðtÞ: ð6Þ

For the average square charge transfer Dq in time t we
have:

Dq2mðtÞ
� �

¼ 2e2PSCt: ð7Þ

Equations 6 and 7 are analogous to the equations that
describe the random walk of an overdamped Brownian
particle, _xx ¼

ffiffiffiffiffiffi
2D

p
xðtÞ, and the diffusion equation,

Dx2ðtÞ
� �

¼ 2Dt where D denotes the diffusion coeffi-
cient. In stochastic dynamics, the diffusion coefficient
D and the friction coefficient b are related by Einstein’s
well known Fluctuation-Dissipation Theorem: D ¼
kT b= . Our equivalent of the diffusion coefficient is

Dq ¼ e2PSC. From the resistance formula that we
derived from the Nernst equation, we can infer an
electrical equivalent of Einstein’s Fluctuation-Dissipa-
tion Theorem:

Dq ¼ e2PSC ¼ kT

Rm

: ð8Þ

We see from this equation that, in the electro-chemical
context, Rm plays the role of the friction coefficient b.

After substituting Equation 8 in Equation 6 it is
possible to retrieve Nyquist’s Equation 1. Nyquist’s
derivation [Nyquist, 1928] applies to a Brownian ‘‘gas’’
of charge carriers in a resistor. That derivation,
furthermore, involves inductances and the equipartition
theorem. It is not a priori obvious that the same formula
resultswhen dealingwith the 2-sided shot noise through
a membrane. Apparently it does and it seems like
Nyquist put the finger on a particular manifestation of
somethingmuchmore general [Sarpeshkar et al., 1993].

Equations 6 and 7 would provide an accurate
description of membrane currents if all passing current
were immediately carried off to infinity and no potential
difference were to develop, that is, the situation
depicted in Figure 1. However, the net charge that
accumulates inside a cell will ‘‘stick’’ to the membrane
and charge it up like a capacitor (cf. Fig. 3). If qm is the
accumulated charge on a unit area of membrane, then
the voltage Vm across the membrane follows
qm ¼ CmVm. Here Cm denotes the capacitance of a unit
area of membrane. We have Cm ¼ e0er dm= , where
e0¼ 8.8� 10�12 Nm2/C2 represents the dielectric
permittivity of a vacuum, er is the relative dielectric
permittivity of the bilayer, and dm is the bilayer width.
For a lipid bilayer, we have er � 2. The width equals
about 5 nm. The bilayer is thus found to have a
capacitance of about 1 mF/cm2.

The induced transmembrane potential Vm will
provide a force to bias the charge permeation. This force
will drive Vm back to zero again. Taking this force into
account the stochastic differential equation turns into:

_qqmðtÞ ¼ � qmðtÞ
RmCm

þ
ffiffiffiffiffiffiffiffi
2Dq

p
xðtÞ: ð9Þ

The quotient qm Cm= represents the potential Vm that
drives qm(t) back to zero.Rm represents the resistance to
the current. So it is obvious that �qmðtÞ ðRmCmÞ=
describes a current that drives qm(t) back to zero. For
Vm(t) we have:

dVmðtÞ
dt

¼ � VmðtÞ
RmCm

þ 1

Cm

ffiffiffiffiffiffiffiffiffiffi
2kT

Rm

r
xðtÞ: ð10Þ

Equations 9 and 10 describe a so-called Ornstein–
Uhlenbeck process. Most authoritative textbooks on
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stochastic processes include a section on the Ornstein–
Uhlenbeck process [Feller, 1957; Van Kampen, 1992].
In its archetypal form the Ornstein–Uhlenbeck equa-
tion describes the motion of an overdamped Brownian
particle in a quadratic potential well.

The ordinary differential Equations 9 and 10 are
hard to handle because of the stochastic term x(t). In
many cases we therefore turn to an equivalent
description in terms of a partial differential equation
that describes the time evolution of the probability
density P ¼ PðVm; tÞ:

@tP ¼ 1

RmCm

@Vm
ðVmPÞ þ

kT

C2
mRm

@2
Vm
P: ð11Þ

In this equation PðVm; tÞ dðVmÞ represents the prob-
ability that at time t the transmembrane voltage is
between Vm and Vm þ dðVmÞ. A similar equation can
be set up for qm(t). By setting the left hand side of
Equation 10 equal to zero and solving the remaining
ordinary differential equation, a stationary distribution
can be derived. This stationary distribution is found to
be a zero-average Gaussian with a standard deviation
hV2

mi ¼ kT Cm= .
Let’s turn back to the systemwithout capacitance,

that is, Equations 6 and 7. The Fourier transform of
I(t) is �IIðf Þ ¼

R1
�1 IðtÞeiot dt. The passage of an ion

through a lipid bilayer takes about t¼ 10�7 s. Relative
to the timescales we will be working with, the current
associated with such a passage can be conceived of as a
delta function, ed(t). The Fourier transform of d(t) is a
flat spectrum, that is, �ddðf Þ ¼ 1. For any real signal I(t),
�IIðf Þj j is a symmetric function, that is, �IIðf Þj j ¼ �IIð�f Þj j.
The quantity ð2 TÞj�IIðf Þ= j2, where T is the time over
which the signal I(t) was recorded, is defined as the
power spectral density S(f) of the signal I(t). Sðf ÞDf is
proportional to the amount of power that the signal I(t)
carries in the frequency window between f and f þ Df .
If I(t) has the form of N delta like passages of
monovalent ions, then we have for the Fourier trans-
form �IIðf Þ ¼ eN and for the power spectral density
SImðf Þ ¼ 2=TÞe2Nð . For T ! 1, the number of pulses
will equalN ¼ 2PSCT . So we derive SImðf Þ ¼ 4e2PSC.
The textbook by DeFelice [1981] provides a more
rigorous review of the theory that is presented in this
paragraph.

With SImð f Þ ¼ 4e2PSC we have a flat power
spectrum. The area

R1
f¼0

SImðf Þ df represents the total
power in the signal. With the flat spectrum this ap-
pears to be infinite. Nyquist already derived that quan-
tum mechanics leads to a cutoff at hf � kT , where
h¼ 6.63� 10�34 Js represents Planck’s constant. At
T& 300 K, the associated cutoff frequency is about
6� 1012 Hz. However, the passage time t& 10�7 s

gives our delta functions a finite width that results in a
cutoff at f& 107 Hz.

The average permeation rate 2PsC leads to a
characteristic timescale of the setup we are looking at.
When we take a realistic value for a lipid bilayer like
Ps¼ 10�11 cm/s and C¼ 0.15 mol/liter, we find that
there is about one ion passage per second through one
square micrometer of bilayer. A lipid bilayer sphere
with a diameter of about 10 mm has a surface area of
about 300 mm2 and this implies about 300 transmem-
brane ion passages per second for the entire cell.

We thus see that between the ion passage rate
(2PsC) and the inverse duration of one passage (1/t)
there can be several decades along the frequency axis
where the noise is white (a flat spectrum), but does not
have a Gaussian amplitude distribution. In many
contexts white noise is thermal noise and consists of a
small signal that changes much faster than any other
characteristic timescale of a system. In our case,
however, on a timescale between Dt ¼ t and
Dt ¼ 1=ð2PSCÞ, we have a noise amplitude distribution
that is symmetric around zero and has two sharp peaks
(one for 1! 2 passage and one for 2! 1 passage). In
the realm t < Dt < 1=ð2PSCÞ ion passage is rare, but
the flatness of the power spectrum comes about because
ion passage gives a very sharp pulselike signal.

Taking the capacitor properties of the membrane
into account and analyzing the resulting Ornstein–
Uhlenbeck process, we are led to yet another char-
acteristic time: tm ¼ RmCm. The resistance of a patch of
membrane is inversely proportional to the area and the
capacitance is proportional to the area. The time
tm ¼ RmCm is therefore a quantity that depends not
on cell size, but solely on thewidth of themembrane and
the material that it is made of. In the resulting RC
circuit, the frequencies higher than 1/RmCm are too fast
to build up across the capacitor. This leads to another
cutoff in the spectrum [Van Kampen, 1992]:

SVm
ð f Þ ¼ 4kTRm

1þ o2t2m
¼ 4tm

1þ o2t2m
V2
m

� �
: ð12Þ

where o represents the angular velocity o ¼ 2pf .
Likewise we have for the electric field:

SEm
ðf Þ ¼ 4tm

1þ o2t2m
E2
m

� �
: ð13Þ

A lipid bilayer and a cell membrane both have a
capacitance of about 1mF/cm2.Aswasmentioned in the
previous paragraph, the electrical resistance between
the inside and outside of the cell is inversely propor-
tional to the magnitude A of the cell’s surface area. It,
therefore, makes sense to take the resistance of a fixed
unit area as a membrane property and obtain the

Membrane Electric Noise 603



resistance of the entire cell through division by A. The
resistance has very different values for a real cell
membrane (about 103 O cm2) and a pure lipid bilayer
(about 106–109O cm2). So for a real cell membrane the
RC time amounts to about a millisecond. For a pure
lipid bilayer, the RC time can be of the order ofminutes.

An actual cell membrane contains many specia-
lized channels to regulate the traffic of different kinds of
ions. Aswas pointed out above, it ismostly the presence
of these channels that makes the conductance of a cell
membrane higher than the conductance of a pure lipid
bilayer by several orders of magnitude. Channels are
complicated in that they can open or close in response
to ion concentrations and/or ligand concentrations.
Many channels also open and close in response to the
transmembrane voltage. Such voltage sensitive chan-
nels can bring about a resistance that depends on the
transmembrane voltage, that is, they can rectify. How-
ever, equilibrium noise cannot be rectified [Brillouin,
1950] and the rectification properties do therefore not
interfere with equilibrium noise. The cell membrane,
furthermore, contains pumps that employ energetically
downhill processes, like ATP hydrolysis, to power ion
transport against the electrochemical gradient. Channel
rectification and ion pumps should definitely be part of
the picture when nonequilibrium noise is being studied.

In this study, however, we focus on the more
fundamental problem of equilibrium noise across a
membrane. From Rm ¼ kT=ð2e2PSCÞ it is obvious that
the resistance of a membrane depends on what kind of
ions are present and in what concentration they are
present in the electrolyte solution. The high estimate of
109 O cm2 corresponds to a pure lipid bilayer in a
solution with about 0.1 mol/liter of sodium. The
formula SVm

ðf Þ ¼ 4kTRm shows that a higher resistance
implies larger voltage fluctuations. Current fluctua-
tions, however, obey SImðf Þ ¼ 4kT Rm= , so these will be
smaller at higher Rm.

To get a complete picture, there are some other
fluctuations to consider. We will see shortly that a
membrane protein is subject to more noise than just that
from transmembrane ion traffic. Across a capacitor in
an RC circuit, the variance of the voltage fluctuations
equals hV2

mi ¼ kT Ctot= , where Ctot represents the
capacitance of the entire membrane. This formula is
actually a manifestation of the equipartition theorem
[Van Kampen, 1992; Sarpeshkar et al., 1993] since the
energy, ð1 2= ÞCtotV

2
m, amounts to the ð1 2= ÞkT of

thermal energy that every degree of freedom takes on
when there is thermal equilibrium. So a cell with a
surface area Atot has a transmembrane voltage due
to thermal noise that is Gaussian distributed, has a
zero average, and a root mean square voltage offfiffiffiffiffiffiffiffiffiffi
hV2

mi
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT ðCmAtotÞ=

p
.

For a zero-average Gaussian distribution with
standard deviation s, that is, PðxÞ ¼ ð1=s

ffiffiffiffiffiffi
2p

p
Þ

exp½�x=2s2�, the average absolute value can be easily
evaluated as h xj ji ¼ 2

R1
0

xj jPðxÞ dx ¼ ð2=2pÞs. The
variance around this average is readily evaluated
as 1� 2 p= ÞÞs2ðð . A cell with a surface area Atot

thus has, on the average hjqtotji ¼ Ctoth Vmji ¼j
ð2=

ffiffiffiffiffiffi
2p

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTCmAtot

p
of charge on the membrane

(positive on one side and negative on the opposite
side). Assuming that the positive ions on the one side of
the membrane and the corresponding negative ions on
the other side of themembrane are bothmonovalent and
of equalmobility,we see that a square unit ofmembrane
has on average hni ¼ ð2=e

ffiffiffiffiffiffi
2p

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTCm=Atot

p
ions on

each side. Substituting the numbers, we find that for a
spherical cell with a diameter of about 10 mm, that is, a
surface area of about 300 mm2, the average thermal
transmembrane voltage equals about Vmj jh i ¼
4� 10�5 V. This amounts to only about three ions per
square micrometer of membrane. The average thermal
velocity of ions on the membrane surface can be
estimated with ð1 2= Þmv2 � kT . At 300 K this average
thermal velocity is found to be about 5� 102 m/s. This
means that amicrometer is, on average, traversed in less
than 10�8 s. So the random fluctuations in the number n
of ions on a square unit of membrane, which has a
standard deviation of

ffiffiffiffiffiffiffi
hni

p
, are generally faster than

other timescales of the system.
The membrane area per monovalent ion is:

ae ¼
e

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2pAtot

kTCm

r
: ð14Þ

The area ae is also characteristic in that it has an
average number of ions that equals the standard
deviation. On areas smaller than ae, the standard
deviation in the number of ions exceeds the average
number of ions. Robert Adair has proposed a 5� 5� 5
nm cube of membrane as a fundamental electrical unit
[Adair, 1991]. This is also the approximate size of an
average membrane protein, and since the effect of
noise on protein operation is what we ultimately want
to assess, it is an important scale to consider. Under
physiological conditions, the Debye screening length
[Moore, 1972] also amounts to about a nanometer. So
only when an ion actually ‘‘hits’’ the 5� 5 nm protein
surface do we get a ‘‘pulse.’’ We will refer to the 5� 5
nm area as an ‘‘Adair segment’’ of area aAd¼ 25 nm2.
What proteins ‘‘feel’’ is the electric field, that is,
Em ¼ Vm=dm, where dm¼ 5 nm represents the width of
the membrane. So, in what follows, we will consider
the transmembrane electric field instead of the
transmembrane voltage.

604 Bier



It is obvious that on a 5� 5 nm area of membrane
therewill be an ion for a fraction of time that amounts to
e ¼ aAd ae= . The ratio e will be of the order 10�4. The
pulse-like passages of ions will again constitute a
Poisson process. We, once more, face a form of shot
noise in the sense that the noise is due to the elementary
charge being finite. The shot noise dealt with so far was
transmembrane. In this paragraph the noise parallel to
the membrane is evaluated. When an instantaneous
measurement is performed, there is a probability e that
an ion is found in a particular segment of area aAd. In
order for the average absolute field to amount to Emj jh i
the field with an ion on aAd must equal Emj jh i e= . The
variance equals s2 ¼ ð Emj jh i e= Þ2e� Emj jh i2. For
small e the second term can be neglected and we derive
a standard deviation of the electric field that is a factor
1

ffiffiffi
e

p
= larger than the average electric field. Finally, if

there are n ion passages over our aAd segment per unit of
time, we have a flat noise spectrum and a power spectral
density of SEm

ðf Þ ¼ 2 Emj jh i2n. The rate n is easily
estimated. As we saw before, the thermal velocity of an
ion in solution at 300 K is about 5� 102 m/s. This means
an ion can traverse about 1011 Adair segments per second.
The aforementioned cell with a surface area of 300 mm2

measures about 107 Adair segments. With about a
thousand ions on the entire cell surface, the rate m is
expected to be on the order of 103�1011�7¼ 107.What we
have dealt with in this paragraph is actually a special case
of Campbell’s theorem [DeFelice, 1981; Van Kampen,
1992]. Obviously, because of the factor n, the noise due to
random motion of ions over the membrane ðSEm

ðf Þ ¼
2 Emj jh i2nÞ will be much larger than the noise due to
transmembrane ion traffic (cf. Eq. 13). A more thorough
treatment of the theory that we applied can again be found
in the textbook by DeFelice [1981].

It is unlikely that it is the same ions sliding on the
membrane surface all the time. Ions can go from the
membrane surface into the solution while, elsewhere at
the same time, other ions go from the solution onto the
membrane. Taking this effect into account would again
add to the noise intensity.

DISCUSSION

Above we calculated the equilibrium noise across
and on a membrane. We have assessed the electrical
noise that a membrane protein would be subjected to.
For any reasonable bandwidth (10–100 Hz) it appears
that the equilibrium noise that a membrane protein
experiences has much more energy than the power
frequency electromagnetic radiation that it is subjected
to from power lines and/or electrical appliances.

The picture ofWeaver and Astumian [1990] is not
complete; there aremore ‘‘noises’’ operating on amotor

protein than just the thermal fluctuations of the
transmembrane potential. Analyzing the equivalent
circuit, Kaune [2002] was correct in concluding that
intramembrane noise that never reaches the membrane
surface also contributes. After ridding Kaune’s model
of the implied and troubling hypothesis that all the
intramembrane noise is ‘‘coherent,’’ Vincze et al.
[2005] derived a noise power that is more than amillion
times that of Weaver and Astumian. Weaver and
Astumian’s incomplete account of the noise already
leads to transmembrane fluctuations that far overwhelm
those due to realistic power frequency fields. The
approach of Vincze et al. [2005] only renders the power
frequency fields more negligible by many orders of
magnitude.

Intramembrane noise is hard to imagine when the
resistor is a 5 nm thick membrane and when the current
consists of pulse like ion passages through this mem-
brane. However, the thermal motion of ions parallel to
the membrane surface appears to act like a manifesta-
tion of the intramembrane noise. Taking this thermal
motion into account leads to the same more than
millionfold increase of noise intensity that Vincze et al.
[2005] derived from a setup like Figure 4.

As was pointed out before, themembrane of a real
living cell has a smaller resistance than a pure bilayer
due to the presence of pumps, transporters, and chan-
nels. A smaller resistance leads to a smaller RC time, a
larger thermal noise current, and a smaller thermal
noise voltage. The latter, in turn, leads to a smaller
thermal noise electric field. It is also important to realize
that a living cell is very far from equilibrium. A living
cell carries, for instance, a transmembrane voltage of
about 80 mV. Channels and transporters conduct
currents down the electrochemical potential and, in
steady state, ion pumps maintain the same currents
against the potential [Van Mil et al., 2003]. These
‘‘guided’’ nonequilibrium currents aremuch larger than
the equilibrium currents that we have discussed.
Nonequilibrium noise does not have a flat frequency
spectrum. Instead, the noise strength is inversely pro-
portional to the frequency and it is therefore generally
called 1/f-noise. There are important qualitative
differences between equilibrium and nonequilibrium
noise that are not reflected in the spectrum or time
correlation [Bier, 1997]. Equilibrium noise cannot
power any process. Nonequilibrium noise, however,
can drive energetically uphill processes. In any treat-
ment of membrane proteins and the environment in
which they operate it is important to keep these noises
separate.

Consider the setup in Figure 6. The two nearby
proteins E1 and E2 are coupled through their dipoles.
Suppose that E1 catalyzes the hydrolysis of ATP and
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that there are two possible orientations of the dipole.
The orientationwithATPbound is reversed fromwhat it
is whenATP is not bound.Now suppose you are looking
only at E2. As E1 is hydrolyzing ATP, E2 will follow the
imposed nonequilibrium fluctuation. If ATP and ADP
are in a chemical equilibrium, there will still be
Brownian fluctuations between the "# and the #"
configurations of the E1E2-system. But in this case the
flips are equilibrium and the distribution between "#
and #" is a Boltzmann distribution. It is not possible to
just measure E2 dwelling times in different states and
formulate a statistical criterion to discriminate between
equilibrium and nonequilibrium noise. But there is a
crucial physical difference between the equilibrium and
the nonequilibrium situation. In the nonequilibrium
case, E1 can make E2 do work via the dipole–dipole
interaction. E1 can, for instance, force E2 through a
transport cycle if E2 is a pump. An external EM field
works very much like the ATP hydrolysis in the above
example [Astumian et al., 1987]. Unlike the Brownian
motion of the system itself, such an EM field can do
work. It brings new energy into the system. This energy
can be dissipated and heat up the system. It is also
possible for this energy to not be dissipated completely
and to be partially converted into ‘‘work’’ on a
metabolic chain. Metabolic flows can be affected and
the effect can accumulate over time [Vaughan and
Weaver, 2005].

The example in the previous paragraph shows that
equilibrium and nonequilibrium noise are very differ-

ent. Gauging the strength of an external EM field
against the strength of the internal Brownian motion
may be beside the point. It may be very much like
comparing the available energy in a battery to the
battery’s heat capacity times the absolute temperature.

This article is not intended as a final assessment. If
anything, it hopes to contribute to the impetus to get to a
correct evaluation of the noises that amembrane protein
is subject to. The transition from equilibrium to non-
equilibrium noise is currently a hot topic in electronics
and solid state physics [Schoelkopf et al., 1997; Gomila
et al., 2004]. But in the context of cell membranes with
embedded proteins this is still a largely unexplored
territory. Perhaps equilibrium noise is not what the
energy in 50 or 60Hz EM radiation should be compared
to. External power frequency fields are nonequilibrium
sources. Gauging such fields against other nonequili-
brium noises may be more reasonable. It is only after
having come to a good and complete understanding of
the noise environment of a membrane protein that
responsible statements can be made about the possi-
bility of physiological effects of 50 or 60 Hz EM
radiation.
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APPENDIX 1

In this appendix, we will prove by mathematical
induction that adding n vectors with norm kx0k and
random phases will lead to a vector whose norm
approaches

ffiffiffi
n

p
kx0k in the large n limit.

First we take two vectors with the same norm.We
scale this norm to unity. Without loss of generality we
let one vector be the unit vector on the x-axis (cf. Fig. 7).
Of course, it is only the difference in angle f that
matters for the eventual norm of the sum. The direction
of the second vector is picked randomly from a flat
distribution between f¼ 0 and f¼ 2p. Summing the
x and y coordinate it is obvious from Figure 7 that we
have x2 ¼ 1þ cosf and y2 ¼ sinf. We thus have for

the average square norm of the sum r22:

r22 ¼ 1
2p

R2p
f¼0

ðx22 þ y22Þ df

¼ 1
2p

R2p
f¼0

fð1þ cosfÞ2 þ sin2 fg df

¼ 1
2p

R2p
f¼0

ð2þ 2cos 2fÞ df ¼ 2

ð15Þ

And hence r2 ¼
ffiffiffi
2

p
.

To prove that rn ¼
ffiffiffi
n

p
for the sum of n randomly

phased unit vectorswe need to prove that rn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

implies rn ¼
ffiffiffi
n

p
. rn ¼

ffiffiffi
n

p
for all n then follows by

mathematical induction. Add a unit vector with a
random direction f to a vector ðxn�1; yn�1Þ ¼
ð
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
; 0Þ. This leads to:

r2n ¼
1

2p

Z2p
f¼0

fð
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ cosfÞ2 þ sin2fg df ¼ n

ð16Þ

QED.

APPENDIX 2

In this appendix, a derivation of Equation 5 is
shown. Equation 5 is also the main result of the recent

Fig. 7. The anglefbetween twounit vectors is a randomnumber
froma flatdistributionbetween 0and2p.Theaveragelengthofthe
sum of the two vectors is

ffiffiffi
2

p
. In this appendix it is, furthermore,

shown that for nunit vectorswith random directions, the average
normofthesumvectorequals

ffiffiffi
n

p
.
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article by Vincze et al. [2005]. The derivation presented
below, however, is significantly more concise.

Equation 3 can be rewritten as follows:

Im ¼
1

NRm

xm �
1

1þ iotm

1

N

XN
n¼1

xn

 !( )
: ð17Þ

What this equation says is that, at a frequencyo, the AC
voltage in each resistor in Figure 4 is the sum of the self-
generated thermal voltage xm and a potential
ð1=NÞ

PN
n¼1 xn that is due to the other resistors and

the capacitor. The 1=ð1þ iotmÞ comes about because
of the RC delay. The average power dissipated in each
resistor equals ð1 2= ÞðN RmÞImI�m. Here the superscript
‘‘*’’ denotes complex conjugation, that is ðaþ biÞ� ¼
a� bi. With Equation 17 we write for the power
dissipation in each resistor:

1

2
NRmImI

�
m ¼ 1

2NRm

�
xm �

1

1þ iotm

	
1

N

XN
n¼1

xn


�

x�m �
1

1þ iotm

1

N

XN
n¼1

xn

 !( )�" #
:

ð18Þ

After working out all the algebra (using ðz1z2Þ� ¼ z�1z
�
2,

ðz1 z2Þ� ¼ z�1 z�2
��

, and zz� ¼ kzk2), performing the
summation

PN
m¼1, and working out the algebra again,

one finds for the total dissipated power:

1

2

XN
m¼1

NRmImI
�
m ¼ 1

2NRm

XN
m¼1

xm
�� ��2

� 1

2Rmð1þ o2t2mÞ
1

N

XN
m¼1

xm

�����
�����
2

:

ð19Þ

All resistors in Figure 4 have the same resistance NRm.
So for all resistors the noise amplitude has the same
value kx0k. Of course, there are still the random phase
factors, that is, xm ¼ kx0kexp½2pip�, where p is a
random number between 0 and 1. So we havePN

m¼1 kxmk2 ¼ N x0
�� ��2. When discussing the equiv-

alency between one Rm resistor and N parallel NRm

resistors we already derived kð1 N= Þ
PN

m¼1 xmk2 ¼
ð1=NÞkx0k2. Appendix 1 contains a rigorous deriva-
tion of this identity. We are now led to a very powerful
equation:

1

2

XN
m¼1

NRmImI
�
m ¼

x0
�� ��2
2Rm

�
x0
�� ��2

2NRmð1þ o2t2mÞ
: ð20Þ

This equation very nicely separates out all the energies
that feature in the different competing models. The

term kx0k2= 2N Rmð Þ represents the power generated in
one resistor. So Ptot ¼ kx0k2=ð2RmÞ is therefore the
total noise power generated in all resistors together. Since
kx0k2 ¼ 8kT N RmDf it increases with N (the 4 in
Equation 1 for an average, becomes 8 when describing
the amplitude x0

�� ��). So we have kx0k2=ð2RmÞ ¼PImþ
PRmCm

. Here PRmCm
¼ kx0k2=f2NRmð1þ o2t2Þg

Fig. 8. Electrical cross-sections of a cell for N¼1, N¼ 2, and
N¼ 3.The inner and outer circle represent the inside and outside
of themembraneand theyoperate like capacitor plates.The thick,
blackcircle in themiddlerepresentstheresistor(s).In thearticleby
Vinczeet al. [2005], thezeromodeis thenet current throughall the
resistors together (i1 þ i2 for N¼ 2). The higher modes, such as
i1 � i2, describe zero average spatial variations in the transmem-
brane current.
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comes from the current Im that is associated with the
capacitor.PRmCm

thus denotes the part of the generated
fluctuation-dissipation power that goes into the os-
cillation of the RmCm circuit. PIm represents the
fluctuation-dissipation power in the intramembrane
noise.

Using kx0k2 ¼ 8kT NRmDf one derivesPRmCm
¼

f4kT=ð1þ o2t2mÞgDf . The expression 4kT=ð1þ o2t2mÞ
is well known; it is simply the power spectral density of
thermal noise in an RC circuit. This is the energy that
goes towards the generation of a field between the
capacitor plates and, as such, it is the focus of the
Weaver–Astumian approach. Obviously, it is inde-
pendent of N. The Weaver–Astumian approach thus
avoids the problem of coherence versus incoherence
and the issue of parallel connectivity. For Weaver and
Astumian the thermal-electric storm is in the field
between the capacitor plates, they toss outPIm and ob-
tain Ptot ¼ PRmCm

/ 1 ð1þ o2t2mÞ
�

. The term PIm ¼
ð1 2= Þ

PN
m¼1 N RmImI

�
m stands for the power that is

fluctuated and dissipated by intramembrane currents.
This is the intramembrane noise.None of thePIm-power
goes towards charging up the capacitor. For largerN the
resistors ‘‘push’’ more current into each other and the
PIm-term is therefore dependent on N.

With x0
�� ��2¼ 8kT N RmDf we can rewrite Equa-

tion 20 as:

1

2

XN
m¼1

N RmImI
�
m ¼ 4 N � 1

ð1þ o2t2mÞ

� �
kTDf ;

which is Equation 5 of the main text. After some minor
algebraic manipulation it is easy to see that this
equation is essentially the same as Equation 30 in the
article by Vincze et al. [2005].

Figure 8 shows schematic cross-sections of a
spherical cell for N¼ 1, N¼ 2, and N¼ 3. Consider the
situation with N¼ 2. Each resistor has its own current (i1
and i2 in the figure). When you add up these currents you
obtain the net current going into the cell, that is
isum ¼ i1 þ i2. The difference between i1 and i2, that is,
idiff ¼ i1 � i2, constitutes the first mode. Going from (i1,
i2) to (isum, idiff), or back, is a 2� 2-matrix operation.
Clearly, thematrix will beN�N for the general casewith
N resistors. Instead of dealing with all the individual
currents (and all the ensuing vectors and matrices), we
took a shortcut and immediatelywent to the power (which
is like a normof avector)withEquation 17.We thus got to
Equation 5 without having to go through the complicated
matrix algebra of Vincze et al. [2005].
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