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Abstract 

The hydrolysis of adenosine triphosphate (ATP) has been shown to drive the motion of motor proteins along a biopolymer. These 
motor proteins are the smallest engines known and, in the absence of an ATP-to-adenosine diphosphate chemical potential, they execute 
Brownian motion. Therefore, it is reasonable to imagine that the energy released in ATP hydrolysis is used to bias, or rectify, Brownian 
motion in one direction. In this paper, we show, in terms of Fokker-Planck equations that we solve analytically, how a net flow can occur 
along a periodic potential, provided that this potential has an anisotropy and that there is an energy input. We work out two cases: one 
case where the energy input comes from a fluctuation of the periodic potential in time and one case where a variation of temperature 
within a period is maintained. An interesting feature of these systems is that they need "the correct amount" of thermal noise. Without 
thermal noise or with too much thermal noise, no net flow occurs and, in this sense, the systems we discuss are one more example of the 
lately much discussed phenomenon of stochastic resonance. 
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1. Introduction 

An engine is a "machine for converting any of various 
forms of energy into mechanical force and motion" [1]. 
Macroscopic combustion engines work by initiating a 
chemical reaction and subsequently letting the expansion 
and /o r  heat do work. This can be understood and de- 
scribed in terms of thermodynamics. 

In living cells, motor proteins turn adenosine triphos- 
phate (ATP) into adenosine diphosphate (ADP) and use 
the released energy to move in one direction along a 
biopolymer. As such, they are responsible for muscle 
action and they also take care of much of the transport 
within a cell [2]. The size of a biological cell, however, 
does not allow for a combustion engine to provide the 
driving mechanism for motor proteins. The proteins and 
polymers involved operate on a length-scale that is compa- 
rable with that to which Robert Brown referred in 1826, 
when he observed how pollen particles make apparently 
random motions. In the Brownian realm, thermodynamics 
is no longer the appropriate framework of description and 
a mechanism different from Carnot cycling has to be 
responsible for the transduction of energy: a Langevin 
equation (or, equivalently, a Fokker-Planck equation) [3] 
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must be employed to describe how a single molecule acts 
in response to the combined effect of a force and the 
random "k icks"  of the molecules of the surrounding 
medium. 

Many descriptions and models for motor proteins have 
viewed the protein as a system of levers and springs, and 
have relied on the quantitatively unspecifiable notion of a 
"conformational change" to describe how forces and ten- 
sions change as ATP is bound, converted and released as 
ADP and inorganic phosphate [4]. We will consider a more 
basic level and view the protein as a Brownian particle 
moving along a line. Our approach can lead to actual 
estimates for the speed and efficiency of a motor protein. 

Unlike a macroscopic engine, a motor protein is still 
making random Brownian (but unbiased) motions along 
the biopolymer in the absence of its " fue l" .  For micro- 
scopic engines, the idea is to set up a mechanism where 
Brownian motion is rectified. Rectifiers are well known in 
the macroscopic world and are commonly employed in 
engineering. Electronic rectifiers are called diodes and give 
a current in response to a voltage that is higher in one 
direction than in the other direction. Mechanical rectifiers, 
otherwise known as "ratchets",  are common in bicycles, 
carjacks and Sears screwdrivers. 
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In his Lectures on Physics [5], Richard Feynman pre- 
sented a microscopic ratchet-and-pawl device with an an- 
gular velocity-torque characteristic that was identical to 
the current-voltage characteristic of a diode. It is obvious 
that the response of a diode to a zero average a.c. voltage 
is a current, the average of which is not zero. As early as 
1950, Brillioun discussed the paradox that arises if recti- 
fiers are taken into the microscopic realm [6]. Equilibrium 
fluctuations are always present at non-zero temperatures 
and there is the question of what happens when these are 
rectified. If the rectifier were to operate so as to produce 
net displacement or current (i.e. work) out of equilibrium 
fluctuations, then we would extract work out of a system 
in equilibrium and face a serious violation of the second 
law of thermodynamics. In the Lectures on Physics, Feyn- 
man showed in a very elegant manner that, upon close 
inspection, his ratchet-and-pawl device could not do any 
work in an equilibrium environment and would work 
similarly to a perfect Carnot engine if the vanes and the 
ratchet were kept in equilibrium reservoirs at different 
temperatures. 

Rectifying Brownian motion in an equilibrium environ- 
ment would be in obvious violation of the second law of 
thermodynamics. However, we will show here how, in a 
non-equilibrium environment, the dissipation of various 
forms of energy (chemical or heat) can result in the biasing 
of Brownian motion. Our approach is one of very basic 
physics. The only type of equations that we use are 
Fokker-Planck equations, in the overdamped limit for a 
stationary probability density distribution, and our treat- 
ment will be analytical. 

2. A chemical engine 

With our first example, we show how the fluctuations 
brought about by a reaction proceeding down its chemical 
potential gradient can make a motor protein move along a 
biopolymer and how the protein comes to a net standstill at 
chemical equilibrium. 

Let us assume that U ÷ is the potential between the 
motor protein-ATP complex and the biopolymer and that 
U-  is the potential between just the motor protein and the 
biopolymer. U(x)  is a measure of how strongly the motor 
protein is pinned to the biopolymer at x. U+(x)  and 
U - ( x )  must be periodic in x but are otherwise arbitrary. 
We scale the length of this period to be one (Fig. 1). 

For a very small protein in the intracellular solution, it 
is realistic to assume that we are in the overdamped limit, 
where the velocity is proportional to the instantaneous 
force. The equation of motion is a Langevin equations, i.e. 

135c = - a x V (  x, t) + (213kT)'/2 ~( t) (1) 

where 13 is the coefficient of friction and g( t )  represents 
white noise. After absorbing 13 in the time-scale and 

T U- 
j 

x 

Fig. 1. Schematic diagram of chemical engine system. 

taking kT as the unit of energy, the stationary joint 
probability density P 5 (x)  for the particle to be at x and 
the potential to be in the plus or minus mode is given by 
the following Fokker-Planck equations [3]: 

2 + 0 x e +Ox(u~+e +) - 3 '+P++ 3 ' - P - - - 0  (2a) 

Ox2e-+aXv;e  - ) + 3 '+e+-  3'-P- = 0, (2b) 

where U x represents the derivative of U with respect to x. 
The 3'P terms arise from" the flipping, the ax(UxP) terms 
re~aresent the force resulting from the potential, and the 
0 x P terms describe the effect of diffusion and are a 
consequence of the ~(t) term in the Langevin equation [3]. 

At equilibrium, the ratio of the transition rates at any 
point x depends only on the energy difference (U + -  U - )  
at that point, i.e. 

3"+(x) 
- -  = exp(V + -  V - )  (3) 
3"- (x)  

This leads to a Boltzmann distribution for P+ and P - ,  i.e. 

e ÷ ( x )  
exp(U-  - U + ),  (4) e-(x) 

Thus, we have 

3 " + ( x ) P ÷ ( x )  - 3"-(x)P-(x) = 0  

and the last two terms in both Eqs. (2a) and (2b) cancel 
out. The remaining part of the system is solved by 

P + =  C e x p ( - U  ±) 

which is easily seen to lead to 

Therefore, at equilibrium, we obtain a consistent picture 
with a Boltzmann distribution, i.e. detailed balance and no 
flux. 

However, if a different ratio of transition rates 3'+ and 
3'- is "forced upon" the system, i.e. 

3"+(x) 
- -  ~ exp(V + -  V - )  (5) 
3"- (x)  
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then the transition rates between the positive and negative 
potential work against a Boltzmann distribution between 
the positive and negative potential. The diffusion along 
each of the separate potentials "s t r ives"  toward a Boltz- 
mann distribution and a flow along x in both U ÷ and U-  
will occur. Thus, the breakdown of detailed balance (just 
as many transitions in the plus to minus direction as in the 
minus to plus direction) between the positive and negative 
potentials at a point x (i.e. a net flux between the two at 
x) causes a breakdown of detailed balance along the x 
axis, so giving the possibility of a net flow along the x 
direction. 

The flux is maximal if the flipping time between the 
potentials is of the same order of magnitude as the relax- 
ation time for diffusion to a Boltzmann distribution on 
U ±. If the potential fluctuates too fast, then the diffusion 
along the x coordinate can never get "s tar ted" and the 
system will simply create a stationary Boltzmann distribu- 
tion on the average potential 

vavg (3/÷+ 3/-) 3/_ 

For a potential that fluctuates very slowly, the distribution 
will have the time after every flip to relax fully to either 
U + or U-  and, in this low frequency realm, the flux is 
directly proportional to the fluctuation rate. 

Obtaining 3/+ and 3/- terms that are roughly constant 
and almost independent of x can be achieved by imple- 
menting a chemical potential gradient (in most biological 
instances, this means an ATP-ADP potential) into the 
system, indicated in Fig. 2. If the ATP-ADP chemical 
potential is very high, then almost all the transitions will 
be the binding of ATP and the dissociation of ADP. The 
rate constants for the binding and dissociation of ATP and 
ADP respectively must obey the following equations: 

k r [ATP] 
= exp(U-  - U + ) exp( AG 1 ) (6a) 

k~- 

k 2 [ADP] [ Pi ] 
= exp(U-  - U + ) exp(ZIG2) (6b) 

k; 
where Pi is inorganic phosphate and AG 1 and AG 2 are 
the position-independent free energy changes of binding 

Fig. 2. Diagram showing chemical l~tential gradient in chemical engine 
system. 

ATP and ADP + Pi to the motor respectively. The total 
energy released by ATP hydrolysis is AGAT v = A G ~ -  
AG 2. U + and U-  are functions of x, so the ratios k f  / k ~  
and k 2 / k  ~ are still dependent on x. However, it is 
possible to "h ide"  this x dependence in the "unused"  k~ 
and k 2 transitions, effectively creating a situation with 
position-independent transition rates. That the fluctuations 
are non-equilibrium is a necessary condition for net flux 
but by no means is a sufficient condition. 

Because of continuity, i.e. 0, P = 0 x J,  a stationary solu- 
tion implies a constant flux that is independent of x and 
which can be worked out as 

J = J + ( x ) + J - ( x )  

The power output of the engine can be derived as follows. 
Let us take J as the average velocity v of a Brownian 
particle; the power output is Fv, where F is the force 
necressary to keep the flow going - -  this force originates 
from friction and equals /3 v, but /3 has been scaled to 
unity, so we end up with a power output Pout = j2.  The 
power input can be obtained by integrating the product of 
the probability density at x, the transition rate away from 
x and the energy gained or lost in the transition, i.e. 

Pin = fn l (3 /+P+-  3 / - P - ) ( U - -  V +) dx  (7) 

It should be noted that the (3/+(x) P + ( x )  - 3/-(x) P - ( x ) )  
term is zero everywhere at equilibrium, which guarantees 
that the system is not powered at equilibrium. 

The terms "white  noise" and "equilibrium fluctua- 
tions" are commonly taken to be synonymous. Our sys- 
tem, however, reveals very clearly that these are two 
different things. Strictly defined, noise is white if it has a 
fiat frequency spectrum but, for practical purposes, noise is 
white if most of its frequency spectrum is at frequencies 
much higher than the characteristic inverse time-scales of 
the system of interest [3]. In our set-up, we effectively 
have white non-equilibrium noise if we have a constant 
3/+ = 3/- = 3/and we go to the high frequency limit 3, ---) oo. 
All we need for equilibrium noise is to satisfy Eq. (3), 
which fixes the ratio of 3/+ and 3/- but leaves a degree of 
freedom with which we can place our noise at any inverse 
time-scale above, at or below the characteristic inverse 
times of the system. Thus, equilibrium noise can be arbi- 
trarily slow. Of course, neither the white nor the equilib- 
rium noise brings about a flux. 

What characteristics of the noise constitute necessary 
and /or  sufficient conditions for a flux in either the for- 
ward or backward direction is presently the topic of much 
research [7,8]. Doering, et al. [7] have recently published 
results that they obtained with noise that was more compli- 
cated than the dichotomous Markovian fluctuations of our 
system. They also discovered that, for certain types of 
noise, the flux can actually reverse its direction at some 
point as noise characteristics are changed. Magnasco fo- 
cused on time correlations to explain the distinction be- 
tween equilibrium and non-equilibrium noise [9]. 
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7 a period of 80 A and a = i-  This yields y = 1400 flips 
s -1 and a speed of about 100 nm s -z. The speed has the 
correct order of magnitude for motor proteins; flips of the 
potential profile are supposed to be brought about by the 
binding of ATP and the release of ADP. A turnover of 700 
ATPs per second seems high but small refinements of tile 
model (such as, allowing the rates y+ and 7-  to be 
differen0 can lead to higher speeds at smaller turnovers. 

The efficiency of the device can be evaluated and is 
plotted as a function of log 7 in Fig. 3(c). This is the 
efficiency of the transduction of energy from the non-equi- 
librium fluctuations to the forward motion of the particle. 
To bring about the necessary rapid succession of 8 k T  

flips, a chemical conversion with an energy loss much 
larger than 8 k T  is required. Therefore, the conversion of 
chemical energy to forward motion must have an even 
smaller efficiency than that in Fig. 3(c). 

Finally, it is worth noting that, for both U + and U-,  
there is no "net  tilt" over one period and, in the end, we 
have flux without a net force. How the fluctuations can 
end up acting as a macroscopic force F (and J = F, 
because /3--1)  can be seen in the following way: J is 
constant along x, which implies 

£1 
J =  J d x  

Substituting J = J + ( x )  + J - ( x )  and, subsequently, J ± = 
( F  ± - 0 x) P ± into this integral yields 

70 

A 0.03  

of c,oncy / \ 
0 .02  / I 

2 
log y 

Fig. 3(a) Fokker-Planck equation to describe diffusion on a fluctuating 
piecewise linear potential can be solved analytically. (b) The flux as a 
function of the flipping rate y. (c) Plot of the efficiency, the calculation 
of which is explained in the text, as a function of y. 

An exact solution for Eqs. (2a) and (2b) can be obtained 
for piecewise linear potentials, as in Fig. 3(a). The poten- 
tial fluctuates between the E o + A E  profile and the E 0 - 
A E  profile. Fig. 3(b) shows the flux J as a function of the 
logarithm of the flipping rate Y. In Ref. [11], we go back 
to unsealed variables and we take realistic motor protein 
values: energies of E o = A E  = 4kT; a coefficient of vis- 
cous friction o f /3  = 6 × 10 -6 s-  l; and a biopolymer with 

<r> = <J> = -}ol(r+e++ F - P - )  dx (8) 

where we have the net force appearing as the average force 
over the probability distribution. In this picture, flux oc- 
curs when, because of the fluctuation, P+ and P -  are 
such that the integral in Eq. (8) gives a non-zero result. 

That fluctuations can bring about a macroscopic flux 
without a net macroscopic force was first recognized about 
two decades ago, in the general context of stochastic 
processes, by Tomita and Tomita [11]. They introduced the 
notions o f "  irreversible circulation" and "cyclic balance". 
Only much later was it shown, using chemical kinetics on 
some simple examples, that the same mechanism could 
actually drive a reaction against its chemical potential and 
that oscillations could have the same effect as fluctuations 
[12,13]. It was also pointed out that this could possibly 
explain how, in living cells, proteins couple reactions, such 
as how Na, K ATP-ase can use the energy of the ATP 
turnover to pump sodium and potassium against the 
chemo-osmotic potential. Replacing an abstract reaction 
coordinate (which measures the progress of a chemical 
reaction) by an actual position, taking electrostatic forces 
instead of thermodynamic forces and with the more funda- 
mental Fokker-Planck formulation instead of chemical 
kinetics, we arrive at a set-up presented by Ajdari and 
Prost [14]. They actually built a nanotechnological device 
that, based on this principle, drove large charged molecules 
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[15]. They proposed to develop this further as a method for 
separation. 

3. A heat  engine  

Next, we present an example of a heat engine at a 
microscopic level. Again with only Fokker-Planck equa- 
tions as our basis, we show how a temperature gradient 
can bias Brownian motion. We take the piecewise linear, 
periodic set-up for the potential as a function of x in Fig. 
4, and derive the flux and the efficiency of the heat engine 
exactly. 

In Fig. 4, region 1 is the interval (k,  k + ½), where k is 
an integer, and is at temperature T t. Region 2 is the 
interval (k  + ½, k + 1) and is at temperature T 2. If T 1 > 
T 2, then it is easier for a particle in the hot region to 
" jump"  over the barrier than it is for a particle in the cold 
region to do so, and a net flux in the positive direction 
results. This effect has been studied in great detail by 
Landauer [16], and his finding that transition rates can be 
different when a segment along the reaction cordinate is 
heated up is called the the "blow torch theorem". 

In an overdamped medium, and after scaling away the 
Boltzmann constant k and the coefficient of friction, we 
have 

P~( x )  + - - P ' I (  X) = 0  O, 
T1 

2 E  ( ' )  
P ~ ( x ) - - - P ; ( x ) = O  -- 1 

T 2 2"  

(9a) 

(9b) 

The system is equivalent to a system with a constant 
temperature T =  1 and a slope m I = 2 E / T  l on (k, k +  l )  
and slope m 2 = - 2 E / T  2 on ( k +  ½, k +  1), leading to a 
net energy difference of E ( T  1 - T 2 ) / ( T  1 T 2) over one 
period. The system is very similar to that studied by 
Biittiker [17]. However, Biittiker studied a system in which 
the potential as well as the temperature varied in a sinu- 
soidal manner along the x axis (he actually varied the 
diffusion coefficient, but this is equivalent to varying the 
temperature), which leads to more involved algebra than 
our set-up. 

U(x) 

 ,ioo,\ 
0 1/2 1 X 

Fig. 4. Piecewise linear potential with the temperature varying along the 
x axis. 

The solution of equations (9a) and (9b) is 

Pl(X) f f i C l + D l e x p  -- T1 ] 

I ] P2(x )  = C 2 + D  2 exp - -~-2(1  - x )  . (10) 

i.e. an exponential "Boltzmann" part plus a constant. The 
flux is given by 

( J l ~  r l  

J2 = -0x P2. (11) 

The exponential "Boltzmann" parts of the probability 
density distribution in Eq. (10) cancel out when substituted 
in these expressions. It is the constants that "cause"  flux, 
i.e. 

2 E C  I 
Jl  "r, 

2 EC 2 
J2 = - -  (12) 

r2 

Demanding that the probability density and the flux are 
continuous at the comer points between regions 1 and 2 
(i.e. PI (0)= P2(1), P l ( 1 / 2 ) = P 2 ( 1 / 2 )  and Jl =-/2) and 
normalizing the total probability over one period to unity 
(i.e. f ~ P ( x )  d x  = 1) leads to equations from which we can 
solve for C l, D 1, C 2 and D 2. With 

R = E[exp( E / T  I ) - exp (E /T2)  ] (T  1 - / ' 2 )  

+ [exp(E/T~)  - 1] [ e x p ( e / r ~ )  - 1] (T  t + T2) 2 

(13) 

we have 

2[exp(E/T~)  - exp( E / T  2)] E T  l 
C1 = R (14a)  

2 e x p ( E / T l ) E [ e x p ( E / T 2 )  - 1](Tl + T2) 
(14b) D 1 =  R 

- 2[exp( E / T  1 ) - exp (E /T2)  ] E T  2 
(14c) C2= R 

2 e x p ( E / T 2 ) E [ e x p ( E / T ~ )  - 1](/'1 + T2) 
02 = R (14d) 

For T I -- 1.05 and T 2 = 0.95, Fig. 5(a) shows the flux 
as a function of the barrier height E. Symmetry does not 
allow for any flux at E = 0. For E ~ ~, no particle will 
ever mount the barrier at a f'mite temperature. In between, 
for a finite value of E, the flux has a maximum. A similar 
graph would be seen if, instead of the barrier height, the 
temperature of both regions were changed by the same 
multiplicative factor; maxima that have been found with 



variation o f  the temperature (or, equivalently, input noise 
density) have been called "s tochast ic  resonance"  [18]. 

An important issue is also the efficiency of  this engine. 

flux 

The upper limit for the efficiency, of  course, is the Carnot 
efficiency ( T  I - T 2 ) / T  I. Next, we will  calculate the actual 
efficiency of  this engine. 
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Fig. 5(a) The flux and (b) the efficiency as functions of the barrier height E for the analytically solvable, piecewise linear heat engine that is explained in 
the text. The flux and the efficiency are not simple multiples of one another; their ratio is the heat flow into the system that is necessary to keep it at 
stationarity, as depicted in 2(c). 
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Whenever  particles enter region 1, they have to be 
heated to maintain stationarity. However,  the net flux is 
not only the inflow into region 1; it can actually be 
calculated as the difference between the forward and back- 
ward flows at both the comer  points and, as such, it is only 
a fraction of  the total inflow into region 1. This fraction is 
the efficiency of the engine. 

For a particle at position x in an interval with two 
absorbing barriers, it is possible to calculate the probabili- 
ties for the particle eventually to exit at the right-hand vs. 
at the left-hand barrier (see Ref. [3], p. 142). Applying this 
to our system, we find that a particle at x in (0, ½) has a 

1 
probability of  exiting over the maximum at x = i of  

exp(2  e x / r  1 ) - 1 
w~' /2 ) (x )  = e x p ( e / T 1 )  - 1 (15a) 

For the probability that a particle at x in (½, 1 ) exits over  
the maximum at x = ½, we have 

e x p [ 2 E ( 1  - x ) / r 2 ]  - 1 
Ir(2'/2)(x) = exp( E / T  2) - 1 (15b) 

Of  course, we have for the exiting probabilities at the 
bottom that 

7r~°)(x) = 1 - rr~l /2)(x)  

7r(2')(x) = 1 - ~'(2'/2)(x) (16)  

The probability for a particle to be in (0, ½), i.e. region 
1, where the temperature is T,, is 

:,( °,[, oxp( ",:£ ''2p,dx 2 c,+--r- • 
(17)  

and, likewise, we have PE = 1 - - p , .  Next, we define 

= - -  C, + D ,  exp - (18a)  f , ( x )  p, r, ] 

which is the probability density of  a particle to be at x, 
given that that particle is in region 1. Similarly, we have 

,( = - -  C 2 + D  E exp (18b) 
PE T2 

The probability that an average particle in region 1 exits at 
1 x = 7 is given by 

p(1/2) = f01'2.n.~,/2)/5 d x  (19a) 12 

and, for an average particle in region 2, the probability for 
1 

escape at x = i is 

p~,/2) = f//jr~,/E)p- 2 dx (19b) 

These quantities allow us then to evaluate the efficiency. 
The probability density is stationary; thus, for every N 

particles that leave region 1 for region 2, there are also N 

particles that flow from region 2 to region 1. Of  the N 
particles that flow from region 1 to region 2, an amount 

12(1/2) 1 Np moves over the maximum at x -- 7. However,  of  
the particles that flow from region 2 to region 1, an 
amount NP2t °/2) moves over  the x = ½ maximum. This 
implies a net transfer o f  N(P12(I/2)-P21 ~1/2)) by one 
period in the positive direction. With Eqs. (15)-(19)  it is 
possible to express the efficiency in terms of C~, D, ,  C 2, 
D 2, E, T 1 and T 2. Using Eq. (14), it is even possible to go 
back to just E, T, and T 2. The formulae in that case 
become very long and cumbersome,  but are easily handled 
with any computer algebra system. 

Fig. 5(b) shows the efficiency as a function of E at 
T l = 0.95 and T 2 = 1.05. It appears that the efficiency 
never reaches more than about 15% of  the Carnot effi- 
ciency. 

Although a brief glance at Figs. 5(a) and 5(b) suggests 
that the flux and the efficiency are simple multiples of  one 
another, upon quantitative evaluation, it appears that the 
f lux/eff ic iency ratio is not constant. This ratio actually 
gives the amount of  heat that has to be pumped into the 
system per unit of  time to keep it stationary, and is 
depicted in Fig. 5(c). In the E--* oo limit, the probability 
density distributions on regions 1 and 2 become delta 
functions in the same point and an infinite amount of  heat 
exchange results. 

Feynman 's  ratchet-and-pawl device [5] has two separate 
reservoirs that are at different temperature and are each at 
equilibrium. One reservoir contains the end with the vanes, 
while the other reservoir contains the ratchet and pawl. 
The only way in which the reservoirs exchange energy is 
through the action of the device. Therefore, it is no 
surprise that the maximum theoretical Carnot efficiency is 
attained. However,  Feynman 's  device is a very artificial 
one and mixes macroscopic (isolated reservoirs and a solid 
device with rotating parts, etc.) and microscopic 
(Brown,an) physics - -  it is a " thought  exper iment"  more 
than anything else. Our more realistic " F o k k e r - P l a n c k "  
heat engine is also more inefficient: heat is flowing, even 
at E = 0 or E ~ oo when there is no flow and no net work 
is being done. 

4 .  D i s c u s s i o n  

We have shown above that it is possible to bias Brown- 
,an motion with the input of  other forms of energy. A 
feature of  both the engines that we presented is the low 
efficiency. For the chemical engine, it is important to 
realize that, in an overdamped medium, the power that is 
dissipated by a particle moving with velocity v is f lv  2. 
This means that the most efficient way to cover a certain 
distance L in a time T is to move with a constant speed 
L / T .  Any variation in speed implies that more energy is 
needed to cover the distance L. We calculated Po, t as the 
power that would be necessary to make the motor move at 
a constant speed. 
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Going back to a I.angevin picture, we can understand 
how, in the model of Fig. 3, the fluctuations cause a lot of 
motion within a well before a " j ump"  is made. This 
stepwise motion is also what is experimentally observed 
on actual motor proteins [19]. Because of its stepwise 
nature, any fluctuation-driven motion in an overdamped 
medium is bound to be very inefficient. Using chemical 
kinetics, effieiencies have been calculated for the fluctua- 
tion-mediated transduction of energy from the breakdown 
of one chemical (S) to the synthesis of another chemical 
(P) [20]. Larger efficiencies can then be achieved, because 
the process has an entirely different character. Power is not 
dissipated as /3v 2 but, instead, is stored at a rate of 
Pout = /3 '0 ,  where v is now the rate of production of 
chemical P. Because of the linearity in v, the character of 
the process, i.e. smooth vs. stepwise, does not affect the 
amount of energy needed to synthesize a certain amount of 
chemical P. 

For motor proteins, it has been experimentally shown 
that the coefficient of friction does not arise from the 
viscosity of the solution but from the "fr ict ion" on the 
connection between the motor protein and the biopolymer. 
It is unlikely that this friction can be thought of as constant 
over the whole period along the biopolymer. For non-con- 
stant fl(x),  a constant velocity is no longer the most 
efficient way of moving and the v(x)  that gives maximal 
efficiency can be easily calculated. The observed stepwise 
motion is efficient when the coefficient of friction is high 
in the region where the protein remains "s tuck"  for a 
while and low in the region that is "stepped over." 

For a single kinesin molecule providing internal trans- 
port in a cell, the efficiency is not an issue, because the 
power involved is negligible compared with that trans- 
duced in other processes in the cell. In muscle, however, 
the action of motor proteins involves a much greater part 
of the energy budget and efficiency does become impor- 
tant. The efficiency can then be increased by adding small 
features to make it look increasingly more like a Rube- 
Goldberg device. Actual motor proteins are observed to be 
connected to the bioploymer with two " legs ."  Peskin et 
al. showed how two coupled Brownian particles that are 
diffusing on fluctuating potentials can "drag"  one another 
along with an elastic chain, so making the motion smoother 
and, thus, possibly achieving greater efficiency [21]. How- 
ever, these designs can only be analyzed through numeri- 
cal simulation, and the chemical engine described above 
still holds the underlying principle. To our knowledge, the 
piecewise linear potential that we discussed is the only 
case that can easily be evaluated analytically. 

The heat engine is of lesser biological significance. It is 
generally believed that organisms function isothermally. 
However, it has been conjectured that, in environments 
such as convection currents in natural waters, bacteria can 
evolve that employ mechanisms to build up an ATP-ADP 
gradient, deriving energy from thermal cycling [22]. 

I I 

[ X0 I 
! I 

one period 

Fig. 6. A potential with a maximum that fluctuates between E I and E 2. 

In both systems that we have studied, the noise (non-zero 
temperature) is essential to achieve the flux. At zero 
temperature, both systems come to a standstill and, if the 
temperature becomes too high, the energy profile U(x) 
becomes relatively insignificant and the flux again van- 
ishes. These characteristics apply to our system as well as 
to the double well in Ref. [18], by means of which 
McNamara and Wiesenfeld explained the "stochastic reso- 
nance" phenomenon. It was found that, when the energy 
difference between the wells is oscillating, the flux be- 
tween the wells peaks for some finite value of the tempera- 
ture. With some brief heuristic arguments, we will show 
that, in our system as well as in the double well of Ref. 
[18], the flux as a function of the temperature has a shape 
given by 

1 

where A > 0  and a > 0 .  This is also the form of the 
formula derived in Ref. [18] for the signal-to-noise ratio in 
the oscillating double well. 

Let us consider the fluctuating periodic potential in Fig. 
6. The characteristic times for relaxation to adiabaticity on 
the long and short slopes have a ratio ~'J~'# = ( a / ~ )  2. 
We take the flipping time to be the geometric average of t ,  
and t#, i.e. trap = (t~ t#) I/2, and then assume that we have 
instantaneous adiabatic adjustment on the short slope and a 
Boltzmann distribution on the average potential on the 
long slope. This actually brings about discontinuities at the 
borders between the regions, which would not occur in a 
rigorous treatment. 

When we next assume that, for the flow over the top, 
we have 

=C'  lim P ~ ( x ) = C  exp[ ( U ( x ) )  ] Ja--,a k r  l 
X ~  X 0 

El + E 2 )  
= C exp ~Tz 

[ 
- C lim Pa(x)  = C<exp] 

J ~  ..~ - -  t X ~ " XO 

= 1 E~ + e x p ( - E z  

u(x, t) 1 
kT ] ) 

(21a) 

(21b) 
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where C and C' are proportionality constants, and the 
energy is no longer in units of kT, we obtain for the net 
flow that 

Jnet = Ja  ~ ,8 - J,o ~ a 

= -  e×p ~-~ + e×p ~-~ - 2  exp 2kT 

(22) 

AE, this can be which is always negative. For small 
approximated by 

For the heat engine, we take T I -- r(1 + e) and r2 = 
T(1 - e ) ,  assume a Boltzmarm distribution on each leg, 
i.e. 

for small e, and again take for the flow over the top that 

Jnet -- J,--.2 - "/2 --., = lim P , ( x )  - lim P2(x)  
x t l / 2  x J, 1~2 

( ) [ ( )  E E Ee  - e x p  - (23)  
= 7  exp - 7  exp -7 -  -T- 

At the first order in e,  this reduces to 

Jno,= 

The exp(-A/T) terms in these formulae give the rate 
at which a large central barrier is crossed - -  a barrier that 
could never be crossed in the absence of noise. The e/T" 
term is a consequence of the fact that the system is 
asymmetric, in the sense that a left-to-right look at the 
profile differs from a right-to-left look. The oscillating 
double well of Ref. [18] is symmetric around the central 
barrier, in the sense that, during one period of the oscilla- 
tion, there is as much flow from left to right as there is 
from right to left. However, the same ideas apply to the 
amplitude of the oscillating flux J over the central barrier, 
and a formula of a form similar to Eq. (20) can be derived 

for this amplitude. With the development of nanotechnol- 
ogy and the theoretical and experimental studies of biolog- 
ical systems on a molecular level, the future might hold an 
abundance of variations on this theme in store. 
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