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a b s t r a c t

Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on two legs along the biopolymer
microtubule. The number of accidental backsteps that kinesin takes appears to be much larger than what
one would expect given the amount of free energy that ATP hydrolysis makes available. This indicates
that backsteps are not simply the forward stepping cycle run backwards. We propose here a simple
effective model that consistently includes the backstep transition. Using this model, we show how more
backstepping increases the entropy of the final state, and probably also the activation state, thus reducing
their free energy. This free energy reduction of the activation state (related to backstepping) speeds
up the catalytic cycle of the kinesin, making both forward and backward steps more frequent. As a
consequence, maximal net forward speed is achieved at nonzero backstep percentage. In addition, the
optimal backstep percentage coincides with the backstep percentage measured for kinesin. This result
suggests that, through natural selection, kinesin could have evolved to maximal speed.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Processive motor proteins are among the tiniest engines known
to man. These proteins utilize the energy of ATP hydrolysis to liter-
ally walk along a biopolymer (Howard, 2001). In a living cell they
help maintain organization by transporting cargo, like organelles
or vesicles filled with chemicals.

Already one and a half decade ago the stepping of the proces-
sive motor protein kinesin was made visible on the nanometer
scale with optical tweezers (Howard, 2001). Early communications
(Visscher et al., 1999; Schnitzer et al., 2000) reported that 5–10%
of all steps of kinesin were backward. But smaller fractions were
described later on as methods and materials improved and better
resolutions were achieved; Nishiyama et al. (2002) gave 1/220 and
Carter and Cross (2005) gave 1/802. Theoreticians have always been
interested in backstep fractions as they can help verify stochastic
models.

In this article we will show how, in the Brownian environment
of the motor protein, a “well-tuned” backstep fraction can actually
help the motor speed up. We will show how the backstep frac-
tion that leads to the highest net speed can be evaluated and how
the resulting expression contains no freely adjustable parameters.
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Finally, we will see how the experimentally established backstep
fraction of kinesin is close to our predicted optimal backstep frac-
tion.

2. An appropriate model for kinesin

The operation of an ion pump is generally modelled with a cycle
as depicted in Fig. 1. At equilibrium the product of the forward
rates, k12 × k23 × · · · × kn1, equals the product of the backward rates,
k21 × k32 × · · · × k1n, and no net cycling occurs. To drive the protein
through the sequence of states, S1, S2, ..., Sn, a driving energy is nec-
essary (Hill, 1968). Such energy comes available if one of the steps
involves the binding of ATP and if the protein, in subsequent steps,
catalyzes the hydrolysis of the bound ATP. Eventually the remain-
ing ADP and an inorganic phosphate have to be released so as to
complete the cycle and to put the protein again in a state in which
it can bind a new ATP. Under physiological conditions the hydrol-
ysis of ATP makes GATP = 22 kBT units of free energy available. In
the course of a cycle of a membrane pump like Na,K-ATPase, part
of GATP is utilized to bind, transport and release on the other side
of the membrane three sodium ions and two potassium ions. The
transport is generally against the electrochemical potential of the
involved ions. Consistent with the model of Fig. 1, it is found that
with a sufficiently low ATP–ADP potential and a high electrochem-
ical potential for sodium and potassium the operation of the pump
can be reversed (Läuger, 1991).
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Fig. 1. An abstract conception of kinesin’s catalytic cycle. The cycle involves the
binding and hydrolysis of ATP, the actual mechanical stepping, and the release of
ADP and inorganic phosphate. Each reaction is driven by an energy difference Gi,i+1

and the ratio of the forward and backward transition rate is an exponential function
of Gi,i+1.

The stepping kinesin appears to operate in a fundamentally dif-
ferent way. Tight coupling, i.e. an 8 nm step for every hydrolyzed
ATP and a hydrolyzed ATP for every 8 nm step, has been observed
for kinesin (Schnitzer and Block, 1997; Hua et al., 1997). Without
a mechanical load it is just the GATP that is driving the cycle in
Fig. 1. Every mechanical step should correspond to one revolution
around the catalytic cycle. If a backstep would correspond to the
cycle being run in the direction against the ATP hydrolysis, then we
should have pb/pf = exp[ − GATP] for the ratio of the backstep prob-
ability and the forward step probability. However, exp[ − 22] turns
out 7 orders of magnitude smaller than the measured backstep frac-
tions that were mentioned before. Furthermore, a model like in
Fig. 1 leads to a stopping force, i.e. the load at which the kinesin
comes to a standstill, that is determined by GATP = FstL, where L
is the steplength. If GATP = FstL, then the two forces, chemical and
mechanical, that are driving the cycle in opposite directions can-
cel each other out. But, with GATP = 22 and L = 8 nm, the equation
GATP = FstL predicts a stopping force Fst that is about twice as large
as the measured 7 pN (Visscher et al., 1999; Schnitzer et al., 2000;
Carter and Cross, 2005). Most importantly, it appears that kinesin
still hydrolyzes ATP when it is pulled back with the stopping force
and even when it is made to walk backwards with a load larger than
the stopping force (Carter and Cross, 2005; Molloy and Schmitz,
2005). All these observations make a model as depicted in Fig. 1
untenable.

We are thus led to a different model for the stepping motor
protein (Bier, 2003). After the detachment of the back leg, the
attached leg reorients and brings the detached leg to the vicinity
of the next forward binding site (see Fig. 2). Brownian motion is
supposed to eventually make the detached leg hit the next for-
ward site. Attachment there can then occur. The trailing leg next
detaches, thus completing a forward step. It is the energy G that
drives the reorientation of the attached leg and so biases the Brow-
nian step towards the forward site. That reorientation is only one
transition in the entire hydrolysis cycle of the kinesin. Therefore,
the reorientation energy G is smaller than GATP. For the back-
ward binding probability pb and the forward binding probability
pf we can thus have pb/pf ≫ exp[ − GATP] (Bier, 2007). Assuming
that binding to the backward site is followed by a backstep, the
model of Fig. 2 can actually lead to an accurate accounting for
the backstep rates (Bier, 2003; Bier, 2007). Ultimately, the scheme
depicted in Fig. 3 is a more appropriate model for the Brown-
ian stepper than the kinesin’s catalytic cycle of Fig. 1 alone. In

Fig. 2. The Brownian step of a processive motor protein. After detachment of the
trailing leg, the attached leg reorients and brings the detached leg to the vicinity
of the next forward binding site. After that, random diffusive motion will usually
make the detached leg hit and attach to the forward binding site. Next the trailing
leg detaches and a forward step is thus completed. However, there is a nonzero
probability that the detached leg hits and attaches to the backward binding site. We
assume that such backward site binding is what triggers the backstep. The proba-
bilities pf and pb for forward and backward binding depend on the energy behind
the reorientation, the applied load force, and, as the process occurs in the Brownian
regime, on kBT, the natural unit of thermal energy.

the scheme in Fig. 3 at a particular point in the ATP hydrolysis
cycle a kind of coin-toss takes place and the forward–backward
determination occurs. The corresponding mechanical steps run in
a dimension that is perpendicular to the plane of the chemical
cycle.

3. Thermodynamics of backstepping and speed
optimization

The question that needs answering at this point is: why has nat-
ural selection led to a backstep probability that is many orders
of magnitude larger than the bare minimum of exp[ − 22] that
thermodynamics requires? As was mentioned before, kinesin pulls
organelles or chemical-filled vesicles across a eukaryotic cell. The
reason that eukaryotic cells have such an active transport system
in the first place is that they are, unlike prokaryotic cells, too large
to rely on diffusion for their transport needs. Kinesin’s stepping
speed ultimately determines how fast a eukaryotic cell can react
to environmental stimuli. There should be selectional advantage in
engaging a kinesin that runs faster.

Our claim is that the entropy increase due to the forward versus
backward “choice” can provide an answer to the question. The
free energy kBT ln 2 that is associated with a doubling of the avail-

Fig. 3. Kinesin still hydrolyzes ATP when it is pulled back with a force larger than the
stopping force. A setup like Fig. 1, with the ATP–ADP potential and the mechanical
load pushing a single cycle in opposite directions, is therefore not the appropriate
model and needs modification. Here we let the mechanical dimension run perpen-
dicularly to the plane of the chemical cycle. ATP hydrolysis drives the chemical cycle
in a clockwise direction. At the mechanical junction (cf. Fig. 2) a forward versus
backward “decision” is made.
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able space is still small relative to the 22 kBT-units released by ATP
hydrolysis, but, we will argue, it can play a role in the optimization
of a processive motor protein.

Imagine a large number, N, of motor proteins that are all at
the same position. There is only one possible microstate for this
macrostate. Next, let all of these N motors take a step. If all of
these motors step forward, we will continue to have only one
microstate for the macrostate of the system. But if, on the other
hand, we allow for one backstep in the N steps, then there are N
possible microstates. This is because the backstep can occur with
any of the N motors. The increase in the number of microstates
implies an increase in entropy. A more complete and precise way
to think of this is as follows. Before a step occurs, the entropy
is S0 = kB

∑
ip0(i)ln p0(i), where p0(i) is the probability of the

microstate i. After one catalytic cycle and its accompanying step,
the probabilities of the microstates in the forward site are p1(i, f)
while for those in the backward site are p1(i, b). This makes that the
entropy after the step is S1 = kB

∑
i
∑

l=b,fp1(i, l)ln p1(i, l). As after
one cycle the macrostate of the motor is recovered, but one site
ahead or behind, these probabilities are related to those before the
step by p1(i, f) = p0(i)pf and p1(i, b) = p0(i)pb. Therefore, the entropy
increase in one step is !S = S1 − S0 = − kB(pf ln pf + pb ln pb), i.e. it is
due solely to the increase in the “position entropy” – given by
the probability spreading of the motor position among sites (Leff,
2003).

With a forward step probability pf and a backstep probability pb
we have for the speed of the stepper v ∝ pf − pb = 1 − 2pb. So the
direct mechanical effect of an increase of the backstepping rate is a
decrease of the speed, i.e. ıv ∝ −2ıpb. But the backstep probability
pb also increases the entropy of the final state. This entropy increase
implies a decrease in the free energy of the final state making an
additional amount of free energy available for the process to the
amount of:

G̃ = T!S = −(pf ln pf + pb ln pb). (1)

Here G̃ is expressed in units of kBT. kBT can be thought of as the
natural unit of thermal energy and we will express energy in kBT-
units throughout the remainder of this article. As pb is observed to
be small (pb < 0.01), first order approximations will be sufficiently
accurate and the theory we develop in this article is a first order
theory in pb. At first order in pb, Eq. (1) reduces to G̃ ≈ pb(1 − ln pb).
So a variation ıpb in pb leads to a variation

ıG̃ ≈ −(ln pb)ıpb (2)

in the free energy that becomes available.
We contend that the G̃ of Eq. (1) can be utilized to speed up the

catalytic cycle of the motor protein. Throughout biology, energy
is used to build and maintain ordered, low entropy structures.
The sodium-glucose cotransporter concentrates glucose inside a
cell. It does so by using the energy of a cotransported sodium
ion. Entropic energy, in turn, is utilized whenever a transporter
exploits a concentration gradient as a source of energy. In this
way there are many examples of biomolecules that use the gen-
eration of entropy as a source of free energy. In the course of its
cycle the Na,K,2Cl-cotransporter brings one sodium ion, one potas-
sium ion, and two chloride ions from the outside to the inside of
a cell. The cycle is electroneutral. Under physiological conditions,
this cotransporter effectively uses the transmembrane concentra-
tion gradients for sodium and chloride as an energy source to
accumulate potassium inside the cell. More in general, the Nernst
potential V = RT ln(Cin/Cout) for an ion or molecule is due to a dif-
ference between the concentrations inside (Cin) and outside (Cout)
a cell. The Nernst potential is purely entropic in origin and it is a
commonly utilized source of energy in a living cell.

We next need to quantify how a ıG̃ (cf. Eq. (2)) can speed up a
catalytic cycle. To this end we return to the catalytic cycle depicted
in Fig. 1. The chemical part of kinesin’s catalytic cycle (the bind-
ing of ATP, release of ADP and inorganic phosphate, detachment
and attachment of the legs to the microtubule) is well modelled
by a setup like Fig. 1. With energy expressed in units of kBT, the
energy that drives the transition from Si to Si+1 is Gi,i+1 and we have
exp[Gi,i+1] = ki,i+1/ki+1,i (Howard, 2001). Adding ıG̃ to Gi,i+1 we have

eGi,i+1+ıG̃ =
ki,i+1 + ıki,i+1

ki+1,i + ıki+1,i
. (3)

The apportionment factor ˛ parameterizes how much of the change
ıG̃ goes towards increasing the forward rate ki,i+1, and how much
towards decreasing the backwards rate ki+1,i,

ki,i+1 + ıki,i+1 = ki,i+1 e˛ıG̃, (4)

ki+1,i + ıki+1,i = ki+1,i e−(1−˛)ıG̃. (5)

We consider here the case ˛ ≈ 1, in which the main effect is an
increase of the forward rate. For small ıG̃ we have exp[ıG̃] ≈ 1 + ıG̃,
which in the case ˛ ≈ 1 leads to

ıG̃ ≈
ıki,i+1

ki,i+1
. (6)

So, ultimately, the relative increase of the forward rate ki,i+1 is just
ıG̃. It is also possible to consider the case ˛ ≈ 0, when ıG̃ goes
towards reducing the reverse rate ki+1,i. However, when a reaction
is already reasonably irreversible (i.e. ki,i+1/ki+1,i being sufficiently
large) this is not an efficient way to speed up the reaction. We thus
consider here that the ıG̃ brings down the energy of the product
state and the energy of the activation barrier by the same amount.
This would happen if the transition state (the one that represents
being on the top of the activation barrier) already has microstates
associated with the forward and backward possibilities. In this case,
the effect in the transition state is the same as in the product state
and the increase in “position entropy” also lowers the energy of
the activation barrier by the same amount. In the following we will
ignore ki+1,i and write ki for ki,i+1.

The energies associated with the measured pb’s are small. For
pb = 1/802, Eq. (1) gives G̃ = 0.01 kBT-units. Following Eq. (6) we
see that this translates into a 1% change in the speed of a transition
relative to pb = 0 case.

When one transition in a cycle like in Fig. 1 is speeded up by 1%,
it does not imply that the time to go through the entire cycle will
decrease by 1%. That latter change will generally be less than 1%. We
let Cv

ki
be a so-called “control coefficient” (Kacser and Burns, 1973;

Heinrich and Rapoport, 1974); this is a dimensionless parameter
that puts a figure on the influence that the rate ki of transition i has
on the rate " of going through the entire cycle. This cycling rate is
also the stepping speed of the motor protein. We take

Cv
ki

= ıv/v
ıki/ki

. (7)

Going to the limit ıki → 0, we see that the control coefficient is
essentially a logarithmic derivative, i.e. (∂ ln v)/(∂ ln ki). So suppose
ki is changed by 1%. The control coefficient Cv

ki
then gives roughly

the percentage by which " changes as a result. Assume that you
change all of the transition rates in the cycle with the same per-
centage. This is like scaling the time and, obviously, the speed "
would be changed by the same percentage. This leads to the identity∑n

i=1Cv
ki

= 1, which is commonly known as the Summation Theo-
rem (Kacser and Burns, 1973; Heinrich and Rapoport, 1974). If ki
represents the rate limiting transition, then Cv

ki
will be close to unity.

Cv
ki

will be close to zero if the ki-transition is very fast compared to
other transitions in the cycle. Generally, the control coefficient Cv

ki
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will be a positive number between zero and unity that expresses the
amount of control that transition i has over the speed of the entire
cycle. In most biochemical networks and protein catalysis cycles
there is no single rate limiting step. Instead, control is somewhat
equally distributed over several steps.

Since ıG̃ gives the relative change of ki, we have for the speed of
the motor protein and its increase due to the addition of ıG̃ to step
i

v + ıv ∝ 1 + Cv
ki

ıG̃ ≈ 1 − Cv
ki

(ln pb)ıpb. (8)

We combine this result with the mechanical effect of the back-
stepping, which, we saw earlier, was described by v ∝ 1 − 2pb or,
consequently, ıv ∝ −2ıpb. We now have for the net variation of "
when pb is varied:

ıv ∝ −{2 + Cv
ki

ln pb}ıpb. (9)

The speed " has a maximum when the variation ıv equals zero, i.e.

ln pb = − 2
Cv

ki

. (10)

This equation relates the optimal backstepping fraction to the
control coefficient of the transition that includes the free energy
derived from the forward-versus-backward entropy. The pb = 1/220
from Nishiyama et al. (2002) leads to Cv

ki
= 0.4. The pb = 1/802 from

Carter and Cross (2005) leads to Cv
ki

= 0.3.
Under physiological conditions the transitions in the cycle of

a motor protein are driven by energies of about 2 kBT-units (Cross,
2004; Bier, 2007). Consequently, reverse transitions in the catalytic
cycle are relatively rare. If we ignore the backward rates in the
cycle of the motor protein, then the control coefficient Cv

ki
is sim-

ply the fraction of time during the cycle that the motor protein
spends in state Si. That time equals 1/ki,i+1. When the back leg of
kinesin detaches, the hydrolysis of the ATP bound to that leg pro-
ceeds concurrently. The release of the ADP is supposed to take place
upon rebinding of the detached leg to the microtubule. In a com-
prehensive review (Cross, 2004) a rate of ∼250 s−1 is given for the
back-leg-detachment/hydrolysis transition. With the stepping rate
of ∼100 s−1, we are indeed led to a control coefficient of 0.4 for this
transition. The same reference lists ∼300 s−1 as the rate for the ADP
release transition. This would correspond to a control coefficient of
about 0.3. With Eq. (10) we find that control coefficients between
0.3 and 0.4 lead to backstep rates between 1/150 and 1/800. We
infer that observed control coefficients then predict the correct
order of magnitude for the observed backstep rates of Nishiyama
et al. (2002) and Carter and Cross (2005). Eq. (10) and its under-
lying hypothesis are thus found in agreement with experimental
reality.

4. Discussion

There is no detailed knowledge of how kinesin’s internal struc-
ture changes as it goes through the cycle of conformational
transitions. We can therefore not point at a specific biomolecular
mechanism for the utilization of the free energy that is made avail-
able by a slightly increased pb. It is conceivable that, at some point in
the cycle, the position of a cluster of atoms within the kinesin deter-
mines whether a step will go forward or backward. We can depict
the corresponding reaction coordinate as the double well in Fig. 4.
When the cluster is in the left well, a forward step is made. When
the cluster is in the right well, a backstep occurs. The activation
barrier between the states in Fig. 4 needs to be sufficiently low for
quick equilibration to take place. A Boltzmann distribution between
the two wells then determines the forward-versus-backward step
probability. With an energy difference of ε between the wells we

Fig. 4. A model for the mechanism behind the backstepping. Whether a step goes
forward or backward depends on the position of a cluster within the processive
motor protein. The corresponding reaction coordinate for the cluster is depicted. The
left and right well stand for forward and backward step, respectively. Eliminating
the backstepping would mean eliminating the right well, thus reducing the number
of available states and the entropy. The energy difference ε between the wells is
related to the forward-versus-backward stepping probability.

have ε = ln(pf/pb). For kinesin, with a backstep fraction of 1/802, the
energy difference is ε ≈ 7 kBT-units.

It is generally true that having more configurations available
within a macrostate effectively lowers the free energy of that
state. An example illustrates how this is often important on the
level of a single biomolecule. For a protein there are many ways
to be unfolded and randomly coiled, i.e. there are many, say
˝u, unfolded microstates. The number of microstates, ˝f, for the
correctly folded state is generally orders of magnitude smaller
(Jackson, 2006). So the folding of a protein actually requires a free
energy T!S = kBT ln(˝u/˝f). By making the folded state more flex-
ible, i.e. by giving it more “statistical wiggle room,” this required
free energy may be brought down and that may lead to faster fold-
ing. To a large extent, the situation is analogous for the processive
motor protein. By putting more available microstates at the end of
the ATP hydrolysis cycle the motor can increase the free energy that
is available to drive the step. Molecular dynamics simulations have
been widely used to shed light on the dynamics of protein folding.
They may become similarly illuminating for the case of stepping
motor proteins.

What we have shown in this article is that for kinesin the mea-
sured percentage of backsteps and the measured rates for the
conformational changes agree with the idea of occasional back-
stepping as a source of energy and a way to speed up the motor
protein. It appears that kinesin operates very close to the opti-
mum that we calculated. So, even within the 1% available margin,
natural selection may have manipulated the backstepping rate to
maximize kinesin’s speed, because even small selective advantages
could be fixed by natural selection (Futuyma, 1998; Padian, 2008;
Kirschvink, 2000).
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