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Thirty years ago Feynman et al. presented a paradox in the Lectures on Physics: an

imagined device could let Brownian motion do work by allowing it in one direction and

blocking it in the opposite direction. In the chapter Feynman et al. eventually show that such

ratcheting can only be achieved if there is, in compliance with the basic conservation laws,

some energy input from an external source. Now that technology is going into ever smaller

dimensions, ratcheting Brownian motion seems to be a real possibility in nanotechnological

applications. Furthermore, Brownian motion plays an essential role in the action of motor

proteins (individual molecules that convert chemical energy into motion).

1. The thermodynamic consistency of a Brownian

ratchet

Technology is reaching into ever smaller dimensions

nowadays. Many research groups are shrinking labs onto

tiny squares of silicon or glass. On these `labs on chips’

individual bacteria viruses and macromolecules (like

proteins or DNA strands) are identi® ed and/or manipu-

lated [1]. On the micrometre scale physics is diŒerent. For

motion in a ¯ uid the Reynolds number (i.e. the ratio of

inertia and friction) goes down as the dimension of the

involved particles goes down. This means that for a

bacteria swimming in water is like swimming in molasses

for a human being. Many bacteria therefore have a tail in

the shape of a corkscrew and they swim by rotating this tail

and moving through the water like a corkscrew through a

cork [2]. With microscopic particles in a ¯ uid we are in the

overdamped realm, so at any time the velocity v of a

particle is directly proportional to the force F on that

particle, i.e. F = b v, where b is the coe� cient of viscous

friction [2]. On the micrometre scale the indeterminacies of

quantum mechanics are not yet of any consequence. But

the eŒects of Brownian motion do become important.

Particles of micrometre scale size do f̀eel’ the `kicks’ of the

molecules of the surrounding medium. The average thermal

energy of a particle is kT and for a macromolecule or

colloidal particle this is enough to be signi® cant (k is

Boltzmann’ s constant and T is absolute temperature).

An engine is a device that turns any form of energy into

mechanical force or motion. Because of the diŒerent

Reynolds numbers at the micrometre scale, an e� cient

microscopic engine is not necessarily the microscopic

equivalent of an e� cient macroscopic engine. At the

microscopic level it is possible to `ratchet’ Brownian

motion, i.e. to allow Brownian motion in one direction

and block it in the opposite direction so net displacement

occurs. It appears that a lot of biological systems at the

molecular level operate like this [3]. Systems that convert

energy in the presence of Brownian motion are compli-

cated: often the associated Langevin or Fokker ± Planck

equations are not analytically solvable and can only be

treated numerically. It is hard to develop an intuition for

such systems and some challenging paradoxes, like

Maxwell’ s Demon and Feynman’ s ratchet, have emerged.

Feynman’ s ratchet is worth examining at this point. It is a

device that purports to extract work from thermal

¯ uctuations in violation of the Second Law of Thermo-

dynamics [4, 5].

Like most paradoxes, Feynman’s Ratchet comes about

at the interface of two branches of physics. In this case

macroscopic, deterministic, Newtonian mechanics and

microscopic, stochastic, Brownian mechanics. Figure 1 is

from the Lectures on Physics by Feynman et al. [4]. The left

reservoir contains a mechanical device that is similar to one

that is found in some screwdrivers or in carjacks. Because

of the shape of the teeth of the cogwheel and the presence

of a pawl that pushes on the cogwheel through a spring,

rotation is possible in one direction and blocked in the

other. The circumference of the cogwheel eŒectively

consists of a sequence of barriers that are re¯ ecting from

one side and absorbing from the other side. If the system is

small enough, then the paddle wheel in the left reservoir can

be moved by the random collisions of the molecules of the

medium against the paddles. Motion in the allowed

direction will result and we can in principle pull up the
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little insect at the end of the thread in ® gure 1. It is of

course in violation of the Second Law of Thermodynamics

if work is extracted from thermal ¯ uctuations in a

homogeneous medium. The solution of the paradox lies

in the realization that when the device is reduced to

microscopic size, also the spring that pushes the pawl onto

the cogwheel will undergo thermal ¯ uctuations. Feynman

showed that the ¯ uctuations of the pawl result in forward

and backward motion of the cogwheel being equally likely,

i.e. no more functional re¯ ecting or absorbing barriers

along the circumference of the cogwheel. Feynman also

showed that the system does work when the temperatures

of the two reservoirs, T 1 and T2 , are diŒerent. He could

derive that in that case the device works exactly with the

Carnot e� ciency (T1-T 2)/T1 (although he appears to have

cut some corners in his derivation [6]). Feynman’ s device

needs a thermal gradient in order to get functioning

re¯ ecting and absorbing boundaries for the Brownian

motion. We will see below in detail how, in agreement with

the Second Law, working Brownian ratchet engines always

require some kind of energy input [7].

2. The motor protein as a Brownian ratchet

A motor protein is one individual nanometre size protein

that is connected to a biopolymer. The motor protein

catalyses the conversion of ATP (adenosine triphosphate)

into ADP (adenosine diphosphate). ATP is the general

currency of fuel in a living cell. When ATP is turned into

ADP around 20 kT energy is released at normal intracel-

lular concentrations [8]. The motor protein uses this energy

to bring about unidirectional motion along the biopolymer.

Motor proteins are responsible for muscle action, but also

for intracellular transport. Many cells are spanned by

networks of microtubules (the so-called cytoskeleton) and

the protein kinesin `travels’ along these microtubules

carrying vesicles ® lled with chemicals from the supply site

to the demand site. Experiments have been done in which,

instead of a vesicle, a silica bead was attached to the kinesin

molecule [9]. The motion of this silica bead could be

followed under a microscope. The silica bead, moreover,

has a dielectric permittivity at high frequencies that is

higher than that of the surrounding ¯ uid. This means that

the bead will `pull toward the light’ . It is thus possible to

manipulate the bead and apply a known counterforce to the

motor protein with a laser beam. Such a laser beam is called

an `optical tweezer’ . Speeds and stopping forces of the

motor protein at diŒerent ATP concentrations could thus

be measured.

Next I will present a crude and simple model for a motor

protein, that shows how ATP binding and ADP release

imposes a ¯ uctuation on the system. The eŒect of this

¯ uctuation is the ratcheting of Brownian motion. Imagine

the biopolymer as an array of dipoles (m icrotubule has a

400 Debye dipole at every period, see ® gure 2 (a)) and

suppose that, relative to the biopolymer, the motor protein

is a positive point charge which is neutralized when the

negatively charged ATP binds (see ® gure 2 (b)). This means

that as ATP is being hydrolysed the potential describing the

interaction between the motor protein and the biopolymer

¯ ips between a ¯ at potential and an anisotropic potential.

When no ATP is bound and with large enough barriers the

probability density for the motor protein will be concen-

trated in the minimum as a Dirac delta function. When

ATP is bound the potential becomes ¯ at and the motor

protein freely diŒuses. Upon release of the ADP the

barriers pop up again and it is obvious from ® gure 2 (b)

that, because of the anisotropy, there is a signi® cant chance

that the protein will be caught in the next trench to the right

and a much smaller chance that it will be caught in the next

trench to the left. Thus net transport to the right occurs as

ATP is being hydrolysed. The speed of the motor protein

has a nonmonotonic dependence on the ¯ ipping frequency.

When the ¯ ipping is too fast, the protein has no time to

diŒuse during the time that the potential is ¯ at and no net

transport will take place. When the ¯ ipping is su� ciently

slow there is a ® xed amount of net displacement for every

ATP that is hydrolysed. So at low ¯ ipping frequency the

¯ ow increases in direct proportion with the frequency.

Svoboda et al. [9] found that their kinesin motor moved

with a speed of about 500 nm s
Ð 1

and required a stopping

force of 5 pN at saturating ATP concentration. This

implies a coe� cient of viscous friction of

b = 10
Ð 5

N s m
Ð 1

. The biopolymer involved, microtubule,

has a period of L = 8 nm. For our model we take a

Figure 1. The thermal ratchet from the reference by Feynman

et al. [4]. T1 and T2 are the temperatures of the reservoirs. The

device is small enough that the paddle wheel in the right reservoir

is moved by collisions of the molecules from the surrounding

medium against the paddles. The ratchet and pawl in the left

reservoir block motion in one direction and allow it in the other.

Thus, in violation of the Second Law of Thermodynamics, at

T1 = T2 equilibrium work can be extracted from thermal

¯ uctuations to lift the little insect at the end of the thread. The

resolution of the paradox and how it relates to motor proteins is

discussed in the text.
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piecewise linear potential, as in ® gure 2 (b), and let the long

slope be seven times as long as the short slope. To make

everything as simple as possible we take kon [ATP] =

koŒ= c . We, furthermore, let the energy diŒerence between

the minimum and maximum be 8 kT units (this is small

enough to be easily `overcome’ by the 20 kT of the ATP

hydrolysis). When we substitute b = 10
Ð 5

N s m
Ð 1

and

L = 8 nm and solve the system of coupled diŒusion-drift

equations (see below), we ® nd that we achieve a maximum

speed of 100 nm s
Ð 1

at a turnover of 700 ATPs per second

[10]. These numbers are within an order of magnitude of

the experimental data. By making elaborations (e.g.

making the two transition rates c diŒerent again) higher

speeds and better e� ciencies can be obtained [11].

Suppose that in Feynman’s ratchet we let the teeth on the

cogwheel go in and out (® gure 3). When the wheel is

smooth it does uninhibited diŒusive motion under the pawl.

When the teeth come out again the pawl will be between the

a

b

Figure 2. (a) The dimensionless potential of a charged sphere on a linear array of dipoles with period L. The involved charges are z = 3

elementary charges and q = 2 elementary charges. Going from left to right on the array of dipoles, the distance from Ð z to + z is

2d = L/5 and the distance from + z to Ð z is 4L/5. For the period we have L = 8 nm and for the distance from the point charge to the

linear array we have s = 1 × 5 nm. We took for the relative dielectric permittivity e = 20. This setup leads to the depicted anisotropic

potential. The energy diŒerence between the maxima and minima comes out to be 8 kT at T = 300 K and the horizontal distance

between the minimum and the maximum on the right is a L = 0 × 3L. (b) The behaviour of an ATP hydrolysing motor protein in this setup.

The repeated binding of ATP
Ð 2

and release of ADP
Ð

+ Pi
Ð

(with rate constants kon and koŒ, respectively) means that the + 2 charge

on the motor protein is repeatedly neutralized and re-established. With ATP unbound the anisotropic potential is `on’ and for high

enough barriers the probability density will concentrate in the minima and form a Dirac delta function PU . When ATP
Ð 2

is bound the

charge on the motor protein is neutralized, the potential is ¯ at and the probability density distribution will spread like the Gaussian

PB(x,t). When, after an average time of 1/koŒ, ADP
Ð

+ P i
Ð

is released, the anisotropic potential forces the particle to a minimum

again. When the release occurs there is a signi® cant probability (the hatched area of the Gaussian) that the particle is to the right of a L

and will be caught in the well to the right of its original position. The probability to be caught to the left of (1- a )L and end up in the well

to the left is much smaller. The repeated hydrolysis of ATP thus leads to transport in the positive direction.
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top and the bottom of a tooth and will be pushed down to

the bottom of that tooth. There will thus be a net rotation

of the wheel in the clockwise direction, the average of which

is half the length of a tooth. This model is analogous to the

¯ uctuating potential/motor protein model that we pre-

sented. There is no violation of the Second Law in this

setup. The energy input here occurs whenever the teeth

come out again and the pawl is lifted against the force of

the spring. Similarly, with the motor protein model of

® gure 2, the energy input occurs when ADP is released and

the energy level of the protein is lifted to a maximum of

8 kT . For our motor protein model to be realistic the 8 kT

should be negligible in comparison to the energy drop when

ADP is released.

The hydrolysis of one ATP by the motor protein is not a

two-step process, but instead has been shown to involve a

cascade of many conformational changes of the motor

protein [12, 13]. Furthermore, the motor protein is not a

point charge and the biopolymer is not a simple dipole. The

protein ought to be viewed as a distribution of charges and

so should the biopolymer. Nevertheless, to every con-

formational state of the motor protein there corresponds a

periodic U(x), giving the protein ± biopolymer interaction

energy as a function of the position on the biopolymer. The

construction of the actual functions U(x) is a challenge to

structural biology. Here we focus on the mechanism. It is

obvious that this mechanism is not like a clockwork, i.e.

that it is inherently noisy. ATP binding, ADP release and

going from one conformational state to another are

chemical transitions. Such transitions involve the mounting

of an activation barrier through random Brownian

¯ uctuations and for such mounting there is an exponen-

tially distributed waiting time. The hydrolysis of one ATP

involves many subsequent chemical transitions. When more

and more subsequent processes with exponentially distrib-

uted waiting times are squeezed in a time interval the

system moves toward the deterministic continuum limit.

(For an exponentially distributed waiting time the average

time T equals the standard deviation. For N subsequent

such processes to ® nish the average total time is NT and its

standard deviation is (N
1 /2) T. So for larger N the standard

deviation becomes smaller relative to the average.) This is

why Svoboda et al. found the statistics of motor protein

motion to be ìn between’ purely clockwork and purely

stochastic [14].

Next we will take a system that ¯ ips between two

arbitrary potentials and we will show how a chemical

potential can bring about net ¯ ow. Suppose we have two

potentials U
+

and U
Ð

(® gure 4 (a)). U
+

and U
Ð

can now

be any continuous periodic function. Also c +
and c

Ð

can

Figure 3. Suppose that the asymmetric teeth of the cogwheel in

Feynman’s ratchet are pulled in and out. When the teeth are

pulled in, the wheel is smoothly diŒusing under the pawl. After

the teeth come out the force of the spring on the pawl pushes the

cogwheel in the clockwise direction and causes an average

rotation of p /6.

Figure 4. (a) A potential ¯ uctuates dichotomously between U
+

(x) and U
Ð

(x). The ¯ ipping rates c
+

(x) and c
Ð

(x) depend on

position x of the particle. The stationary probability density

distribution for a Brownian particle can be obtained by solving

equations (1). (b) When the dichotomous ¯ uctuations involve the

dissipation of energy through a chemical reaction, detailed

balance can be broken and net transport along the x-axis can

result. In the text it is explained how the x-independent ¯ ipping

rates of ® gure 2 (b) can be achieved in this way.
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now depend on x. We have the following equations for the

joint stationary probability densities P
6

(x) for the particle

to be at x and the potential to be U
+

or U
Ð

[7, 15]:

 2
xP

1 1  x(U
1
x P

1
) 2 c 1

P
1 1 c P 2 5 0,

 2
xP 2 1  x(U2

x P 2 ) 1 c 1 P 1 2 c 2 P 2 5 0. (1)

In order to keep the equations as simple as possible we took

the energy in kT units and scaled such that the diŒusion

coe� cient and the coe� cient of friction equal 1. The terms

¶ x
2
P and ¶ x(U xP) describe the eŒect of diŒusive and

deterministic forces, respectively. c +
P

+
is the ¯ ow of

probability from U
+

to U
Ð

. c
Ð

P
Ð

is the ¯ ow of

probability from U
Ð

to U
+

.

Suppose we have a monomolecular chemical reaction

A<B. Let EA be the energy of A and EB the energy of B. At

equilibrium the probability for a particle to be in A rather

than in B is given by a Boltzmann distribution, i.e. PA /
PB = exp [-(EA - EB )/kT ]. The transition rates between A

and B always obey the relation kA B /kB A = exp [(EA - EB )/
kT ].

The system in ® gure 4 (a) is a chemical reaction with an

added continuous x ordinate. We express the energy in

units of kT . At equilibrium there is a Boltzmann distribu-

tion between the + and Ð state at any point x:

P 1 (x)

P 2 (x)
5 exp [2 (U1 2 U2 ) ],

c 1 (x)

c 2 (x)
5 exp [U1 2 U2 ]. (2)

This leads to c
+

P
+

Ð c
Ð

P
Ð

= 0 and upon substitution

this makes the last two terms in equations (1) disappear.

The system then uncouples into two easily solvable

equations that prescribe a Boltzmann distribution on the

individual potentials U
+

and U
Ð

: P
6

= C exp [-U
6

]. This

makes clear how equilibrium between the + and Ð state

leads to equilibrium on each individual potential. At

equilibrium the ¯ ux J
6

= (-Ux
6

- ¶ x )P
6

is zero in both

the + and the Ð state. At equilibrium we, furthermore,

have detailed balance, i.e. at every point x there are as

many + to Ð transitions as there are Ð to + transitions.

If, however, a `non-Boltzmann’ ratio of transition rates is

f̀orced upon’ the system, i.e.

c 1
(x)

c 2 (x)
¤5 exp [(U

1 2 U 2
) ], (3)

a non Boltzmann ratio of occupation rates results, i.e.

P 1
(x)

P 2 (x)
¤5 exp [ 2 (U

1 2 U 2 ) ]. (4)

DiŒusive and deterministic forces along the x-axis will

`work’ to re-establish the Boltzmann distribution. So

breaking the equilibrium between the + and Ð states by

means of (3) leads via (4) to ¯ ow along the x ordinate. This

will also lead to a breakdown of detailed balance. If at least

one of the potentials is anisotropic, there is the possibility

of a net ¯ ux in one direction.

If the c s are constant and independent of x there will

necessarily be a violation of (2) somewhere along the x-axis.

It is possible to get such constant and x-independent

transition rates by implementing a chemical potential (in

most biological systems this means the ATP ± ADP

potential) in the system. Suppose that the transition from

the Ð state to the + state involves the binding of ATP

(® gure 4 (b)) or, ADP + P i (where P i stands for the

inorganic phosphate molecule). If the ATP ± ADP chemical

potential is su� ciently high (i.e. the [ATP]/[ADP] ratio is

signi ® cantly larger than at equilibrium), then almost all the

transitions will be ATP binding and ADP release. ADP

binding and ATP release will be extremely rare. The rate

constants for ATP binding and release and ADP binding

and release, respectively are determined by the following

equations:

k 2
1 [ATP]

k
1
1

5 exp [U 2 2 U
1

] exp [D G1 ],

k 2
2 [ADP] [P i ]

k
1
2

5 exp [U 2 2 U
1 ] exp [D G 2 ], (5)

where D G1 and D G 2 are the position independent free

energy changes for the binding of ATP and ADP+ P i to the

motor at [ATP] = [ADP] = [Pi] = 1. The total free energy

release by ATP hydrolysis equals D GA TP = D G1 - D G2 at

[ATP] = [ADP] = [P i] = 1. In our system the D Gs are

independent of x and so are the concentrations [ATP],

[ADP] and [P i]. So the x dependence of exp [U
+

- U
Ð

] on

the right hand side must be re¯ ected by an x dependence of

k 2
1 /k 1

1 and k 2
2 /k 1

2 on the left hand side. But with a large

ATP ± ADP chemical potential the k
1
1 and k 2

2 transitions

are practically unused and its is possible to put the x

dependence of the ratios k 2
1 /k 1

1 and k 2
2 /k 1

2 entirely in these

`unused’ k
1
1 and k 2

2 . The `used’ transitions k 2
1 and k

1
2 are

now x independent and for all practical purposes we have

created a system like that in ® gure 4 (a) with x-independent

transition rates.

The transitions between the + and the Ð state are

stochastic and we can consider them as `noise’ . Often the

terms `white noise’ and `equilibrium noise’ are used

interchangeably, but our system brings out the diŒerence

between these two notions. Equilibrium noise means that

(2) is obeyed. Non-equilibrium noise is the situation of (3).

Noise is considered white if it has a ¯ at frequency spectrum;

in practice this simply means that most of the frequency

spectrum is at frequencies much higher than any character-

istic frequency of the system. In our system we can make

the noise `white’ by simply making both c +
and c

Ð

very

large. The ratio of c +
and c

Ð

® xes one degree of freedom in

the choice of c
+

and c
Ð

and we can make the noise white

by leaving the ratio untouched and exploiting the other

degree of freedom. Whether equilibrium or non-equili-
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brium, white noise will never lead to ¯ ux. With non-

equilibrium noise the ¯ ux is maximal when the average

residence times 1/ c
+

and 1/ c
Ð

are such that after every ¯ ip

there is an almost complete relaxation to a Boltzmann

equilibrium on U
Ð

and U
+

, respectively. If the non-

equilibrium ¯ uctuations are too fast, the diŒusion on the x-

ordinate can never `get started’ and the system will simply

relax to a stationary Boltzmann distribution on the average

potential. So being non-equilibrium (i.e. obeying equation

(3)) and having the right time correlation are both

necessary conditions for the noise to bring about ¯ ux.

3. Man-made Brownian ratchets

Now that technology has come to a level where it is possible

to build structures on a micrometre scale, it is actually

feasible to drive colloidal particles by ratcheting their

Brownian motion. Rousselet et al. assembled the device

depicted in ® gure 5 [16]. Two metal walls line the edge of a

water bath in which polystyrene or latex beads are

suspended. When an electric potential between the two

pieces of metal is turned on, the electric ® eld is relatively

weak where the `christmas tree’ structure is widest and very

strong at the bottlenecks. The beads have a lower value for

dielectric permittivity than water, i.e. they `want to be’

where the electric ® eld is low. So when an electric potential

is turned on they will concentrate where the distance to the

metal is largest. Because of the anisotropy of the `christmas

tree’ , the potential for the colloidal particle in the vertical

direction will resemble the anisotropic potential in ® gure 2.

When the ® eld is turned oŒthe particles diŒuse freely. So

turning the ® eld on and oŒwill lead to net transport by the

mechanism described in ® gure 2 (b).

Faucheux et al. realized a very elegant optical thermal

ratchet [17]. They took a single polystyrene particle with a

diameter of 1 × 5 l m and trapped it in a narrowly focused

laser beam, i.e. the forementioned optical tweezer. They let

their beam move very fast (much faster than the particle

could move) along the circumference of a circle of 7 l m in

diameter. The rotation of the beam is so fast that the

particle feels the average force due to the beam at any point

along the circumference. The particle is thus trapped in the

circle. By varying the intensity of the rotating beam with a

® lter wheel or making the beam rotate with a non-constant

speed it is possible to create an anisotropic periodic

potential along the circumference of the circle (® gure 6).

Faucheux et al. ¯ ipped between such a potential and a ¯ at

potential along the circumference and found their particle

to rotate in quantitative agreement with the theory.

With the ¯ ipping between the two-leg piecewise linear

potential and the ¯ at potential as in ® gure 2 (b), the ¯ ux is

always in the same direction (the direction of the long

slope). Adding only slight complications can lead to more

involved situations where the ¯ ux can change direction as

some parameter is varied [18 ± 23].

Suppose, for instance, that the potential ¯ uctuates

between three pro® les as in ® gure 7. V0 is a ¯ at potential

and V Ð equals Ð V+ . There are a 1000 times as many ¯ ips

into V+ as into V Ð , but the dwelling time in V+ is a 1000

times as short as in V Ð . A small particle has a small

coe� cient of friction and consequently a large value of D .

Such a small particle diŒuses and equilibrates fast and will

equilibrate every time after the system ¯ ips between V0 and

Figure 5. The device of Rousselet et al. [16]. When colloidal

particles suspended in the ¯ uid have a dielectric permittivity

diŒerent from that of the surrounding ¯ uid, they `feel’ an

anisotropic potential like the one in ® gure 2. Switching the power

on and oŒresults in net drift.

Figure 6. The circular ratchet potential created by Faucheux et

al. with a rapidly rotating optical tweezer. The variation of the

average laser beam intensity along the circle results in an

anisotropic potential for a colloidal particle. By ¯ ipping between

this ratchet potential and a ¯ at potential the particle can be made

to undergo a net drift along the circumference of the circle.
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V+ . Because there are more ¯ ips into V+ than into V Ð ,

such a small particle will thus be transported to the left. A

larger particle has a higher coe� cient of friction and

diŒuses slowly. Such a particle never equilibrates between

V+ and V 0 and eŒectively `feels’ the average of V+ and V 0.

From this average there are transitions into V Ð . Dwelling

times in V Ð are long enough for complete equilibration.

This leads to the larger particle undergoing net transport to

the right. Particles of diŒerent size, i.e. diŒerent coe� cients

of friction, will thus move in opposite directions.

It is not possible to realize a three-state ¯ ipping potential

as in ® gure 7 with the dielectric device of ® gure 5. A particle

will either be attracted to or repelled from a stronger

electric ® eld, depending only on whether that particle has a

higher or lower dielectric permittivity than the surrounding

¯ uid. The device in ® gure 8 works with forces that are

plainly electric. Modern technology allows very thin

electrodes to be spaced such that the period is about

100 l m, i.e. su� ciently small for Brownian motion to be

signi ® cant. The electrodes should be embedded in the

bottom of a glass tray on top of which is the thin ® lm of

¯ uid with the colloidal particles.

Analogously to the mechanism of Faucheux et al. it is

also possible to create the modulation described in ® gure 7

with a diŒraction pattern from a laser beam. One can take a

® lm of ¯ uid + colloid as in ® gure 8 and shine narrow lines

of laser light, interspaced by the period L, on it. When the

lines are moved backward and forward periodically (with

spatial amplitude L/2) and very fast over the length of the

tray, the potential is given by the average intensity. It is

possible to create any potential by having the right velocity

at any point along the x-axis or varying the intensity of the

oscillating pattern with a ® lter wheel.

The solid line in ® gure 9 shows the dimensionless ¯ ux as

a function of the logarithm of c (cf. ® gure 7). The variable c
multiplies all the transition rates in ® gure 7 and, just like b ,

scales the time. Suppose now, that we plot the ¯ ux J again

in metres per second and c in Hz. If the solid line would be

the curve for a particle with coe� cient of friction b , then it

is obvious from the scaling formulae for the dedimensio-

nalized ¯ ux and ¯ ipping rate that a particle with a

coe� cient of friction of b ¢ = 3 b has a ¯ ux-¯ ipping rate

characteristic according to the dotted line. Relative to the

solid line the dotted line is translated log 3 to the left and it

Figure 7. We study diŒusive motion along the x-axis as the

potential is ¯ ipping in a Markovian fashion between V+ (x),

V0(x)= 0 and V Ð (x) with the indicated transition rates. We have

V Ð (x) = Ð V+ (x) and the transition rates are such that there

are a 1000 times as many transitions from V0 (x) into V+ (x) but

equal amounts of time are spent in V+ (x) and V Ð . In this setup

the direction of the induced drift depends on the ¯ ip frequency c .

a

b

Figure 8. (a) A microelectric circuit to realize an anisotropic

potential for negatively charged colloidal particles. Interspaced

electrodes are embedded in the bottom of a tray on which there is

a thin ® lm of ¯ uid with suspended charged colloidal particles. (b)

When instead of a dc input we apply this 3-state signal to the

system in (a), the colloidal particles `feel’ the ¯ ipping potential of

® gure 7.
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is contracted by a factor 1/3 in the vertical direction. The

value of the variable c is under the control of the

experimentalist. It is always possible to choose c such that

two particles of diŒerent size will ¯ ow into diŒerent

directions. In ® gure 9 the optimal c for separation is

indicated with a symbol `x’ . Particles of diŒerent size and/
or geometrical shape have diŒerent values of the coe� cient

of viscous friction b . The three state ¯ ipping thus leads the

way to some promising new methods of particle separation

[22, 23]. For colloidal particles with a factor 3 diŒerence in

their b s and with a period of about 100 l m it takes a few

hours to separate the particles over 10 periods [22].

4. Epilogue

Noise is generally thought of as something undesirable,

something to get rid of or to ® lter away. At the microscopic

and molecular level, however, when kT is comparable to

the involved energies, noise is a fundamental part of the

picture. To think of noise as something to exploit is a major

shift of paradigm. A lot of research has already been

devoted to noise-enhanced signal detection. This phenom-

enon has been termed `stochastic resonance’ ; it has been

observed in biological systems [24, 25] and there are

possible applications in engineering [26]. Ion pumps and

motor proteins are the smallest engines we know and they

can no longer be thought of as wind-up toys. They are

molecules that `do their job’ by moving from one

conformational state to another, thereby following the

rules of chemical kinetics. Between two subsequent

conformational states there is an activation barrier. When

the activation barrier has a height of D E, the thermally

activated crossing will occur after an exponentially

distributed waiting time, the average of which is propor-

tional to exp( D E/kT). If nano-technological devices are to

be as e� cient and reliable as biological molecules a good

understanding of noise will be indispensable to their design.

Brownian motion and diŒusion are no longer to be thought

of as a problem, but instead to be incorporated as part of

the design.
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