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Abstract

When kinesin moves along microtubule, it can occasionally malfunction and make a backward step. Recent single molecule experiments on
moving kinesin have revealed that the forward to backward step ratio depends exponentially on the load force. We introduce a model of a Brownian
step that accounts for recorded data with great accuracy. We find that the forward to backward step ratio does not depend on any structural features
of the kinesin. The stepping statistics appear fully determined by the 8 nanometer stepsize, the energy that drives the step, and kBT , which is the
natural “quantum” of thermal energy. With this model we next analyze the energetics of the Brownian stepper. We derive force–velocity relations
for the vicinity of the “static head” case, which is when the applied force is close to the stopping force. We also derive force–velocity relations for

the close-to-equilibrium case, i.e. a small load and a small ATP-ADP chemical potential.
© 2008 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Small cells, like bacteria, rely on diffusion for their internal
ransport needs. In solution a molecule the size of an aminoacid
enerally covers a distance of a micrometer in about a millisec-
nd. This is fast enough for a micrometer size cell to rely on
Alberts et al., 1994).

Diffusion follows a formula 〈L2〉 ∝ t, where 〈L2〉 denotes the
verage square distance and t is the time. This means that it takes
factor λ2 more time to cover a distance that is λ times as large.
ukaryotic cells are generally more than an order of magni-

ude larger than bacteria. Eukaryotic cells, furthermore, contain
rganelles like mitochondria, endoplasmatic reticula, etc. Such
rganelles are relatively large (about a micrometer) and they dif-
use slowly. To speed up the internal transport eukaryotic cells
ave evolved a system of active transport (Boal, 2002).

The cytoskeleton is a network of “support beams” that gives
he cell structural reinforcement (Boal, 2002). But it is also used
s a kind of “railroad system.” Motor proteins literally walk
n the biopolymers that constitute the cytoskeleton and pull

hemical-filled vesicles or organelles from where they are manu-
actured to where they are needed. Motor proteins that step along
biopolymer and stay attached are called “processive” (Howard,
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001). Kinesin is one of the most prominent and best researched
mong the processive motor proteins. Experimentalists as well
s theoreticians and biologists as well as physicists have probed
nd analyzed kinesin. Theoretical interest has been driven by a
esire to understand how a nanometer size engine operates. It
s still very much an open problem how a single molecule can
onvert chemical energy into mechanical force and motion.

It was already in the 1990s that the 3D structure of kinesin was
etermined (Wriggers and Schulten, 1998; Vale and Milligan,
000). One could, in principle, take such a 3D structure as a
tarting point for a dynamical simulation of the stepping action
f kinesin. However, kinesin consists of two heads of each about
50 amino acids. Simulating the dynamics of kinesin heads sur-
ounded by an aqueous solution for more than just picoseconds is
eyond the capacity of even the most powerful computing equip-
ent. But even if that were possible, such simulations would still

ot shed any light on the issue as to how the motor protein con-
erts the free energy of ATP hydrolysis into walking action. The
nswer to the “how”-question would be buried in a plethora of
umbers.

But the action of kinesin has also been investigated on a
echanical level and many questions on how the motor operates

ave been answered through sophisticated optical tweezer and

icroscopy experiments (Howard, 2001). Since the early 1990s

xperimentalists have immobilized microtubules on a slide and
et kinesin pull a silica bead where it normally pulls a vesicle
r organelle (Svoboda et al., 1993). A silica bead of about a
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Fig. 1. A schematic depiction of the Brownian step. After detachment of the
trailing head, the attached head reorients and brings the detached head to near
the next binding site. Random diffusive motion will make the detached head
hit the next binding site, binding then occurs and a next step can begin. Power
is generated and energy is dissipated when the attached head reorients across
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icrometer in diameter can be tracked under a microscope and
ven the 8 nanometer stepping of the motor can then be resolved.

hen a narrow laser beam is directed at the bead, the bead will
ull towards the center of the beam where the light intensity is
ighest. With such a so-called optical tweezer it is possible to
ull forward or backward on the motor protein with piconewton
agnitude forces.

. Backstepping

In the earliest reports it was stated that 5–10% of all kinesin
teps were backward and that this percentage did not vary much
ith an applied force (Visscher et al., 1999). But in the last 5
ears better equipment and techniques have led to more accurate
bservation (Nishiyama et al., 2002; Carter and Cross, 2005).
n 2005 Carter and Cross reported the following empirical rela-
ionship for the forward-to-backward stepping ratio

Pf

Pb
= 802 exp[−0.95FpN], (1)

here FpN represents the applied load in piconewtons (Carter
nd Cross, 2005). The data appear to follow this relationship
ery closely. Similar numbers were found in the reference by
ishiyama et al. (2002). One may be tempted to think that the
02 and the 0.95 are consequences of the 3D structure of the
inesin and that it would be practically impossible to retrieve
hese numbers from the internal structure and workings of the
ngine. However, as will be shown below, the truth is surpris-
ngly simple. The 0.95 is an almost trivial consequence of the
ature of Brownian stepping and the 802 derives straightfor-
ardly from the mechanical energy that drives the step.
Let’s look at what happens in a Brownian step. After the

etachment of the rear head, a reorientation of the attached head
akes place (see Fig. 1). This reorientation brings the detached
ead into the vicinity of the next forward binding site. Random
rownian motion will eventually make the detached head hit

his next forward binding site. Binding then occurs and a next
tep can commence. The Brownian trajectory of the detached
ead toward the next binding site does not dissipate any energy.
t is pure diffusion. It is in the reorientation of the attached head
hat the energy of ATP hydrolysis is put to work. An energy G is
tilized to cover the stepsize L and overcome internal and hydro-
ynamic friction (Bier, 2007). However, this power stroke is on
molecular level and takes place in a nondeterministic, Brown-

an environment. After the appropriate relaxation, a Boltzmann
istribution is established between the lowest energy position
n the right and the position on the left, which has an energy
higher. The Brownian stepping model of Fig. 1 can quantita-

ively account for much of kinesin’s behavior (Bier, 2003, 2005,
007, in press).

It is reasonable to assume that a backstep occurs when the
etached head rebinds at the same rear binding site that it orig-
nally came from. Such binding would then trigger a backstep.

ackward binding can occur when the attached head is in the
rey dotted area in Fig. 1. For forward binding the attached head
eeds to be in the striped area. Consider the forward reorienta-
ion of the attached head as depicted in Fig. 1. As was mentioned

t
t
w
t

he stepsize L driven by an energy G. With a load force F pulling back on the
inesin, the effective energy that drives the power stroke is G− FL instead of
ust G.

efore, between the far left orientation and the far right orien-
ation of the attached head there is a forward driving energy
. Let’s call the angle of the attached head with the original

ar left orientation φ. In the simplest approximation the energy
ecreases linearly from zero to −G as the angle goes fromφ = 0
o the far right orientation. It is obvious that for a smooth lin-
ar power stroke like that, there is, for every orientation in the
triped area, an orientation in the grey area that is (1/2)G higher
n energy. We thus get with the Boltzmann distribution

Pf

Pb
= exp

[
G

2kBT

]
, (2)

here kB is the Boltzmann constant and T is the absolute tem-
erature. Now suppose that the power stroke is also working
gainst a load force F. This means that a force F is pulling back
n the attached head right at the point where the two heads are
inked. The energy difference between the far left and the far
ight orientation of the attached head is now diminished by FL,
here L represents the 8 nm stepsize. Substituting G− FL for
in Eq. (2), we then find for the forward to backward stepping

atio

Pf

Pb
= exp

[
G

2kBT

]
exp

[
− L

2kBT
F

]
. (3)

ith F expressed in piconewtons, the prefactor L/2kBT turns
ut to be exactly the 0.95 that Carter and Cross observed! It
s remarkable that no structural characteristics of the kinesin
eads are involved in the 0.95 prefactor. The only inputs are

he stepsize L of the Brownian stepper and the natural unit of
hermal energy kBT . Identifying the 802 of Carter and Cross
ith the exp[G/2kBT ] of Eq. (3) leads to about 13 kBT units as

he energy that drives the power stroke. Nishiyama et al. (2002)
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Fig. 3 depicts data that were presented in the reference by
Carter and Cross (2005). Between a zero load and a load of 7
pN, we see that static head is approached at a rate of about
100 nm/s per piconewton. This implies a mobility of about

Fig. 2. Experiment has revealed that kinesin still hydrolyzes ATP when it is
pulled back with a force larger than the stopping force. So for kinesin it is
not appropriate to model the mechanical load and the ATP-ADP potential as
pushing the same cycle in opposite directions. The setup of Fig. 1 leads to the
M. Bier / BioSyst

easured 221 for the prefactor. This leads to 11 kBT units for
he energy that drives the power stroke. Under physiological
onditions the hydrolysis of ATP makes about 22 kBT units of
nergy available. So we have an efficiency of about 50–60% for
inesin’s conversion of chemical to mechanical energy. Motor
rotein efficiencies of about 50% is generally what has been
eported by experimentalists (Howard, 2001). The power stroke
s only one step in an entire catalytic cycle and therein lies the
eason that the chemical to mechanical conversion is not 100%
fficient. In the course of the catalytic cycle ATP is bound, ADP
nd inorganic phosphate are released, and the kinesin attaches to
nd detaches from the microtubule. These chemical steps will
e faster and more irreversible if more energy is put behind
hem. Forward and backward transition rates have been mea-
ured (Cross, 2004) and it appears that these chemical steps
ach are driven by energy drops of about 2 kBT -units. It turns
ut that the power stroke energy and the energy behind the chem-
cal bindings and unbindings properly add up to about 22 kBT

nits (Bier, in press).

. Kinesin is not Like Membrane Pumps

Much has been made of the fact that kinesin keeps hydrolyz-
ng ATP even when it is forced to step backward under a load
hat exceeds the stall force (Molloy and Schmitz, 2005). But,
iven the setup of Fig. 1, this is not surprising. With a load
orce F the energy driving the power stroke is G− FL and if
L > G, the Boltzmann distribution over the reorientation is
imply such that a backstep is more likely than a forward step.
TP, however, will continue to be hydrolyzed as backstepping
ominates. This is in apparent contrast to a pump like F0F1-
TPase. This is a membrane protein that tightly couples the

ransmembrane electrochemical proton potential to the chemical
otential that drives ATP hydrolysis inside the cell. The behav-
or of this protein is well modeled by a cycle of conformational
tates in which both these potentials compete for the direction
n which the cycle is ultimately driven (Läuger, 1991). In case
hese potentials cancel each other out, a condition often called
static head,” the pump comes to a standstill. F0F1-ATPase can
hus hydrolyze as well as synthesize ATP. The situation is sim-
lar with Na,K-ATPase. This is a membrane pump that, under
hysiological conditions, utilizes the energy of ATP hydrolysis
o pump sodium and potassium ions against their transmem-
rane potential. But if the ATP-ADP potential is low and the
ransmembrane sodium potential is high, the Na,K-pump can
ctually reverse and start producing ATP (Läuger, 1991). If, for
he stepping kinesin, the mechanical load and the ATP-ADP
otential had simply been pushing the same cycle in opposite
irections, we would have had GATP = FstL, where Fst is the
topping force and GATP represents the full 22 kBT -units of
nergy released by ATP hydrolysis. This would have led to a
topping force of about two times the actually measured 7 pN.
ig. 2 shows an alternative to the one cycle that is pushed in

pposite directions. In Fig. 2 the chemistry and the mechan-
cs operate in perpendicular dimensions and the coupling of the
imensions goes via the probabilities Pf and Pb. This depic-
ion allows for GATP �= FstL and Fig. 2 is the more appropriate

a
t
d
(
P

3 (2008) 23–28 25

raphical representation of the setup that is shown in Fig. 1(Bier
nd Cao, submitted).
F0F1-ATPase and Na,K-ATPase convert energy from one

torable form to another and they operate reversibly. But a few
illion years of evolution has optimized kinesin for a different
ind of operation. A conservative load constitutes an unphysio-
ogical situation for kinesin. Friction is the force that is overcome
n the routine action of kinesin and the energy of ATP hydrolysis
s irreversibly dissipated into heat as kinesin is walking. In case
pulled vesicle or organelle gets entangled in the cytoskeletal
etwork, the most efficient approach is to simply keep pulling
or a little while and then give up and detach all together when
he cargo does not come loose.

So with the load near the stopping force, the walking kinesin
perates in a way that is fundamentally different from that of the
forementioned ion pumps. With the mechanism of Fig. 1 it is
bvious that we are still far from equilibrium when the applied
oad equals the stopping force. ATP hydrolysis still occurs if
L = G. However, forward and backward step probability are
ow equal. With the load force in the neighborhood of the stop-
ing force, taking δu = −(G− FL)/kBT as a dimensionless
nergy, and with an ATP turnover rate equal to γ0, we have

≈ γ0L(Pf − Pb) = γ0L tanh

[
1

4
δu

]
. (4)

he tanh term is easily derived when Pf and Pb are evaluated
xplicitly. This is done by combining Eq. (3) with Pf + Pb = 1.
t small δu we have a simple linear expression in δu for the
elocity: v ≈ γ0L(δu)/4. So near the stopping force the mobil-
ty, i.e. the proportionality factor μst between the velocity v
nd the force F, equals μst = γ0L

2/4kBT . Meanwhile, in the
ame neighborhood where v ≈ 0, the ATP turnover rate equals
nonzero γ0.
bove depiction in which the mechanics has its own dimension perpendicular to
he plane of the chemical cycle. ATP hydrolysis drives the cycle in a clockwise
irection. During the power-stroke-part of each cycle a mechanical forward
towards the right top “into the paper”) vs. backward “decision” is made, where

f and Pb follow Eqs. (1) and (3).
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Fig. 3. The load force vs. the velocity for a stepping kinesin. The points represent
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ata that were collected by Carter and Cross (2005). The dashed curve represents
fit according to Eq. (4). The solid curve stands for the better fit according to
q. (6).

st = 105 m/Ns. As we are in the massless overdamped regime,
here are no kilograms and the mobility simply reduces to μst =
05 s. Substituting μst = 105 s, the formula μst = γ0L

2/4kBT

eads to γ0 = 25 s−1 as an estimate for the ATP turnover rate.
his is a factor 4 smaller the γ0 = 100 s−1 that we have at
ero load. The dashed curve in Fig. 2 shows how Eq. (4) for
0 = 80 s−1 leads to a poor fit to the experimental data. Fig. 3
hows that the actual force–velocity relation flattens near the
topping force. For F larger than the stopping force the motor
rotein is close to standstill. An obvious explanation would lie
n a distortion of the molecule and the presence of a step that
ecomes rate limiting at high load. We let the rate of the load
ependent transition follow k(F ) = k0 exp[−εF/kBT ], where
represents the distance over which Brownian motion needs

o “work” against the load before the activation barrier for
he transition is overcome. The transfer of the load force to
he microtubule involves the kinesin molecule as a lever arm.
ecause of torque, the actual internal forces within the molecule
ay be different from F and it would be wrong to interpret ε as

n actual distance that is traversed within the kinesin molecule.
or the net rate γ at which kinesin is turning over ATP we now
ave the equation

1

γ
≈ 1

γ0
+ 1

k0
exp

[
εF

kBT

]
. (5)

ere we have simply added the time of the load dependent
ransition to the time 1/γ0 of the load-free turnover rate. Obvi-
usly, we have k0 � γ0 in order to retrieve γ0 as the turnover
ate in the load-free case. From Eq. (5) we derive for γ a

ichaelis–Menten-like expression

≈ γ0

(
1

1 + (γ0/k0) exp[εF/kBT ]

)
. (6)

o obtain the solid curve in Fig. 3, we substituted the γ according
o Eq. (6) forγ0 in Eq. (4). We took ε = 4 nm and k0/γ0 = 20 and
btain a good fit to the experimental data in the neighborhood of
he stopping force. With these parameter values the ATP turnover
ate is a factor 40 lower at the stopping force as compared to the

0 of the load-free situation.

In the reference by Schnitzer et al. (2000) an equation similar
o Eq. (6) is utilized to fit various experimental data among which
force–velocity relation. These fits also result in ∼ 4 nm for the

4

f

3 (2008) 23–28

istance factor in the exponent. Eqs. (5) and (6) constitute an ad
oc “quick fix.” The are more ways to cover the phenomenology.
n the reference by Cuidad and Sancho (2005) the load force
s elegantly modeled in analogy to a chemical inhibition and
he ensuing formalism also accounts for the fact that kinesin’s
ffinity for ATP decreases as the load increases.

With more adjustments like Eq. (6), one could, in princi-
le, come to a better and better fit to the actual experimental
orce–velocity data. The force–velocity data of the reference
y Carter and Cross (2005) show, for instance, a decrease of
he velocity under an assisting load. In other words, kinesin
lows down (!) if it is actually pulled in its direction of
otion. This feature could also be explained by a distor-

ion under stress and could be modeled with equations like
qs. (5) and (6). However, whereas Eqs. (2) and (3) are con-
equences purely of the Brownian stepping mechanism, the
arameters of Eqs. (5) and (6) do relate to stresses and strains
ithin the kinesin molecule. Stresses and strains that derive

n a nontransparent way from the load and from kinesin’s 3D
tructure.

With a load dependent decrease of the ATP turnover rate as
escribed by Eq. (6), the motor protein protects itself against
asteful consumption of ATP when its cargo gets stuck in the

ytoskeletal network. This feature can be thought of as a circuit
reaker. An assisting load is, of course, a very unphysiological
ituation and the decrease of speed under an assisting load is
robably not something that should be understood as a result of
atural selection.

We end this section with a modeling of the random walk
ehavior near the stopping force. When F equals the stopping
orce, a distance s, with 〈s〉 = 0 and 〈s2〉 = L2, is covered dur-
ng τ = 1/γ . This is a simple consequence of Pf = Pb = 1/2.
ariances add up, so in a time t the mean square of the covered
istance x is 〈x2〉 = γL2t. We thus see that, at the stopping force,
inesin performs 1D diffusion, following 〈x2〉 = 2Dstt, with a
iffusion coefficient ofDst = (1/2)γL2. It is worth pointing out
hat Einstein’s Fluctuation–Dissipation Theorem is not obeyed
ear static head. This theorem applies at equilibrium and states
hat the mobility μ must be equal to the ratio, D/kBT , of the
iffusion coefficient and the natural unit of thermal energy. In
ur case we have, near the stopping force, a situation where
he mobility is half of what the theorem would lay down. We
an understand this with the realization that binding forward or
ackward is like a coin toss (cf. Fig. 2) and after such bind-
ng it is the continuous hydrolysis of ATP that then takes the
utcome of the coin toss and provides the energy for the machin-
ry to complete the actual forward or backward step. This is
n obviously nonequilibrium state of affairs. It is the factor 2
n the denominator of the exponent of Eq. (3) that makes the
ackstep probability larger than what it would be in case of
hermodynamic equilibrium and a Boltzmann mechanism.
. The Situation Near Equilibrium

With ATP � ADP + P close to equilibrium and the load
orce close to zero, we have a velocity that is linear in both
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f the driving forces

= χ	ψ + μeq	F. (7)

ere

ψ = kBT ln
Kh[ATP]

[ADP][P]
(8)

epresents the chemical potential driving ATP hydrolysis.Kh is
he equilibrium constant for ATP hydrolysis. For small poten-
ials we have Kh[ATP] − [ADP][P] = 	C and Kh[ATP] ≈
ADP][P] = C, where 	C is small compared to C. This leads
o 	ψ ≈ kBT	C/C.

Even at equilibrium, an actual mechanical step requires the
oordinated subsequent detachment and attachment of a head.
e assume that such mechanical action is still an epiphe-

omenon of the ATP-ADP processing, i.e., that also close to
quilibrium there is still a one-to-one coupling between the ATP-
DP reaction and the stepping. Working from this assumption
e will next derive expressions for and find a relation between
and the mobility μeq. The variable χ represents a kind of

onductance.
When the ATP to ADP conversion reaction is at equilibrium,

e have detailed balance (Moore, 1972), i.e., ATP consumption
nd ATP production occur equally often. An idea of the energy
rofile of the reaction is depicted in Fig. 4. The steps involv-
ng ATP binding and ADP and P release are now energetically
phill. The power stroke that was analyzed in Section 2 of this
aper now constitutes an activation barrier for the ATP produc-
ion. The rate at which this barrier is crossed is proportional to
xp[−G/2kBT ], as (1/2)G is the energy necessary to bring the
etached head to a position from where it can bind to backward
inding site (cf. Fig. 1). This is a comparatively high barrier
nd overcoming it is, most likely, the rate limiting step in ATP
ynthesis. The exp[−G/2kBT ] factor is to be multiplied with
he aforementioned γ0, which is the rate at which rear binding
akes place given that the attached leg is in the grey area (cf.
ig. 1). The ATP production rate is now simply the fraction of
ime the attached head spends in the grey area multiplied by
he rate at which the detached head then binds to the rear bind-
ng site. At equilibrium the ATP synthesis rate equals the ATP
ydrolysis rate. We thus get for the eventual total stepping rate

ig. 4. The profile along a reaction coordinate for a kinesin step when the ATP-
DP conversion is at chemical equilibrium. There is no energy difference now
etween an original position and a position that is a step ahead or a step back. So
he profile is periodic and at any point there is as much thermally driven forward
otion as there is thermally driven backward motion. At the high physiological
TP-ADP potential, the left to right staircase leads down. But at equilibrium

he energy for these binding and release reactions cancels out the energy for
he power stroke. The power stroke constitutes the activation barrier for the
ackward stepping that is linked to ATP synthesis.

b
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t equilibrium:

eq ≈ 2γ0 exp

[
−1

2

G

kBT

]
. (9)

here is a prefactor 2 because forward and backward steps both
ontribute equally to the rate. We see that, at equilibrium, kinesin
erforms a 1D random walk. However, near equilibrium the
iffusion coefficient is a few orders of magnitude smaller than
t the static head situation:

eq ≈ 1

2
γeqL

2 = γ0L
2 exp

[
−1

2

G

kBT

]
. (10)

ecause we are close to equilibrium, the aforementioned
luctuation–Dissipation Theorem now applies. Through the
luctuation–Dissipation Theorem, we find for the mobility,μeq,
lose to equilibrium

eq = Deq

kBT
≈ γ0L

2

kBT
exp

[
−1

2

G

kBT

]
. (11)

The rate of ATP hydrolysis and the associated forward step-
ing is γeqPf. Here we ignore the accidental backstepping upon
TP hydrolysis that is described in Section 2 with Eqs. (1) and

3). But, as we have seen, for small forces	F the failure of the
hemomechanical coupling is a rare occurrence anyway. For the
TP synthesis and the accompanying backward steps the rate
quals γeqPb. We thus have for the net rate of ATP hydrolysis
= γeq(Pf − Pb) = γeq	C/C. With v = jL we find:

= γeqL

kBT
	ψ ≈ 2γ0L

kBT
exp

[
−1

2

G

kBT

]
	ψ (12)

nd hence

≈ 2γ0L

kBT
exp

[
−1

2

G

kBT

]
≈ 2

L
μeq. (13)

. Discussion

A processive motor protein is a Brownian stepper that has
een subject to more than a billion years of natural selec-
ion for speed and efficiency. It is a molecular size engine
hat faces different demands than an ion pump or transporter.
umps and transporters couple flows of different types of energy
nd simply convert energy from one storable form to another
Alberts et al., 1994). Processive motor proteins have evolved
o fight friction and dissipate energy in an overdamped environ-

ent. We have seen that some of the mechanical characteristics
f kinesin are simple consequences of the Brownian stepping
echanism. Such a mechanism can quantitatively account for

xperimental data. Other features, like the reduced ATP turnover
ate when a load is applied, appear to relate to steric fea-
ures and can only be fully understood in connection to the
D molecular structure of the motor protein. However, some
f these features can be comprehended, at least qualitatively,

ith the realization that they have evolved to facilitate optimal

unctioning.
The situation around the stopping force has been experi-

entally examined. This far-from-equilibrium static head case
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as discussed in Section 3. So far, no experimental results are
vailable for the close-to-equilibrium case that is the subject of
ection 4. Theoretically, a close-to-equilibrium regime is eas-

er to analyze. The linear Eq. (7) should be generally valid near
quilibrium and not depend on any model. Eqs. (9)–(13), how-
ver, constitute verifiable consequences of the Brownian stepper
odel presented in this paper. Our model predicts, for instance,

hat the mobility near equilibrium (cf. Eq. (11)) should be more
han two orders of magnitude smaller than the mobility near
tatic head.
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