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a b s t r a c t

Hysteretic behavior is found experimentally in the transmembrane potential at low extracellular potas-
sium in mouse lumbrical muscle cells. Adding isoprenaline to the external medium eliminates the
bistable, hysteretic region. The system can be modeled mathematically and understood analytically with
and without isoprenaline. Inward rectifying potassium channels appear to be essential for the bistabil-
ity. Relations are derived to express the dimensions of the bistable area in terms of system parameters.
The selective advantage and evolutionary origin of inward rectifying channels and hysteretic behavior is
discussed.
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1. Introduction

Biological switches are as common as they are diverse. Quan-
titative accounts of such switches in terms of basic physics and
chemistry are often reminiscent of the way traditional physics has
dealt with phase transitions (Plischke and Bergersen, 1994; Reichl,
1980). Getting a discrete switch in a system with underlying con-
tinuous dynamics involves bifurcations, i.e., solutions that emerge
and disappear as a parameter is changed. Such bifurcations have
been identified in population dynamics and in signaling pathways
that involve DNA and/or proteins (Edelstein-Keshet, 1988; Murray,
1993; Ferrell and Machleder, 1998; Qian and Reluga, 2005). An
adverse environment may trigger the “switching off” of activity as
in the case of dormancy of persister cells (Lewis, 2007) or sporu-
lation of yeast (Sonenshein, 2000). Environmental stress can be
the cause for many cells and organisms to retreat from activity
until conditions are more energetically favorable for proliferation
(Wharton, 2002).
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Cells are sensitive to external potassium concentration changes.
For potassium the transmembrane electric potential and the trans-
membrane chemical potential almost balance each other out.
Under physiological conditions a large fraction of the potassium
channels is open which helps stabilize the electric potential. Too
much potassium (hyperkalemia) in the medium can cause depolar-
ization of the transmembrane potential. With too little potassium in
the medium (hypokalemia) a more complicated situation arises. As
the concentration of extracellular potassium lowers, the membrane
becomes hyperpolarized. Beyond a certain threshold, a switch to
a depolarized state is observed to occur in a variety of cell types
(Gadsby and Cranefield, 1977; McCullough et al., 1990; Siegenbeek
van Heukelom, 1991; Brismar and Collins, 1993; Jiang et al., 2001).
This transition appears reversible as potassium is added again to
the extracellular medium. However, the switch back to a hyperpo-
larized state occurs at a higher potassium concentration than the
one for which to depolarization occurred. There is an apparent hys-
teresis. In our previous works we have shown that these switches
do not go via the genome (van Mil et al., 2003; Geukes Foppen
and Siegenbeek van Heukelom, 2003; Gallaher et al., 2009). A very
simple model, involving only sodium channels, potassium chan-
nels, and Na,K-ATPase pumps, can quantitatively account for the
bistable behavior.

Inward rectifying potassium channels (IRKs) appear to be essen-
tial for the bistable behavior. When the electrochemical potential
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for potassium is such that too much potassium is driven outward,
the IRKs close. This characteristic results in a kind of “protection”
of the high intracellular potassium concentration (which, under
physiological conditions, is about twenty times as high as the extra-
cellular concentration) and this is often thought to be the reason
that IRK properties first evolved more than 2.4 billion years ago
(Hille, 1992). The dynamics of the system of pumps and channels
is such that the closing of a small fraction of IRK channels leads
to the closing of more IRK channels (Goodman and Art, 1996; Lu,
2004). Because of this positive feedback mechanism there are no
continuous transitions between the hyperpolarized and the depo-
larized state. Instead it is found, theoretically and experimentally,
that there is a genuine non-equilibrium first order phase transi-
tion (Moore, 1972). It is furthermore found that, in a certain value
range of the extracellular potassium concentration, both the hyper-
polarized state and the depolarized state are stable and hysteretic
behavior occurs (Jackson, 1989). This bistable region is only slightly
below the physiological concentration of extracellular potassium
and may be easily encountered.

Below we will first present the result of experiments in which
we dramatically increased the potassium permeability, PK, of the
cell membrane. We do so by adding isoprenaline to the medium.
The dependence on concentration and electric potential of the IRK’s
open-closed behavior will be overwhelmed and become negligi-
ble in this case. With this fixed, constant and high PK we find that
the phase transition and the bistability no longer occur. It is fur-
thermore found that for the case of high constant PK an analytic
solution can be found for the steady state equations for the sodium
and potassium flow. Theory and experiment appear in very good
agreement. We also compare the isoprenaline case with the control
in which the PK is dominated by IRKs.

The hypophysiological concentration of extracellular potas-
sium leads to a larger outbound force on intracellular potassium.
A hyperpolarization can compensate for this increased chemical
force. However, such hyperpolarization implies a larger leak of
sodium ions and a concurrent increased demand on the Na,K-
ATPase pumps. At some point, the hyperpolarization may simply
become too metabolically costly to maintain. What we will see is
that, with the variable PK of the IRKs, a radical switch from the
hyperpolarized branch to a depolarized branch occurs at some
value of the extracellular potassium concentration. In the depo-
larized state the potassium channels are largely closed and the
sodium leak is decreased. By blocking ion flow and ceasing the
metabolic efforts that maintaining such flow requires, the cell effec-
tively isolates itself from the adverse environment and “goes into
hibernation.” We see that upon again increasing the extracellular
potassium concentration, Ke, a switch back to the hyperpolarized
state occurs. However, as was mentioned before, that switch back
to the hyperpolarized branch occurs at a Ke that is about half a mil-
limolar higher than the Ke at which the switch to the depolarized
branch occurs. So, only when the environment is well within the
“healthy” domain does the cell “wake up” again.

It is likely that the bistability evolved as a functional response
to environmental adversity. In the discussion section we will spec-
ulate on the survival value of the cell’s bistability.

2. The Model

A potential difference across the cell’s membrane is necessary
for survival. Muscle cells have a transmembrane potential of around
−75 mV inside to outside at normal physiological conditions. The
prominent ions, sodium and potassium, are pumped against the
electrochemical potential by the ATP driven Na,K-ATPase in order
to maintain a high potassium concentration and a low sodium con-
centration inside the cell. Our model involves only the Na,K-ATPase,

sodium channels, and potassium channels. Despite neglecting all
other ions and transporters, remarkable accuracy will be obtained.

At steady state there is, for each ion, an equal and opposite pas-
sive flow through ion channels. To model the flux of ions across the
cell membrane, we have the following steady state equations:

PNaU
Ni − Nee−U

1 − e−U
= −3kp!(Ke; KK

m)!(Ni; KN
m) (1)

PKU
Ki − Kee−U

1 − e−U
= 2kp!(Ke; KK

m)!(Ni; KN
m). (2)

For both sodium (Eq. (1)) and potassium (Eq. (2)) these equa-
tions describe how the leak (on the left hand sides) must equal
the active transport (on the right hand sides). PNa and PK rep-
resent the membrane permeabilities for sodium and potassium
and these are multiplied with the electrochemical potentials for
the respective ions to obtain the leak rate. Here U represents a
dedimensionalized form of the electric transmembrane potential
(Vm): U = eVm/(kBT), where e is the elementary charge, kB is the
Boltzmann constant, and T is the temperature in degrees Kelvin.
The constant e/(kBT) equals 38 V−1 at T = 300 K. Ni and Ki rep-
resent the intracellular sodium and potassium concentrations. Ne

and Ke represent the extracellular concentrations of sodium and
potassium. The leak described on the left hand side of (1) and
(2) is compensated for by the activity of the Na,K-ATPase, the
sodium-potassium pump. For every cycle the Na,K-ATPase brings
three sodium ions from the inside to the outside and two potas-
sium ions from the outside to the inside. The pump activity is
described with rate-limiting Michaelis–Menten kinetics in both the
extracellular potassium concentration and the intracellular sodium
concentration. kp is the maximal turnover rate for the pump and
!(x; Kx

m) = x/(Kx
m + x). The textbook by Läuger gives KK

m = 0.2 mM
and KN

m = 0.6 mM, which were experimentally determined using
red blood cells (Läuger, 1991). The 0.2 mM represents the extra-
cellular potassium concentration that, with saturating intracellular
sodium concentration, leads to a half-maximal turnover rate for
the pump. Likewise, 0.6 mM represents the intracellular sodium
concentration that, with a saturating extracellular potassium con-
centration, leads to a half-maximal turnover rate for the pump.

The potential difference U comes about as a consequence of
sub-micromolar differences in concentration between cations and
anions. In this model sodium and potassium are the only permeable
ions. The concentrations of sodium and potassium are all millimolar
or higher. We therefore work with an electroneutrality condition:

Ni − Ne = −(Ki − Ke) = ıC. (3)

The variable ıC denotes the chemical imbalance between the cell
and the medium in which it is immersed. Eq. (3) also imposes
an osmotic balance (Ni + Ki = Ne + Ke = C) requiring that the total
concentration of permeable solutes is equal in the extracellular and
the intracellular solution. The model we have set up here uses the
notation of Keener and Sneyd (1998).

With Eqs. (1)–(3) we have three equations with three unknowns
(Ni, Ki, and U). By separating out the quotients on the left hand side
and adding up Eqs. (1) and (2) we obtain a single expression for U
in which the exponentials have canceled:

U = −
(

3kp

Ne + Ke

)(
PK − (2/3)PNa

PKPNa

)(
Ke

KK
m + Ke

)(
Ni

KN
m + Ni

)
. (4)

This may look straightforward until one considers the nature of PK.
For the IRK channels, PK depends on the electrochemical potential
of potassium, i.e., on Ke, Ki, and U. To better understand the sys-
tem we will first explore, theoretically and experimentally, what
happens when PK is constant and much larger than PNa. We can
accomplish this by adding isoprenaline to the medium.
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Fig. 1. The dots represent experimental data taken at Ne + Ke = 0.15 M with 1 !M
isoprenaline in the medium. The filled dots represent the voltage after relaxation
(about 5 min) as Ke is decreased in a stepwise fashion. The open circles represent the
voltages as Ke is increased again. The theoretical curve is according to Eq. (9) with
KK

m = 0.2 mM, 3kp/PNa = 0.65 M.

3. Isoprenaline Eliminates Bistability

Isoprenaline is a slowly hydrolyzable beta adrenergic agonist.
Pharmacologically it has been utilized to increase the heart rate
and relax the airways to increase air flow. Isoprenaline closes IRKs
(Geukes Foppen et al., 2003), but the characteristic of isoprenaline
that is important in this section is the ability to open Ca2+-gated
potassium channels (Kume et al., 1989). The number of such chan-
nels in the muscle cells that we study is very large (Sejersted and
Sjøgaard, 2000; Kristensen et al., 2006). The permeability associ-
ated with the Ca2+-gated potassium channels far overwhelms the
permeability due to IRKs. The opening results in a PK that is large
and independent of Ke, Ki, and U.

In our experiments we measured the transmembrane poten-
tial of superficial cells of the lumbrical muscle of the mouse in
vitro. Cells were impaled with fine tipped glass microelectrodes and
remained in the cell for the entire duration of the experiment. Ion
concentrations in the extracellular medium were under our control
and the temperature was maintained at 35 ◦C. We first let the cell
come to a steady state with the physiological value Ke = 5.7 mM
and we then measure U. As Ke was changed in a stepwise fash-
ion, the osmolarity of the external medium was kept constant, i.e.
Ne + Ke = C. After each time that Ke was changed, the system was
given sufficient time to reach the new steady state before the volt-
age was recorded. A more detailed account of the procedures can be
found in the references (Siegenbeek van Heukelom, 1991; van Mil
et al., 1997, 2003; Geukes Foppen, 2004). Figs. 1 and 2 were obtained
on the same cell. They show results with and without isoprenaline
added to the external bath. The closed circles in Figs. 1 and 2 show
the measured U’s of the cells as Ke was decreased in small steps.
The open circles represent the voltages U as Ke is increased again.
Throughout our experiments the [ATP]/([ADP][P]) ratio is buffered
at a saturating level and it therefore is not a factor.

Adding isoprenaline to the external solution results in a situa-
tion with PNa ≪ PK by between one and two orders of magnitude.
Using this and the Ne + Ke = C condition, we approximate Eq. (4):

U = −
3kp

PNaC

(
Ke

KK
m + Ke

)(
Ni

KN
m + Ni

)
. (5)

The right hand sides of Eqs. (1) and (2) are of the same order
of magnitude, but on the respective left hand sides PK is about
two orders of magnitude larger than PNa. It is for this reason that
the electrochemical potential for sodium (with Ni − Ne exp[−U] in
the numerator) is two orders of magnitude larger than the one
for potassium (with Ki − Ke exp[−U] in the numerator). If we take

Fig. 2. The dots represent experimental data for the control situation taken at Ne +
Ke = 0.15 M. The filled dots represent the voltage after relaxation as Ke is decreased
in a stepwise fashion. The open circles represent the voltages as Ke is increased again.
The theoretical curve is found by solving for U by Eq. (11) numerically stepwise
using a Newton scheme at each Ke . It is thick and dashed for decreasing Ke and thin
and continuous for increasing Ke . The parameters used were PNa = 5.4 × 10−9 dm/s,
P0 = 1.1 × 10−8 dm/s, Pmax

IRK = 9.6 × 10−8 dm/s, Ũ = 1.3, ε = 0.12, KK
m = 0.40 mM, and

Umax = −4.3.

Ki = Ke exp[−U], we get Ni = C − Ke exp[−U]. Substituting this in
(5) we find after some algebra:

U = −
3kp

PNaC

(
Ke

KK
m + Ke

)(
1 + KN

m

C − Kee−U

)−1

. (6)

This is a relation between Ke, U, and a number of constant parame-
ters. With a further approximation it is possible to obtain an explicit
and simple expression for U as a function of Ke. In the regime where
Ke is larger than about 2 mM, we take the Ke/(KK

m + Ke) to be one.
We then have a relation

U = Umax

(
1 + KN

m

C − Kee−U

)−1

, (7)

where Umax = −3kp/(PNaC). Solving for Ke we find

Ke = eU
(

C + KN
m

U
U − Umax

)
. (8)

C is larger than KN
m by a factor of about 250. So U = ln[Ke/C] is a

good approximation until U comes very close to Umax.
In a U vs. Ke graph we have a decrease of U (follow-

ing U = ln[Ke/C]) as Ke decreases. But as Ke approaches 2 mM
and U approaches Umax, a horizontal asymptote at U = Umax is
approached from above. Thus when Ke gets very low this approxi-
mation will not hold. However going back to Eq. (5), at low Ke the
sodium flux increases making Ni much greater than KN

m so that the
last term goes to unity. We then end up with the following concise
expression for U(Ke):

U(Ke) =

⎧
⎪⎪⎨

⎪⎪⎩

ln
(

Ke

C

)
Ke

KK
m + Ke

, if Ke > K∗
e

Umax
Ke

KK
m + Ke

, if Ke < K∗
e .

(9)

In order to connect the two parts of this curve at Ke = K∗
e we

need Umax = ln[K∗
e /C]. Fig. 1 shows the data points deriving from

the experiment together with a fit obtained with KK
m = 0.2 mM and

K∗
e = 2 mM. The latter value leads to Umax = −4.3, which, in terms

of Volts, corresponds to −110 mV. In the experiments we kept Ne +
Ke = C at 150 mM and this value was used in Eq. (9) to obtain the
fit.

When Umax = −4.3 is related back to the expression Umax =
−3kp/(PNaC) we find 3kp/PNa = 0.65 M. This is in good agreement
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with some independent estimates of kp and PNa. The reference
by Sejersted (1988) gives 50 pmole s−1 cm−2 for the steady-state,
transmembrane flux of sodium ions of a muscle cell in physio-
logical conditions. We use this for 3kp. Molair (M) is mole per
liter, i.e., mole per cubic decimeter. For consistency we convert
to decimeter (dm) for our unit of distance. We then have 3kp =
5 × 10−9 mole s−1 dm−2. The reference by Costa et al. (1989) reports
PNa = 5.4 × 10−9 dm/s for Xenopus laevis oocytes. Combination of
the data of Sejersted and Costa et al. data gives 0.9 M for 3kp/PNa.
This is reasonably close to our 0.65 M. Fig. 1, moreover, shows a very
good agreement between Eq. (9) and the experimentally recorded
membrane potentials.

4. IRKs Produce Bistability

The IRK channel has an open probability that depends on the
transmembrane potential as well as on intracellular and extracel-
lular potassium concentrations (Hagiwara and Takahashi, 1974;
Standen and Stanfield, 1978). The dependence appears to be well
approximated by one on just the net electrochemical potential
of potassium, i.e., U − ln(Ke/Ki) (Lu, 2004). It was, furthermore,
observed already decades ago by Katz that current through the IRK
decreased when Ke was decreased (Katz, 1949). It is not difficult
to understand how the membrane potential can affect the open
probability. A membrane potential of about 100 mV leads to a huge
electric field inside the membrane (which is only about 5 nm thick).
As that field changes, charged groups in or near the lining of the
channel can reposition and thus modulate a channel’s conductivity.
How actual ion concentrations can affect a channel’s conductivity is
still a subject of active research (Guo and Lu, 2003; Yan et al., 2005).
The current versus voltage relationship has been fit many times to
a Boltzmann distribution (Yang et al., 1995; Stadnicka et al., 2000;
Lu, 2004; Struyk and Cannon, 2008). We summarize and approx-
imate the potassium permeability with the following empirically
based formula:

PK = P0 + Pmax
IRK

{
1 + exp

[1
ε

(
U − ln

(
Ke

Ki

)
− Ũ
)]}−1

. (10)

P0 represents the part of the potassium permeability that does not
involve the IRKs and Pmax

IRK is the maximum permeability of IRKs
only. The inverse of the term in curly brackets is a Boltzmann distri-
bution for the open fraction of the IRKs. The fraction of channels that
is open depends on the net electrochemical potential of potassium
(U − ln(Ke/Ki)) and the parameters Ũ and ε. For U − ln(Ke/Ki) = Ũ
the open-closed distribution is fifty–fifty. The small positive value
of Ũ (Ũ ≈ 1.3, corresponding to about 30 mV) guarantees that the
IRKs are mostly open when the net electrochemical potential of
potassium is about zero. Some versions of Eq. (10) include a prefac-
tor that depends on the potassium concentration (Sims et al., 1991;
Siegenbeek van Heukelom, 1994; Goodman and Art, 1996; Liu et al.,
1998; van Mil et al., 2003; Gallaher et al., 2009), but we have left
that out, as within our range of interest that dependence is negli-
gible compared to the exponential dependence in the Boltzmann
expression.

The PK vs. U curve has a sigmoidal shape. For U − ln(Ke/Ki) ≪ Ũ,
the asymptotic value is PK = P0 + Pmax

IRK and the potential is
hyperpolarized. For U − ln(Ke/Ki) ≫ Ũ, the asymptotic value is
PK = P0 and the potential is depolarized. The parameter ε gives
the sensitivity of the open-closed distribution to the modified
electrochemical potential U − ln(Ke/Ki) − Ũ. A small value of ε
leads to a steep and sharp transition between the hyperpolarized
and depolarized limits.

We explore, theoretically and experimentally, the regime where
Ke is taken to below the physiological value of about 5.7 mM. In
the last section we saw that for Ke > K∗

e we have U ≈ ln(Ke/C). In
that case we have PK ≫ PNa and we find ourselves on the branch

described on the first line of Eq. (9). It is obvious from Eq. (9)
that once we cross over into the regime Ke < K∗

e , we have U(Ke) >
ln(Ke/C). This means that the transmembrane electric potential for
potassium and the chemical potential for potassium are no longer
balancing each other out. A situation with most of the IRKs being
open can then no longer be maintained. With P0 for PK, we have a PK
that is of the same order of magnitude as PNa. We can therefore no
longer work with Eq. (5) and have to go back to Eq. (4). With P0 and
PNa of the same order of magnitude, the factor (PK − (2/3)PNa) will
significantly differ from PK. With a small Ke we also have Ni ≫ KN

m .
These conditions lead to a new condition for small Ke that incorpo-
rates the bistability. All in all, we have for the two branches:

U(Ke) =

⎧
⎪⎪⎨

⎪⎪⎩

ln
(

Ke

C

)
Ke

KK
m + Ke

, if Ke > K∗
e

Umax

(
1 − 2

3
PNa

PK

)
Ke

KK
m + Ke

, if Ke < K∗
e .

(11)

In order to connect the two parts of the curve we assume that
the bistable region is within the low Ke regime so that ln(K∗

e /C) =
Umax(1 − (2/3)(PNa/(P0 + Pmax

IRK ))). The K∗
e is higher in the control

(Eq. (11)) than in the isoprenaline case (Eq. (9)) because the
term (1 − (2/3)(PNa/(P0 + Pmax

IRK ))) drops slightly below unity. Fig. 2
shows the results of experiments together with curves derived from
the modeling.

With the IRKs, the closing of a small fraction of channels can
lead to a snowball effect that does not occur with the constant PK
of the last section. The increase in U that follows the closing of
a small fraction of IRKs leads to an increase of the term in curly
brackets in Eq. (10). This implies a decrease of PK. The smaller PK,
in turn, will drive the membrane potential U further away from
ln(Ke/Ki) and closer to ln(Ne/Ni), i.e., U will increase faster, lead-
ing to a further decrease in PK, etc. The “snowball” will stop when
all IRKs are closed. With PK = P0 we are then on the depolarized
branch. We take Ke = Kh→d

e for the extracellular potassium con-
centration at which we switch from the hyperpolarized branch to
the depolarized branch.

A similar snowball effect takes place once we are on the depo-
larized branch (cf. Fig. 2) and we start increasing Ke again. Opening
of a small fraction of IRKs can lead to hyperpolarization, i.e., U goes
down. But a U that is further decreasing into the negative regime
will increase PK (cf. Eq. (10)). In this case the “snowball” will stop
once all IRKs are open and PK = P0 + Pmax

IRK . This switch occurs at
Ke = Kd→h

e .

5. The Dimensions of the Bistable Area

We start this section by focusing in on the bistable area (cf. Fig. 3)
and applying a very rough approximation. The approximation is
based on the following Ansatz. Going from the hyperpolarized
branch to the depolarized branch, the aforementioned snowballing
to the depolarized branch will occur after about half of the IRKs have
closed. Likewise, the snowball effect leading to the massive open-
ing in the depolarized-to-hyperpolarized transition will start after
about half of the channels have already opened. It is possible to use
a fraction different from 1/2. It is also possible to use different frac-
tions for the two transitions. However, with a factor of 1/2 there
is a plausible symmetry between the two transitions. The fraction
of 1/2 means that the argument of the exponent in Eq. (10) equals
zero. The Ansatz thus leads to:

Uhyp − ln

(
Kh→d

e

Ki

)
− Ũ ≈ Udep − ln

(
Kd→h

e

Ki

)
− Ũ ≈ 0. (12)

In Eq. (12) we observe that the bistable area can be shifted to
lower Ke-ranges by increasing Ũ. Mathematically with Eq. (12) it is
also possible to compensate for an increased Ũ by increasing Uhyp
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Fig. 3. A close-up view of the same theoretical curve of Fig. 2 with the points of
interest highlighted. Just the second part of Eq. (11), where the bistability is present,
is shown here. The stable solutions are represented with a solid line and the unstable
region is represented with a dashed line. The points of switching, the center inflec-
tion point, and the height and width are all labelled with the notation that is found
in the text.

and Udep. However, the value of Uhyp is tied to Umax and it is largely
fixed by the mechanisms that were identified in Sections 3 and 4
and resulted in Eqs. (9) and (11). In numerical simulations of the
system it is indeed observed that changing Ũ leads to a horizontal
shift of the bistable area (Siegenbeek van Heukelom, 1994; van Mil
et al., 2003; Gallaher et al., 2009). With these equations we can
derive relations between and estimates for Uhyp, Udep, Kh→d

e , and
Kd→h

e .
The intracellular potassium concentration Ki is supposed not to

change too much as the switch occurs. After all, the entire point
of the bistability appears to be the protection of the high Ki. From
Eq. (12) we derive the following formula for the magnitude of the
switch:

#U = Udep − Uhyp ≈ ln

(
Kd→h

e

Kh→d
e

)
. (13)

From Eq. (13) we take advantage of the apparent symmetry and
assume that the switch points are equidistant from a central point
(i.e., Kavg

e = Kd→h
e − #Ke/2 = Kh→d

e + #Ke/2). With a small #Ke we
can use the fact that ln(1 + ı) ≈ ı for ı close to zero. We can then
actually derive a linear relationship between the magnitude of the
height (#U), the width (#Ke = Kd→h

e − Kh→d
e ), and the center (Kavg

e )
of the bistable area:

#U ≈
(

#Ke

Kavg
e

)
. (14)

In Fig. 3 we observe that Kh→d
e ≈ 1.6 mM and Kd→h

e ≈ 1.95 mM.
These values in Eq. (13) predict #U ≈ 0.20. From Fig. 3 the two
branches appear to be separated by #U = 0.65 or about 17 mV.
The Ansatz apparently leads to an estimation of the right order of
magnitude. However, refinement is possible.

The term {1 + exp[(U − ln(Ke/Ki) − Ũ)/ε]}−1
in the expression

for the PK describes a sigmoid that, as (U − ln(Ke/Ki)) increases,
goes from an asymptotic value of 1 to an asymptotic value of 0.
The transition from 1 to 0 is steeper if the value for ε is smaller. In
the ε → 0 limit, it no longer matters whether we take 1/2 or any
other number between 0 and 1 as the critical fraction at which the
“snowballing” starts. In case of ε → 0, we can also use different
fractions for the two transitions without affecting the result. This is
because with ε → 0 the transition from 0 to 1 is effectively vertical.
The experimental data in Fig. 2 were best fit with ε = 0.12. We
observed that around that value for ε we can still vary the width
of the bistable area by varying ε. This means that with ε = 0.12

we are not yet in the regime where the ε → 0 limit applies and the
fractions may vary from 1/2.

We can obtain equations for the turning points because the
tangent line to the theoretical curve in Fig. 3 becomes vertical
when the switching occurs. Using the second part of Eq. (11) with
∂U/∂Ke → ∞ leads to two equations, one for Udep and one for Uhyp:

Udep − Ũ − ln
(

Ke

Ki

)
= ε ln

(
P0 + Pmax

IRK
P0

)
+ εarccosh(−G(Ke)) (15)

Uhyp − Ũ − ln
(

Ke

Ki

)
= ε ln

(
P0 + Pmax

IRK
P0

)
− εarccosh(−G(Ke)), (16)

where

G(Ke) = 1 +
UmaxPNaPmax

IRK
3εP0(P0 + Pmax

IRK )
Ke

Ke + KK
m

. (17)

The symmetry is easy to see along the U-axis as the term
ε arccosh(−G(Ke)) on the right hand sides of Eqs. (15) and (16) shifts
the potential up or down from a central point ε ln((P0 + Pmax

IRK )/P0)
by nearly equal amounts (Ke’s are slightly different). In fact, get-
ting rid of the last term on the right hand sides of these equations
gives the equation through the center inflection point (cf. Fig. 3),
which can also be found by using the second part of Eq. (11) with
∂2U/∂K2

e = 0.
For Eq. (16), the two terms on the right hand side are nearly equal

and opposite. They almost cancel each other out so the estimation
in Eq. (12) for the hyperpolarized branch remains accurate:

Uhyp ≈ Ũ + ln

(
Kh→d

e

Ki

)
. (18)

This implies that the snowballing from the hyperpolarized branch
to the depolarized branch will occur after about half of the IRKs have
closed. For the depolarized branch (Eq. (15)) the hyperbolic arcco-
sine term presents another dependence on Ke so an approximation
will ease the analysis.

εarccosh(−G) = ε ln(−G −
√

G2 − 1)

= ε ln

(
−G − G

√
1 − 1

G2

)
≈ ε ln(−2G) (19)

The last step in Eq. (19) is acceptable because G(Kd→h
e ) ≈ −3.5,

so 1 ≫ 1/G2. Furthermore, at Kd→h
e the potassium concentration

is high enough to make the Michaelis–Menten term in Eq. (17)
practically unity. With this approximation we end up with the
depolarized potential:

Udep = Ũ + ln

(
Kd→h

e

Ki

)
+ ε ln

(
P0 + Pmax

IRK
P0

)

+ ε ln

(
−2 −

2UmaxPNaPmax
IRK

3εP0(P0 + Pmax
IRK )

)
. (20)

Because of the extra terms here, the critical fraction of IRKs that
need to open in order to switch back to the hyperpolarized branch
is not 1/2. The extra terms will make the argument of the expo-
nent in Eq. (10) larger than zero, which makes the permeability
very small. It follows that the depolarized-to-hyperpolarized tran-
sition will happen after only very few of the channels have opened.
Now taking the difference in the depolarized and hyperpolarized
potentials with some rearrangement gives the height of the bistable
region:

#U ≈ ln

(
Kd→h

e

Kh→d
e

)
+ ε ln

(
−2

Pmax
IRK
P0

(
1 + PNaUmax

3εP0

))
. (21)
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Using the parameters from Fig. 3 with Kh→d
e = 1.6 mM and

Kd→h
e = 1.95 mM we get more than triple the rough estimate of

#U = 0.20 that we had before. The result #U = 0.73 is close to the
#U = 0.65 that is obtained from the fit. Using the approximation
of Eq. (14) and some rearrangement we obtain:

#U ≈
(

#Ke

Kavg
e

)
+ ε ln

(
2

Pmax
IRK
P0

(
kp

εP0C
− 1

))
. (22)

It should be immediately obvious with Eq. (22) that with the
aforementioned Ansatz of ε → 0 the steepness of the transition
increases and we again get the approximation of Eq. (14). Eq. (22)
shows how the parameters affect the geometry of the bistable area,
but does not tell the full story. As the parameters ε, kp, C, Pmax

IRK and
P0 are changed, the height and the position of the bistable area
are also affected through the dependence of Kavg

e on ε, kp, C, Pmax
IRK

and P0. The validity of Eq. (22) as an approximation can be tested
by numerically checking (against Eq. (11) in conjunction with Eq.
(10)) the geometry of the region. Upon plotting solutions we indeed
see that a smaller kp leads to a shift of the bistable area to larger
values of Kavg

e . This makes sense, as with less pumping capability,
the cell will have to switch sooner to a depolarized state (the switch
occurs when active transport cannot handle the extra sodium leak
that hyperpolarization involves). A shift in the opposite direction
(towards smaller Kavg

e ) occurs when decreasing the osmolarity, C.
Because C = Ke + Ne ≈ Ne, decreasing C effectively decreases Ne. A
smaller Ne reduces the sodium inflow (cf. Eq. (1)) and therefore
presents less pressure on the pump. Increasing P0 has the same
effect as adding some isoprenaline to the system. P0 accounts for
the permeability of all K+ channels other than the IRKs, so increas-
ing this value is analogous to opening more K+ channels that, unlike
the IRKs, remain open at low Ke values. Increasing P0 has the effect
of decreasing the height and width of the bistable region. It can be
seen in Eq. (22) that with a sufficiently large P0, a sufficiently large C
or a sufficiently small kp the logarithm will eventually give an imag-
inary number. The expression is then meaningless, #U is effectively
undefined, and we no longer have hysteresis. All in all, Eq. (22)
describes how for finite parameter values a bifurcation occurs; a
bistable region appears or disappears.

6. Results and Discussion

We have studied the maintenance of the ionic balance of a liv-
ing cell. Our simple model involved only sodium and potassium.
Active transport in our model against the electrochemical poten-
tial is carried out solely by the Na,K-ATPase. Passive transport takes
place through sodium and potassium channels. We have shown
that hysteretic behavior of the membrane potential emerges when
the potassium permeability is not fixed and constant, but made to
depend on the electrochemical potential of potassium (cf. Eq. (10)).
Our experiments with muscle cells give good agreement with the
results of the analysis of the model. Fig. 1 depicts the theory and
experiment for the case of a large constant potassium permeability.
Fig. 2 shows how a potassium permeability that is dominated by the
IRKs (which have an open probability that depends on the electro-
chemical potential of potassium) leads to a bistable area. For this
case, experiment and theory show first order phase transitions and
hysteresis. Approximations that are inferred from the model can
quantitatively account for how the dimensions and the location of
the bistable area depend on the different parameters of the model.

Though our experiments were performed on muscle cells, this
phenomenon is seen in other types of cells (Gadsby and Cranefield,
1977; McCullough et al., 1990; Siegenbeek van Heukelom, 1991;
Brismar and Collins, 1993; Jiang et al., 2001). Our analysis may
shed light on the broader issue of the role of IRKs in the potassium
permeability of all cells. In the last chapter of the well-known

textbook by Hille (1992) the evolution of ion channels is recon-
structed. Extrapolating three billion years into Earth’s past is
speculative. However, it is in the context of early evolution that we
should be looking for an explanation of the bistability. On the basis
of sequence homologies Hille estimates that IRKs first emerged
more than 2400 million years ago. Hille suggests that there was a
transitional period occurring 2000–3000 million years ago during
which many traits evolved to give way for the eukaryotic cell to
develop. IRKs may be considered evolutionarily ancient and are
found in both eukaryotes and prokaryotes (Miller, 2000; Durrell
and Guy, 2001).

The selective advantage of the switch discussed in this article
is that it enables the cell to shut down in conditions of environ-
mental stress. In the depolarized state the cell is insulating itself
from the environment. With ion channels mostly closed and a very
small electric transmembrane potential, ion leak will be minimal.
Consequently, the Na,K-ATPase pumps need not operate at a high
turnover rate and ATP consumption will thus be very low. The sharp
decrease of the transmembrane electric potential U that we see in
Fig. 1 could already qualify as a kind of switch. However, a switch
without a bistable region carries the disadvantage that a cell can
repeatedly “go to sleep” and “wake up” if the extracellular potas-
sium concentration were to fluctuate in the Ke < K∗

e region. No such
metabolic confusion occurs if there is a sufficiently wide bistable
region. A hyperpolarized to depolarized transition takes place when
Ke < Kh→d

e . The cell will remain in its state of hibernation also when
Ke will subsequently fluctuate around Kh→d

e . Only when Ke is large
enough that the cell will not be metabolically compromised does
the cell “wake up.” In the same respect, fluctuations of Ke around
Kd→h

e will not lead to a switch once the cell is “awake”. The first
order phase transitions and the bistable region provide the cell with
a very robust safeguard against environmental challenge.

The role of chloride was not considered in this model. Chloride
is important in the regulation of the transmembrane potential and
volume homeostasis. The permeability for Cl− can be up to an order
of magnitude higher than the permeability of K+ (Bretag, 1987). Like
for K+, for Cl− at physiological conditions the electric and chemi-
cal potentials nearly balance. The Na,K,2Cl-cotransporter is driven
by inward Na+ flow and therefore leads to a greater sodium leak
and a slight accumulation of intracellular Cl− above the equilib-
rium value. Changing the flux of Cl− by stimulating or blocking the
Na,K,2Cl-cotransporter preserves the hysteresis, but has effects on
Kavg

e , #Ke, and/or #U (Gallaher et al., 2009). Blocking the Na,K,2Cl-
cotransporter effectively leads to a lower Kavg

e and a higher #U,
whereas stimulating the Na,K,2Cl-cotransporter leads to a higher
Kavg

e , a lower #Ke, and a slightly smaller #U. Coupling Na+ and
K+ transport to Cl− transport adds a complication to the system but
appears to not change the basic dynamics. The effect of the chloride
traffic on Eq. (22) may be as simple as adding another load on the
pump and thereby decreasing the ratio kp/C. However, the intro-
duction of more adjustable parameters leads to larger equations
and immunization of the theory against experimental falsification.
By neglecting chloride we sacrifice the accuracy of parameter esti-
mates for the sake of simplicity and conciseness.

The transmembrane potential is dependent on the permeability
of potassium which is, in turn, dependent on the extracellu-
lar concentration of potassium and the transmembrane potential
itself. This nonlinearity may result in either a hyperpolarization
or a depolarization of the transmembrane potential at low Ke.
For normal function, the extracellular concentration of potassium
must lie within a certain range, but low potassium conditions do
occur. This is referred to as hypokalemia and the condition most
commonly results from excessive potassium loss via the kidney
associated with the long-term use of diuretics. In extreme circum-
stances, hypokalemic patients can have temporary paralysis, which
may be due to muscle cells switching to a depolarized state. The
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most common treatment for hypokalemia is through potassium
supplementation, though this often is overshot leaving one with
hyperkalemia. Getting a good grip on the location and dimensions
of the hysteretic region should be helpful in both understanding
and treating this condition.
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