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Biological motion is for a large part powered by motor proteins. These are tiny engines

(about a millionth of an inch) that convert chemical energy into mechanical force and

motion. Processive motor proteins are among the most sophisticated and well studied of

the motor proteins. They consist of two identical ‘feet’ that literally step forward on a

long polymer as the fuel is consumed. When a human or other large animal steps, the

physics involves mass, gravity and inertia. But for the walking protein the physics is

different. Inertial forces are negligible compared to the frictional forces and Brownian

motion, i.e. the random movements of molecules at a microscopic level, becomes an issue.

Much of the research of the last decades has been directed towards figuring out the amino

acid sequence and three-dimensional structure of proteins, but less effort and progress has

been made towards understanding the operation of proteins in action. With a simple but

rigorous model it is shown how Brownian motion and the generation of real force

actually team up to make the motor protein step. The model, moreover, accounts

accurately for recently obtained data on moving motor proteins.

1. Macroscopic versus microscopic stepping

When a human is ‘stepping’, most power is consumed by

the repeated acceleration as the foot that was in touch with

the ground is brought forward to a position in front of the

torso. About a hundred times per minute the entire mass of

a foot is accelerated from zero speed to a speed higher than

that of the upper body so it can be brought to a position in

front of the centre of mass. To overcome the inertia of the

foot a force F=ma is necessary, where m is the mass of the

foot and a is the acceleration. For a quantitative treatment

a good starting point is the energy E=1
2mv2, where v is a

speed slightly larger than the average speed of the walk.

This energy E is generated each time a foot is moved

forward. A small amount of energy also goes into the

repeated lifting of the foot against gravity. In the end the

stepping mechanism completely eliminates drag or friction

as a factor in the energetics. How good a solution stepping

is becomes obvious when we see how a ‘non-stepper’, like a

seal or walrus, scoots on land. The aerodynamic resistance

is generally negligible when walking or jogging, it does not

become an issue until we go from a stepping mechanism to

a much faster rolling mechanism, with e.g. a bicycle, and

reach a speed of about 30 km h71.

Biomechanics does not scale. When, for instance, a swan

is made twice as large in every length L, he will be eight

times as heavy. This is because mass is proportional to

volume and volume is proportional to L3. His strength,

however, will increase with the cross-sectional area of his

muscles. Area is proportional to L2, so strength will thus

only quadruple and he will probably no longer be strong

enough to ever get his weight off the ground.

When going to the microscopic realm the significance

of inertia becomes smaller relative to the significance of

friction. For a human swimming in water, the inertia of his

motions is still a significant part of the mechanics. But for a
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bacteria swimming in water ‘feels’ like swimming in

molasses would feel to us [1]. This is not hard to

understand. For a cube-shaped particle with length, width

and height L, the mass is again proportional to the volume.

The volume, in turn, is proportional to L3. The frictional

force between the particle and the medium is roughly

proportional to the surface area, i.e. L2. Scientists and

engineers often use the notion of the Reynolds number; this

is an ‘inertia-over-friction’ ratio and it is obviously

proportional to the scale L.

A piece of chalk at different scales can illustrate the

concept. When dropped, a piece of about an inch long will

fall to the ground with almost the gravitational acceleration

of g=9.8 m s72. Air resistance will be practically

negligible. When, however, chalk powder is blown out of

an eraser no such rapid falling takes place. The explanation

is that for the micrometre size particles, the force of gravity,

i.e. Fgr=mg (where m is proportional to L3), is negligible

compared to the frictional forces that go with L2.

For microscopically sized particles in a fluid (i.e. a gas or

a liquid) the Reynolds number is effectively zero and we call

this the overdamped realm. Motion here follows a law that

was actually first formulated by Aristotle: F=bv. So the

velocity v of an object is directly proportional to the force F

acting on that object. The proportionality factor b is called

the coefficient of friction.

The chalk example illustrates another concept. When an

eraser is knocked on the table a spherical cloud of chalk

powder develops and spreads. Collisions with air molecules

add a random component to the trajectory of the small

particles. This is called Brownian motion or Brownian

noise. For a Brownian particle moving in one dimension

and located at x=0 at t=0, the average square

displacement is directly proportional to the time t, i.e.

hx2(t)i=2Dt. Here D is the diffusion coefficient. In a fluid

friction and Brownian motion are related to one another

since both come about as a result of random collisions of

the particle with molecules of the medium. Mathematically

this relationship is expressed in a formula, due to Einstein,

that is as beautiful as it is concise: D= kT/b. On the

molecular scale there is Brownian motion in every degree of

freedom. In each degree of freedom the Brownian noise-

band carries an energy of kT, where k is the Boltzmann

constant (1.46 10723 J K71) and T is the absolute

temperature expressed in degrees Kelvin.

The upshot of the above is that the world of biomolecules

is not ruled by the same set of principles as the world of

walking humans. Enzymes often couple an energetically

downhill chemical conversion to a process or conversion

that requires energy. But it is wrong to think of such an

enzyme as a kind of miniaturized car engine. When the

involved energies are comparable to kT, Brownian motion

becomes part of the picture. The resulting picture is one of

an enzyme that is operating in the middle of a hurricane.

Moreover, it is a hurricane in which every motion is

damped out as soon as it occurs. In this environment the

mass of a particle is entirely irrelevant.

2. A quantitative model for a microscopic stepper

Motor proteins are agents that convert chemical energy

into motion. There are many kinds of motor proteins.

Muscle motion, for instance, comes about when myosin

attaches itself to the biopolymer actin and makes a ‘stroke’

of about 5 nm [2 – 4]. Subsequently the myosin lets loose

and gets ready for another stroke. The necessary energy is

made available when an inorganic phosphate group is

‘broken off’ from ATP (adenosine triphosphate). ATP is

the currency of energy in a living cell. When a phosphate

group is broken off from ATP, i.e. ATP ? ADP + Pi

(where ADP stands for adenosine diphosphate), about 22

kT of energy is released under physiological conditions.

This reaction is called ATP hydrolysis. It does not easily

occur on ‘naked’ ATP, because of a high activation barrier.

Enzymes, however, can bind ATP, bring this barrier down

and effectively catalyse the reaction. Myosin catalyses ATP

hydrolysis, but it picks up some of the the released 22 kT

and uses it for the stroke.

The motor protein kinesin is mostly employed for

intracellular transport. In any cell that is bigger than a

bacteria kinesin pulls organelles (like mitochondria) to a

part of the cell where they are needed. It also pulls vesicles

that are filled with chemicals (see figure 1). Kinesin is a

processive motor protein, i.e. it can make up to a hundred

strokes and stay attached to its biopolymer before it comes

loose again. As a biopolymer track kinesin uses the

microtubule. Each unit of the microtubule is an actual

protein of 862 amino acids. The polymer winds up in a tight

spiral with a diameter of 25 nm and 13 units per winding.

The microtubule also helps constitute the cytoskeletal

network that gives the living cell structural reinforcement

[2].

The remarkable thing about kinesin is that it literally

‘steps’ over the microtubule (see http://valelab.ucsf.edu for

an animation). Kinesin is a dimer and the two identical

units, of 340 amino acids each, essentially function as feet

(see figure 2 (a)). Each unit measures about 7 nm. Ironically

though, these feet are generally called ‘heads’. Of course, it

is not gravity that keeps the attached head attached to the

microtubule. Instead, it is chemical bonds. In the catalytic

cycle that couples ATP hydrolysis to a forward step such a

bond is broken and then re-established. Via the state of the

linker at the neck the two heads ‘communicate’ to each

other what state they are in. Detachment of the entire

protein from the polymer is thus prevented [5, 6].

Without other energy inputs there will be equilibrium

fluctuations between state A, in which a particular kinesin

head is attached to the microtubule, and the detached state
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D. If the attaching and detaching were not correlated with

the ATP hydrolysis, the transition rates kD?A and kA?D

would satisfy the Boltzmann equilibrium kD?A/kA?

D=exp{(ED7EA)/kT}, where ED is the energy of the

detached state and EA is the energy of the attached state.

The Boltzmann equilibrium gives PD/PA=exp{7(E-

D7EA)/kT} for the ratio of the probabilities to be in the

detached versus the attached state. For the stepping motor

protein it is important to break the Boltzmann equilibrium

and the randomness of the fluctuations between states A

and D. Binding and unbinding are to be well timed events

within the catalytic sequence and it is therefore that they

are coupled to the energetically downhill steps of ATP

hydrolysis. So, like for a stepping human, energy dissipa-

tion is involved in the repeated docking and undocking of

the motor protein heads.

Kinesin can only walk along the microtubule in one

direction. Transport in the opposite direction on the

microtubule is actually taken care of by another motor

protein called NCD [2, 3]. The walking of motor proteins is

different from human walking in that this directionality

originates from the ‘road’ and not from the walker. The

microtubule track is not isotropic, i.e. when walking from

left to right you ‘see’ another pattern than you see when you

walk from right to left. This is, of course, to be expected

since each unit is a complicated, folded protein with no

symmetries. When kinesin attaches to the microtubule it

immediately ‘knows’ which way to go (see figure 2 (a)).

Directed walking of kinesin over the microtubule

requires a fixed course of events. After the anterior head

detaches it should be brought into the vicinity of the

posterior binding site before it again goes into a conforma-

tional state in which it can attach. An effective way to

proceed would then be for the attached head to reorient

and bring the neck linker into a position from where the

‘dangling’ detached head can reach the posterior docking

site. Such a reorientation would be very similar to the well-

studied ‘power stroke’ of myosin. Rice et al. have described

these changes as the ‘zippering’ and ‘unzippering’ of the

neck linker and, based on their structural evidence, they

have suggested that force is generated as the attached head

turns forward upon ATP binding [5]. When the detached

head is ‘dangling’ in the cytosol it is subject to Brownian

motion (see figure 2 (a)). Eventually and inevitably this

Brownian motion will make the detached head hit the

posterior docking site. Attachment will then occur and next

it is the turn of the other head to make a forward step. The

Brownian trajectory that the detached head follows

Figure 1. An on-scale artist’s impression of kinesin motor proteins transporting vesicles along the microtubule. The two

heads (purple) move in a hand-over-hand manner along a protofilament row of tubulin subunits. Reproduced from The

Journal of Cell Biology 151 (2000), cover image, by copyright permission of The Rockefeller University Press.
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immediately prior to attachment has been described as

‘fluctuational interactions’, ‘conformational fluctuations’

[7] or as a ‘random diffusional search’ [6]. A statistical

physicist would immediately recognize such a process as a

diffusive trajectory from a reflecting barrier to an absorbing

barrier. It is not unlike a mosquito flying through a closed

room until it hits a flytrap. For a one-dimensional path

from a reflecting to an absorbing barrier we have

hTiesc=L2/(2D), where hTiesc is the average escape time,

D is the diffusion coefficient and L is the distance between

the reflecting and the absorbing barrier.

In a living cell kinesin can tow an organelle or a vesicle

filled with a substance that is assembled on one end of the

cell and needed on another end of the cell. Over the past

decade increasingly accurate experiments have been per-

formed following the action of one individual kinesin. In

these experiments the role of the organelle or vesicle is

played by a silica bead of micrometre (mm) order size that

has been hooked up to the tail of the motor protein [8]. The

position of the silica bead can be accurately followed with a

microscope. It appears that the speed of the motor protein

is unaffected by the size of the bead up until a bead size of

Figure 2. The set-up for our model. One step of the two-headed motor protein (a) corresponds to traversing one unit in a

1D reaction space (b). The reorientation of the attached head is the power stroke with energy G that covers a fraction (17f)
of the cycle. The subsequent diffusion and docking of the detached head does not dissipate any energy and covers the

remaining fraction f.
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several micrometres. This simply means that, for a small

bead, the internal friction of the motor protein exceeds the

hydrodynamic friction of the bead. The way to intuit the

notion of ‘internal friction’ is by comparing the motor

protein and its cargo to a bicyclist carrying a large balloon.

The hydrodynamic friction of the bead can be compared to

the aerodynamic friction of the balloon. The internal

friction of the motor protein would be analogous to the

rolling resistance of the bicycle that is due to ball bearings,

chain etc. For the microscopically small motor protein a

high internal friction makes sense in order for the process

not to be too much affected and disrupted by random

diffusion (remember D= kT/b!).
When a particle in an overdamped, homogeneous

medium is to be transported over a distance L along a

straight line in a time T, the most energy efficient way is

doing this with a constant speed v=L/T. This leads to an

amount of energy being dissipated of E=bL2/T. Any

variation of speed around this average will lead to more

energy dissipation. As an example consider a bullet falling

to the bottom of a bottle of honey. Fgr=mg provides a

constant force and this leads to a constant speed of v=Fgr/

b. During the fall the energy is converted from potential

energy to heat that goes into the bullet and the medium, i.e.

entropy. It is because of the Second Law of Thermo-

dynamics that nature ‘wants’ this conversion to take place.

Any bullet will always fall to the bottom when dropped in a

bottle of honey. The power stroke of the attached head can

be compared to such a trajectory through an overdamped

medium. Energy is not converted from one stored form into

another stored form. Instead it is irreversibly converted into

heat.

The action of the motor protein is therefore fundamen-

tally different from that of, for instance, an ion pump like

Na,K-ATPase. Na,K-ATPase is abundantly present in the

cell membrane and it uses the energy from the hydrolysis of

one ATP to pump 3 Na+ ions and 2 K+ ions against the

electro-osmotic gradient. It thus maintains the membrane

potential of about 100 mV between inside and outside of

the cell and the about tenfold difference between extra-

cellular and intracellular concentration for both ions.

Na,K-ATPase converts energy from one storable form to

another, i.e. from the chemical energy of ATP to an electro-

osmotic potential across the cell membrane. Such conver-

sion can never take place with 100% efficiency if it is to take

place within finite time. Part of the input energy has to be

converted into entropy, i.e. heat, for the process to occur.

Another feature of the Na,K-ATPase is its reversible mode

of operation. In the case of a high electro-osmotic potential

and low ATP concentration the Na,K-ATPase will start to

let Na+ ions and K+ ions flow down the potential and use

part of the released energy to produce ATP. No such

conversion can occur for a motor protein. Utilizing the

energy of thermal fluctuations, i.e. the Brownian motion, of

the medium and turning this energy into ATP production

and backward motor protein motion would be in obvious

and flagrant violation of the Second Law of Thermo-

dynamics. That would be like the bullet extracting thermal

energy from the medium to propel itself from the bottom to

the top of the bottle of honey. We thus assume that all of

the energy G of ATP hydrolysis (22 kT units at physiolo-

gical conditions) goes into the power stroke. As was

explained in the previous paragraph, a smooth power

stroke is an efficient power stroke, and it is likely that 3.5

billion years of evolution has led to a power stroke in which

the energy of ATP hydrolysis transforms smoothly into the

generation of a constant force driving the reorientation.

If the power stroke were not a completely smooth linear

downslide, but, instead, had some variation in the slope

(which is likely as it represents a sequence of many different

conformational changes), the time to slide down would be

longer. The effect of such a longer downslide time would be

equivalent to having a smooth, linear power stroke with a G

that is a few units smaller than 22.

It is possible to translate the stepping of the two heads

into movement of a point along an abstract reaction

coordinate (figure 2 (b)). One step of the motor protein

corresponds to one cycle in reaction space. In terms of

energy the forward reorientation of the attached head, i.e.

the power stroke, can be interpreted as a downhill slide. It

is here that force is generated and energy is used. No

energy, however, is dissipated when the detached head is

following its diffusive path. This diffusive segment is the

ratchet part of the cycle and it can be thought of as a flat

stretch from a reflecting barrier to an absorbing barrier. It

is important to realize that the friction in the power stroke

is constituted mainly by internal friction of the motor

protein. The probably somewhat lower friction of the

subsequent diffusive path of the detached head is due to the

viscosity of the cytosol medium. The horizontal coordinate

in figure 2 (b) represents a reaction coordinate and not the

position of the centre of mass of the kinesin relative to the

biopolymer. In principle it is possible to take the

biopolymer as a reaction coordinate and the position of

the centre of mass on the polymer as a measure for the

progress towards the completion of one step. However, in

that case one has to work with the position-dependent

friction and thus with a position-dependent diffusion

coefficient D(x) in order to be realistic. Such a D(x) would

complicate the analysis. The way we have it now, the

position of the point along the reaction coordinate

indicates how far the motor protein has progressed in its

path through the cycle. The essence of the reaction

coordinate is that the diffusion coefficient D is the same

everywhere. This means that there is an isomorphism

between the position along the reaction coordinate and the

position of the centre of mass of the protein and the

position on the reaction coordinate. More detailed struc-
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tural knowledge of the internal operation of the motor

protein could lead to an explicit formulation of this

isomorphism. All we know at this point is that one cycle

in reaction space corresponds to an 8 nm step of the motor.

By setting the period along the reaction coordinate equal to

the 8 nm of the actual movement, one can obtain a

diffusion coefficient D that represents the average hD(x)i
for the kinesin on the microtubule.

We simplify our analysis by a few scaling operations. We

let the 8 nm period be our unit of length. We, furthermore,

take D= b=1, which implies that energy is expressed in

units of kT. This scaling will lead to nice and concise

formulae. Upon completion of the analysis we will trans-

form back to metres and seconds again so we can relate

predictions of the model to actual experimental data. In

figure 2 (b) the force driving the motor protein down the

power stroke section equals Fps=G/(17f). With a scaled

b=1 we have a speed in reaction space that is equal to Fps.

The time to complete the power stroke thus equals

Tps= (17f)/Fps= (1/G)(17f)2. This formula is based

on the assumption that the power stroke is like a

deterministic downslide in reaction space. Diffusive effects

have been neglected. This assumption is only valid when G

is significantly larger than 2. This is because the time to

diffuse over a distance (17f) equals 1
2(17f)2. Using

methods that are described in the textbook by Gardiner

[9] it can be rigorously shown that for G&20, the identity

Tps= (1/G)(17f)2 is about 95% accurate.

The average time to diffuse from a reflecting barrier at

x=0 to an absorbing barrier at x=f equals Tdiff=
1
2f

2.

For the edges of the flat segment to act like a reflecting

barrier on the left and an absorbing barrier on the right we

again need a steep slope for the power stroke. Once more,

G&20 is sufficient to warrant such approximation.

For the entire catalytic cycle we thus derive a duration of

T ¼ Tps þ Tdiff ¼ 1

G
ð1� fÞ2 þ 1

2
f2: ð1Þ

For the motion of kinesin over the microtubule the

completion of one catalytic cycle amounts to moving one

e=8 nm period. Since length is in units of e, we have for

the average speed of the motor protein

v ¼ 1

G
ð1� fÞ2 þ 1

2
f2


 ��1

: ð2Þ

Themotor protein is subject to diffusion and its stepping is

therefore a stochastic process. The average speed is the first

moment. But there is also information about the underlying

dynamics in the second moment, i.e. the variations in speed

from one period to another. What researchers have been

doing boils down to the following. You take the motor

protein and let it run over multiple periods from x=0 at

t=0 to x=L. The different arrival times are recorded. If

you think of the motor proteins all starting together at x=0

at t=0, then it is obvious that they will undergo a spreading

in the course of drifting toward x=L. This spreading will be

described by awideningGaussian distribution. The centre of

this Gaussian moves with a speed v according to (2). An

effective diffusion coefficient for this spreading can be

expressed as follows [10]:

Deff ¼ 1

2

L2ðDtÞ2
th i3 : ð3Þ

Here (Dt)2 represents the variance in the arrival times at L

and hti represents the average arrival time. For a sequence

of subsequent stochastic processes the time variance of the

total is the sum of the individual time variances. So with a

distance that is a times as long, L, (Dt)2 and hti all increase
with that same factor a, leaving Deff in (3) eventually

unaffected as it should be. It is important to realize that Deff

is different from the diffusion coefficient D that indicates

the strength of the Brownian jolts. Deff describes the spread

of the drifting particles and, as such, it also takes account

of the shape of the energy profile. Formula (3) is commonly

used in the study of enhanced diffusion [10], i.e. the study of

situations in which Deff is orders of magnitude larger than

D. It turns out that energy profiles like the one depicted in

figure 2 (b) can actually lead to such enhanced diffusion.

Experimentalists have often preferred to express the

‘diffusive spreading’ during transport in terms of a

dimensionless quantity that expresses a diffusion-drift ratio

and is called the randomness r [11]:

r ¼ 2Deff

ve
: ð4Þ

Here v is again the average speed and e is the length of a

period. Different mechanisms lead to different values of r. If

every step of length e were like one chemical transition with

the ordinary, exponentially distributed waiting time of a

Markov process, the randomness would come out to be

r=1. More chemical transitions per period lead to smaller

values of r. Already in 1994, Svoboda et al. measured the

randomness for moving motor proteins [8] and they used

their data to rule out certain models and mechanisms.

Engineers have faced situations with drift and diffusion for

decades. Think, for instance, of the spread of pollutants in

a flowing river. In such set-ups the Peclet number has been

employed. Roughly speaking, the Peclet number is the

inverse of the randomness. In other contexts, the Peclet

number can also be interpreted as a kind of signal-to-noise

ratio.

Because we consider the power stroke to be a determi-

nistic downslide, the only source of stochasticity in our

model is the flat segment. In order to obtain Deff and r we
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need to evaluate the time variance, (Dt)2= ht2i7hti2, for a
diffusive trajectory on a flat stretch from a reflecting barrier

at x=0 to an absorbing barrier at x=f. This requires

the second moment ht2i. The second moment is

ht2i ¼ R1
0 t2 PðtÞdt where P(t) is the distribution of arrival

times at x=f. There are standard and straightforward

methods to compute the second moment [9]. In this case we

obtain ht2i ¼ 5
12f

4. With hti=1
2f

2 we then derive for the

time variance ðDtÞ2 ¼ ht2i � hti2 ¼ 1
6f

4. Taking L=1 in

formula (3) we find:

Deff ¼
1
12f

4

ð1=GÞð1� fÞ2 þ 1
2f

2
n o3

: ð5Þ

For the randomness this leads to

r ¼
1
6f

4

ð1=GÞð1� fÞ2 þ 1
2f

2
n o2

: ð6Þ

Taking the diffusion on the downslide into account leads to

extra terms in the numerator of (6). But these terms are

again negligible for physiological values of G (&20).

Before we check our model against experimental results

there is a complication we have to take care of. It appears

that in practice 5% to 10% of kinesin’s steps are backward

[12]. In the framework of our model the most likely

explanation for this would be that the forward power

stroke is followed by an accidental anterior docking of the

detached head. This would then lead to a subsequent

backward power stroke and an observed backward step. In

order to relate our model to the observed speed, we have to

multiply v in (2) with p7q, where q equals the backward

stepping probability, and p=17q is the forward stepping

probability. Obviously, the randomness is going to

increases with the percentage of backward steps. It is

straightforward to derive

robs ¼ ðp� qÞrþ 4pq

p� q
: ð7Þ

3. The comparison against experiment

In 1997 Yong-Ze Ma and Ed Taylor published two back to

back papers [13, 14] in which they showed how they had

used a variety of biochemical methods to determine

conformational states and transition rates in the stepping

cycle of kinesin. At the end they present a picture that looks

very similar to our figure 2 (a). They found Tps/Tdiff&0.75.

We will call this ratio x. From equation (1) it is easily

derived that the model of figure 2 leads to x=Tps/

Tdiff= (2/G)[17(1/f)]2. We can thus get a quantitative

estimate for the variable f:

f ¼ 1þ 1

2
Gx

� �1=2
( )�1

: ð8Þ

For G=22 we obtain f=0.26. The form of expression (8)

is such that a change in G leads to a much smaller relative

change in f. As was explained before, the effect of a

possible bumpiness on the downslide in figure 2 (b) could be

modelled by a smaller value for G. But taking G=16, for

instance, we get f=0.29.

When we take the above formula for f and substitute it

in equation (2) for the speed, we find for the speed in terms

of G and x:

v ¼ 2
1þ 1

2 xG
� 1=2n o2

1þ x
: ð9Þ

Substituting (8) in equation (6) for the randomness r we

find, remarkably, that G cancels out of the expression and a

very simple and exclusive dependence of r on x remains:

r ¼ 2

3ð1þ xÞ2 : ð10Þ

There is no obvious intuitive explanation as towhy, given the

model of figure 2, the randomness r should solely depend on

x. However, since the only stochasticity occurs duringTdiff, it

does make sense that r increases with the diffusion time Tdiff

and decreases with the power stroke time Tps. Substituting

x=0.75 and G=22, we get for the speed without back-

stepping and in scaled dimensionless units: v=17. The

randomness is already a dimensionless number and, with

formula (6), we get a backstep free randomness of r=0.22.

Several groups have made accurate recordings of the

motion of an individual kinesin over the microtubule. Some

of the most precise simultaneous measurements of both the

speed and the randomness were made by the group around

Steve Block. They have actually been able to resolve

individual steps of moving kinesin and they thus came up

with an experimentally observed value for the backstep

probability q. In the course of more than ten identical

experiments they found, at saturating ATP concentration,

an average speed of vobs=810 nm s71. The standard

deviation was less than 4%. They found a randomness of

robs=0.44 with again about 4% standard deviation [12].

Using equation (7) and p+ q=1 we obtain a simple

quadratic equation for the backstep probability q that

yields q= 5.8% for x=0.75. Since q is generally smaller

than 0.1 it makes sense to neglect terms of order q2 in

equation (7). We then obtain an approximate, but concise,

expression for the backstep probability:

q ¼ robs � r

4þ 2robs � 4r
: ð11Þ
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Equations (10) and (11) make it possible to predict the

backstep probability given only the experimental values of

x=Tps/Tdiff and robs. Equation (11) predicts q=5.5% for

x=0.75 and robs=0.44. As was mentioned before, in the

experiments described in [12] the individual 8 nm backward

steps could actually be resolved. The observed backstep

probability was between 5% and 10%. The prediction of

our model is within this range.

In the previous section we already conjectured that a

backward step occurs when the detached head accidentally

docks on the anterior binding site instead of on the

posterior site. It is important to realize that this picture

does not correspond to an accidental sequence of stochastic

Brownian kicks that drives the particle in figure 2 (b) up the

slope. With a noise strength of 1 kT, the likelihood of an

accidental mounting of the barrier of about 20 kT to the

left is many orders of magnitude smaller than the likelihood

of sliding down the 20 kT well to the right. Incorporating

the above described backstepping scenario would require

the addition of a second dimension to the 1D reaction space

of figure 2 (b). Motion of an overdamped, Brownian point

particle in a 2D energy landscape would then describe the

progress of the chemical process.

If vobs is to be expressed in metres per second,

vobs= (p7q)v needs to include a redimensionalization

factor on the right-hand side. The reader can check for

himself that D/e has the required dimension of metres per

second. We thus get

vobs ¼ ðp� qÞD
e
v: ð12Þ

Given the observed values for vobs and e, and the derived

values for v and q, this formula allows us to estimate D, i.e.

the average strength of the Brownian jolts that the motor

protein is subjected to. Through b= kT/D we then also

obtain the average internal friction of the motor protein.

For G=22, x=0.75 and v=813 nm s71 we find

D=4.36 10716 m2 s71 and an associated friction b of

about 1075 Ns m71.

The estimate of 4.36 10716 m2 s71 that we find for the

value of the diffusion coefficient D of the stepping kinesin

turns out to be reasonable. Diffusion coefficients of proteins

inside a cell are actually important for transport and for

signalling. These diffusion coefficients have therefore been

the subject of a lot of measurement and research. A kinesin

head has a diameter of about 8 nm. A protein of that size

has a diffusion coefficient in water of about 56 10711 m2

s71. In the more viscous cytosol such a protein has a

diffusion coefficient of approximately 56 10712 m2 s71

(see [3, 4], and references in [4]). In the model of figure 2 the

motor protein is firmly connected to the biopolymer and it

should, on average, be less subject to random jolts than in

free solution. The experiments that led to the speed of

810 nm s71 and the randomness of 0.44 were performed,

not in the cell, but in an aqueous solution. Water has a

viscosity of Z=1073 kg m71s71. With b=6pZr for the

hydrodynamic friction of a spherical bead with radius r in

water, one easily checks that the internal friction of the

motor protein of 1075 Ns m71 is equivalent to that of a

400 mm bead in water. So the hydrodynamic friction of the

submicrometre bead in the aforementioned experiments

can be legitimately and safely neglected as a factor in the

motion.

Substituting G=22 and f=0.26 into equation (5) we

find Deff=1.9, i.e. the effect of the ‘stepping potential’ in

figure 2 is to blow up diffusion by a factor of 2.

Incorporating the backward steps further enhances the

diffusion to Deff=3.6. So our stochastic stepping model for

motor protein movement does exhibit an almost fourfold

enhancement of the diffusion [10].

Finally, it is worth noting that the model we have studied

is not equivalent to a model where the flat stretch is

distributed over several segments across the period (cf.

figure 2 (b)) with these segments adding up to a fraction f.
A split-up, for instance, of the diffusive stretch into two

disjoint segments of equal length would result in a Tdiff that

is half of what it is in our current model.

4. Discussion

A common approach to modelling the action of proteins

has been to take the minima along the reaction coordinate

and interpret these as representing distinct chemical states.

Noise activated transitions from one such state to another

can then next be modelled as Markov processes. Chemical

kinetics assumes that such transitions are instantaneous.

This assumption may be adequate when evaluating how,

for instance, the aforementioned Na,K-ATPase, converts

energy. In the case of Na,K-ATPase the actual movement

and the energy invested into overcoming friction is of

minor significance for the energetics. But for a motor

protein fast and efficient transport against friction is the

entire point.

Suppose that a certain transition in the catalytic cycle of

kinesin requires a time Dt and involves a displacement Dx
of the centre of mass. The friction force that is overcome in

that transition is Ffr= bDx/Dt, where b represents the

coefficient of friction. The energy dissipated in the

displacement equals E=FfrDx= b(Dx)2/Dt. It is obvious

that the assumption of an instantaneous transition (i.e.

Dt?0) with finite displacement Dx leads to the absurd

implication of this step requiring an infinite amount of

energy. The Brownian noise that is jolting the protein

around may obscure the issue. But it has been shown

rigorously that this added noise does not alter the energy

transduction from ATP hydrolysis to motion against

friction [15, 16]; the Brownian kicks fluctuate as much
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energy in as that they dissipate out. F= bv for the friction

and P= bv2 for the dissipated power still hold. It is

therefore important, even in a Brownian environment, to

convert the available energy into motion in as smooth a

fashion as possible. Stepwise transitions are inefficient.

Even when energy is not being dissipated into friction,

but, instead, being transduced from one stored form to

another, a smooth adiabatic conversion that keeps the

system close to equilibrium is the most efficient one. The

optimal Carnot efficiency for the heat-to-work conversion

is achieved only when the heating, cooling, expansion and

compression are imposed sufficiently slowly for the system

to be at equilibrium all the time [17]. Also in the context of

microscopic molecular systems energy conversion is most

efficient when changes are slow and adiabatic, and when the

system is kept close to equilibrium [18, 19]. This is also the

reason that, for instance, the breakdown of glucose in a

living cell is a process that is distributed over a great

number of chemical reactions, none of which stands out as

particularly rate limiting.

All in all, for kinesin to be optimally efficient it is

important that the energy is dissipated in as smooth and

continuous a fashion as possible.

Furthermore, the ‘random diffusional search’ on the

diffusive segment that was discussed in section 2 cannot

adequately be described as a Markov state. Chemical

kinetics assumes that the transition rate k from a state S1 to

another state S2 is time independent. This leads to an

exponentially distributed waiting time P(t)= k exp(7kt)

for the transition out of state S1. For the first moment,

i.e. the average waiting time in S1, we find

T1 ¼ hti ¼ R1
0 tPðtÞ dt ¼ 1=k. For the second moment we

find T2 ¼ ht2i ¼ R1
0 t2 PðtÞ dt ¼ 2=k2. So in this case we

find that the standard deviation in the waiting times, i.e.

ðT2 � T2
1Þ1=2 ¼ ðht2i � hti2Þ1=2, equals the actual average

waiting time itself. For the diffusive trajectory of section 2

the standard deviation in the waiting times is found to be
1
3 6

1=2 T1, i.e. only 82% of the actual average waiting time. It

is possible to approximate the ‘random diffusional search’

as a sequence of Markov transitions leading from the

reflecting barrier to the absorbing barrier. However, going

to the underlying diffusive description is more accurate as

well as mathematically simpler.

We have modelled the processive motor protein as a

molecular stepper. The noise and the overdamped me-

chanics of the molecular realm that make a microscopic

stepper different from a macroscopic one have been

included in the set-up. The resulting model is simple. It

contains only a very few assumptions and very few free

parameters. It is remarkable how well everything eventually

fits together. The model predicts a value for the backstep

probability that is in agreement with experimental observa-

tion. Furthermore, the average value for the diffusion

coefficient D that is derived is within an acceptable range.

The above methods and reasoning should, in principle, be

applicable also to other processive motor proteins like

Myosin V or RNA polymerase. However, the amount of

data available for these motor proteins is not as abundant

as for kinesin.

As was mentioned before, little is known about how the

motor protein exactly operates and moves. The stepping

model that is the basis of our calculations is far from being

a certainty. Recently a paper appeared in which evidence

was presented for a so-called ‘inchworm’ model [20]. In this

model the head that is up front always stays up front and

after a forward step of the front head, the head that is

behind makes an equally long step to ‘catch up’. But this

‘inchworm’-motion could be equally well described by the

above presented model of a power stroke and a subsequent

diffusive segment.

When under water and in a beam of laser light, a silica

bead will ‘pull’ towards the centre of the beam where the

light is brightest. This is the operating principle of the so-

called optical tweezer. With an optical tweezer it is possible

to apply forces of piconewton magnitude in a very accurate

and pinpoint manner. This possibility to ‘pull back’ has

enabled researchers to put together force – velocity dia-

grams for motor proteins at different ATP concentrations

[12, 21]. These force – velocity diagrams have become

increasingly accurate and they can be checked against the

predictions of different models. In [22] it is described how

the model presented in this article can account for the

observed force – velocity and force – randomness graphs.

The amino acid sequence and the 3D structure of kinesin

are known at this point (see figure 3). Fast progress is made

in understanding how the different parts of the motor are

organized, i.e. how they move and how they coordinate

their movement [5, 6]. Each head appears to ‘know’ what

the other head is doing and it is thus that the rear head only

detaches when the front head is attached. A sequence of 15

amino acids in the neck linker (where the two heads ‘meet’)

plays a crucial role in this coordination. The site where

ATP is bound and hydrolysed appears to be far removed

from the site where the kinesin is bound to its biopolymer.

The mechanical transduction literally occurs via an a-helix
that acts as a relay coil. A more complete description of the

motor protein should take all these structural features into

account and translate them into an energy landscape that is

more sophisticated than the one presented in figure 2 (b).

Eventually motor protein action is noisy, overdamped

motion on such an energy landscape. When modelling

motor proteins the researcher should no longer operate

with a Newtonian intuition based on mass, inertia,

momentum and conservative force fields. Even chemical

kinetics is not an adequate paradigm. Instead a new

intuition should be developed for a world of overdamped,

Brownian motion on an energy landscape. It is helpful to

keep in mind that, in the course of 312 billion years of
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evolution, i.e. natural selection, the structure of the motor

protein should have converged to an optimally efficient one.

A catalytic cycle with high activation barriers and rapid

downhill leaps in energy is likely to have been superseded

by one with many small transitions of equal duration.

At present there is somewhat of a dichotomy in the world

of motor protein research. Theoreticians are seeking to

understand how chemomechanical energy transduction and

directed motion can in principle occur in the Brownian,

overdamped environment. Their research has concentrated

around simple ratchet mechanisms [23]. Experimental

biophysicists have largely focused on acquiring detailed

empirical descriptions on the structure and motion of

motor proteins [6]. Their theories have been phenomen-

Figure 3. The structure of kinesin as determined through X-ray crystallography with a resolution of 0.3 nm. The ATP

binding sites are in yellow. The microtubule binding sites are in green. From: Kozielski et al., Cell 91 985 (1997), see also

http://www.proweb.org/kinesin/CrystalStruc/CrysStruc_Rn-Dim.html
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ological more than explanatory. Real progress and

innovation can be expected when researchers will start

exploring the middle ground between these two ap-

proaches. The operation of the motor protein is not just

an academic issue. Many drugs work by interfering with a

protein’s catalytic cycle. A good comprehension of how the

processive motor protein works can directly result in the

fabrication of new and effective pharmacological agents.
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