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The stepping motor protein as a feedback control ratchet
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Abstract

It is explained how going from a one headed motor protein to a stepping two headed motor protein is equivalent to going from
a stochastically flashing ratchet to a feedback control ratchet. Both these ratchets have been well studied in the literature and their
speeds and efficiencies are briefly reviewed. Next it is shown how a feedback control ratchet mechanism model can account for
very accurate recent data obtained on kinesin. Finally, the role of internal friction in the operation of stepping motor proteins is
discussed.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. The Brownian ratchet

A little over 10 years ago interest in “fluctuating
potentials” or “flashing ratchets” emerged (Ajdari and
Prost, 1992; Astumian and Bier, 1994; Prost et al., 1994,
for reviews, see: Reimann, 2002; Reimann and Hänggi,
2002; Astumian and Hänggi, 2002). The basic con-
cept is clarified in Fig. 1. The figure shows a periodic,
anisotropic, piecewise linear potential V (x). The period
is normalized to unity. The maximum is at x = φ and it
is obvious that V (x) is anisotropic for φ ̸= 1/2. When
at equilibrium and with the maxima sufficiently high,
Brownian particles in V (x) can assumed to be concen-
trated around the minima at x = 0, x = 1, . . .. Upon a
switch from V (x) to a flat potential, the Brownian parti-
cles will start diffusing and, given enough time, they will
randomize their position within a period, i.e, a fraction φ

will end up on the short segment and a fraction (1 − φ)
will end up on the long segment. When the potential
cycles back to V (x), the Brownian particles on the long
segment will be pushed towards the right by an aver-
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age distance of (1/2)(1 − φ). The particles on the short
slope will, on average, undergo a (1/2)φ displacement
to the left. So the net result of one cycle is an aver-
age displacement of ((1/2) − φ) to the right. Undoing
the normalization and letting the period be L, we find a
speed of:

v ≈
(

1
2

− φ

)
L

τ
, (1)

where τ is the average time to complete one cycle.
In order to maximize the speed the Brownian parti-

cle should have sufficient time τ0 on the flat potential
to at least diffuse more than the length φ of the short
segment. If τ0 is too short, then the distribution does
not have opportunity to spread from the initial delta
function. If τ0 is too long, then τ will become too
long and, following Eq. (1), this will take away from
the achieved speed. The time τV in state V (x) should
be long enough for particles to “slide down” the long
slope from the maxima all the way to the minima and
form a delta function-like distributions there. The τ0
and τV that maximize the speed can be found as fol-
lows. Let the maximum in Fig. 1 be at G (kBT )-units
of energy. On the molecular level in an overdamped
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Fig. 1. The setup for the flashing ratchet. A Brownian particle is mov-
ing in a potential that fluctuates or oscillates between V (x) and V = 0.
V (x) is an anisotropic potential the period of which is normalized to
unity. G is the height of the barriers. If the diffusing particle is given
sufficient time in V = 0 to randomize its position within a period, then
it will be more likely be pushed to the right than to the left after the
return to V (x). kV0 and k0V denote the transition rates between the
potentials. The maximal magnitude of the ensuing flux is estimated in
the text.

medium we have F = βv for the relation between force
and velocity. Here β represents the coefficient of friction.
With τV = βL(1 − φ)/F and F = GkBT/[L(1 − φ)],
we then find for the optimal time in V (x): τV = [L(1 −
φ)]2/(GD). In this derivation we made use of Einstein’s
Fluctuation–Dissipation Theorem, i.e. D = kBT/β. The
time to diffuse across the length φL of the short seg-
ment in Fig. 1 equals τ0 = (1/2)(φL)2/D. We thus find
that maximal speed is achieved with τ = τ0 + τV =
[(1/G)(1 − φ)2 + (1/2)φ2]L2/D. For the speed itself
we then have:

vmax ≈
(

1
2

− φ

)
1

{(1/G)(1 − φ)2 + (1/2)φ2}
D

L
. (2)

Eq. (2) is a back-of-the-envelope estimate. However,
this estimate turns out to correspond well with an exact
solution that can be derived for the case of constant tran-
sition rates between V (x) and V = 0 (Astumian and Bier,
1994). Constant transition rates are a good description
when the “flips” are chemically driven. In that case the
times τ0 and τV that we used in the derivation are actually
averages with τ0 = k−1

0V and τV = k−1
V0 .

The remarkable thing about the mechanism in Fig. 1
is that there is no net macroscopic force, i.e. tilt, in either
of the two potentials. The necessary energy input occurs
when, during a k0V flip from V = 0 to V (x), the energy
level of the particle is lifted. The transport is due to the
anisotropy that breaks the right-left symmetry. Without
diffusion, i.e. thermal noise, everything would obviously
come to a standstill. It is therefore that the terms “thermal
ratchet” and “Brownian ratchet” have been employed.
Part of the excitement about thermal ratchets came about
because they may constitute the operating mechanism
of processive motor proteins (Alberts et al., 1994; Boal,
2002; Bray, 2001; Howard, 2001). In the case of these
motor proteins the anisotropy would be on a molecular
scale.

2. Processive motor protein as feedback control
ratchet

In 1993 Karel Svoboda and his coworkers suc-
ceeded in resolving the movement of an individual
motor protein on the nanometer scale (Svoboda et al.,
1993). They followed kinesin as it moved in 8 nm steps
on the biopolymer microtubule (Alberts et al., 1994;
Boal, 2002; Bray, 2001; Howard, 2001). They measured
speeds and stopping forces. The mechanism depicted in
Fig. 1 could well be the way that such a molecular size
engine works. The motor protein cycles through a num-
ber of conformational states as adenosine triphosphate
(ATP; the fuel in a living cell) is bound to the motor
protein, hydrolyzed, and released as ADP (adenosine
diphosphate) and an inorganic phosphate group. As the
motor protein is forced through its cycle, the potential
between the kinesin and the microtubule to which it is
bound changes. Of course, the potential is 8 nm-periodic
and without any net tilt as the microtubule repeats itself
every 8 nm. Each period of the microtubule track on
which kinesin moves actually consists of a polypepe-
tide of many hundreds of amino acids. So, more likely
than not, the potential will be anisotropic. Finally, the
presence of diffusion is obvious on the molecular scale.
Models are taken to the test as more variables can be mea-
sured and/or controlled in an experiment. Even though
the model of Fig. 1 is rough, it can account for the data of
Svoboda et al. within an order of magnitude (Astumian
and Bier, 1994). Substituting some of the experimental
data, the model correctly “predicts” other data that were
obtained in the same experiment.

It is possible to enhance the setup of Fig. 1 to make
for higher speeds and efficiencies. One can, for instance,
construct models with three or more states. Another pos-
sible venue is changing the V = 0 state in Fig. 1 into
another periodic profile and/or turning to more compli-
cated profiles than the two-segment piecewise linear one.
The enhancement that will be our focus in the remain-
der of this article consists in making the flipping rates
depend on the position x, i.e. k0V = k0V (x) and kV0 =
kV0(x). The resulting systems have been characterized as
“information ratchets,” “intelligence ratchets,” or “con-
trol ratchets” as the system actually reads where it is and
adjusts its flipping behavior accordingly (Bier, 1997).

In a 2004 paper Cao, Dinis, and Parrondo turned the
basic system of Fig. 1 into a control ratchet through the
following modification (Cao et al., 2004). Whenever the
Brownian particle is on the interval ⟨0, φ⟩, the potential
is kept on V = 0. Whenever the particle is on ⟨φ, 1⟩, the
potential V = V (x) is kept on. Basically, an observing
controller is sitting at a switch and flips the potential
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Fig. 2. The effective potential if the transitions between V (x) and V =
0 in Fig. 1 are coordinated with the motion of the Brownian particle
such that V = 0 is turned on if the particle is on ⟨0, φ⟩ and that V (x) is
turned on if the particle is on ⟨φ, 1⟩. The flux in this feedback control
ratchet is about double the maximal flux that can be achieved with the
setup of Fig. 1. This effective potential is also shown to be the shape of
the reaction coordinate for the operation of a two headed motor protein.
G represents the free energy made available from ATP hydrolysis. F is
the scaled load force pulling the motor protein back in optical tweezer
experiments.

whenever a crossing takes place at x = 0 or x = φ. In
this case we effectively get the particle to slide down the
potential shown in Fig. 2. In the reference by Cao et al.
the average speed on the profile in Fig. 2 is analytically
evaluated. Unscaled, i.e. with a spatial period L and a
diffusion coefficient D, we have:

v = 1
{(1/G)(1 − φ2) + (1/2)φ2}

D

L
, (3)

where G is again in units of kBT . For a sufficiently large
value of G, we can take x = 0 to be a reflecting bar-
rier and x = φ to be an absorbing barrier, i.e. backward
movement of the Brownian particle is not allowed at
x = 0 and x = φ. For large G, we can, furthermore, take
the trajectory from x = φ to x = 1 to be a deterministic
downslide. In that case evaluation of the average speed
is simpler and one derives (Bier, 2003a,b, 2005):

v ≈ 1
{(1/G)(1 − φ)2 + (1/2)φ2}

D

L
. (4)

This is exactly like Eq. (2) but without the ((1/2) − φ)
prefactor! So going from the stochastic ratchet of Fig.
1 to Parrondo’s feedback control ratchet increases the
speed by at least a factor 2.

When it comes to the anisotropy parameter, the result-
ing flux in the setup of Fig. 1 is obviously maximal for
φ = 0 and φ = 1. However, because of the finite size of
binding sites and charged groups, the distance between
the maximum and the minimum in Fig. 1 should be

Fig. 3. For a stepping motor protein the power stroke occurs when
the head that is attached to the biopolymer reorients and brings the
detached head to the vicinity of the next forward binding site. The
diffusive route of the detached head to the binding site corresponds to
the flat stretch in Fig. 2. The power stroke corresponds to the downward
slope in Fig. 2. The power stroke dissipates an energy $G = G − F .
Here G is the energy from ATP hydrolysis and F is the scaled force
with which the protein is pulled back. We take the probability of the
detached head accidentally binding to the binding site in the back to
be equal to the probability of the Boltzmann equilibrated head to be
in the grey area. This assumption leads to a remarkably good fit with
recently obtained experimental backstep data.

no smaller than about 1 nm. For a period of L = 8 nm
we then have v ≈ L/(3τ), i.e. one traversed period for
every three cycles. In the context of the motor protein
every cycle involves the hydrolysis of one ATP. Three
futile ATP conversions for every successful one would
obviously be wasteful.

At first sight, Parrondo’s feedback control ratchet
looks like a construct that may be significant for nan-
otechnological applications more than that it may be
relevant for understanding the operation of motor pro-
teins. Surprisingly however, feedback control holds the
key to comprehending some key features of motor pro-
teins. Processive motor proteins are generally dimers.
When kinesin moves along microtubule it literally
“steps.” When one head is tightly bound, the other moves
randomly until it hits the next forward binding site and
attaches (see Fig. 3). At that point the first head detaches
and a next step can commence. KIF1A is a kinesin
motor that will dimerize when given the opportunity
(Tomishige et al., 2002). However, also as a monomer
it can move forward on microtubule and hydrolyze ATP
in the process. But in its monomeric form KIF1A moves
with a slower net speed and with many more backsteps
and random wanderings (i.e. a higher effective diffusion
coefficient) than in its dimeric form. In 1999 Okada and
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Hirokawa reported their observations on the motion of
monomeric KIF1A (Okada and Hirokawa, 1999). They
explained the observed movement with the stochastically
flashing ratchet mechanism of Fig. 1. For the dimer’s
operation it would be sensible to assume that the head in
front makes a forward reorientation just after the head in
the back has detached (see Fig. 3). The detached head is
then brought into the vicinity of the forward binding site.
It attaches there after a brief random search. With two
heads acting in a coordinated manner, backstepping can
be reduced and almost perfect chemo-mechanical cou-
pling, i.e. one step per hydrolyzed ATP, can be achieved.
Such 1:1 coupling has also been observed experimentally
(Hackney, 1995). So, in terms of speed and efficiency,
going from a stochastically flashing ratchet (cf. Fig. 1) to
a feedback control ratchet (cf. Figs. 2 and 3) represents an
about threefold improvement. In a thorough experimen-
tal study of of monomeric and dimeric kinesin motion,
Inoue et al. (2001) indeed found such threefold speed
increases after dimerization.

The reaction coordinate for the stepping process is
exactly the profile in Fig. 2. During the random dif-
fusional search of the detached head, no energy is
dissipated and this translates into the flat segment ⟨0, φ⟩.
The reorientation of the attached head constitutes the
power stroke (cf. Fig. 3). G represents the free energy
that the hydrolysis of ATP makes available. If the motor
protein has to also work against a load, i.e. a conserva-
tive force F, then less energy will be available to work
against friction. With the power stroke distance L (cf.
Fig. 3) as the unit of distance, we have $G = G − F as
the available energy for the power stroke.

It is in the power stroke that the energy $G = G − F

is dissipated. As the motor protein is moving along the
biopolymer, none of that energy is stored. It all goes into
overcoming friction. Friction forces do not derive from a
conservative field. The amount of friction that a moving
particle “feels” is roughly proportional to the speed of
the particle. So Ffr = βv, where β represents the coef-
ficient of friction. If friction is the force to overcome
when moving a distance L in time T, then moving with a
constant speed v = L/T leads to the minimum amount
of dissipated energy (Derényi et al., 1999; Bier, 2001).
So, through natural selection, there is pressure towards a
power stroke with a constant force, i.e. a smooth “twist”
in Fig. 3 and a straight line from x = φ to x = 1 in
Fig. 2. If there is an amount of energy $G available
for movement from x = φ to x = 1 in an overdamped
medium, then a constant force $G/(1 − φ) is the fastest
way to traverse that distance. Locally varying the slope,
for instance by putting little activation barriers on the
power stroke profile, takes away from the efficiency.

Suppose F = 0. If the power stroke were a perfect
straight segment, then G would be the about 22 kBT

units of energy released in ATP hydrolysis that would
be available in physiological conditions. The slope vari-
ations of the actual power stroke make the power stroke
correspond to a smooth stroke of an energy G that is
actually smaller than 22 kBT units. A few kBT s may
furthermore be utilized to drive the binding of ATP to
the motor protein and the release of ADP and inorganic
phosphate from the motor protein. Matching the exper-
imental data with our model, we will derive a value for
such an “adjusted” G.

3. Comparison with experiment

The model of Figs. 2 and 3 can account (Bier, 2003a,b,
2005) for measurements that were done by the group of
Steve Block (Visscher et al., 1999). Ever more accurate
measurements, however, are done on the motion of motor
proteins. Block’s group reported the number of acciden-
tal backsteps of kinesin as being between 5% and 10%
of the total number of steps. These researchers, further-
more, could not resolve any change of this percentage as
they varied the load F. Very recently, Carter and Cross
(2005) of the Marie Curie Research Institute were actu-
ally able to resolve the backstepping with great accuracy.
Empirically they found the following exponential rela-
tion between the load and the forward to backward step
ratio:

Pf

Pb
= 802 e−0.95FpN . (5)

Here FpN represents the load in piconewtons. At the stall
force there are just as many forward steps as that there
are backward steps, so Pf/Pb = 1. The 802 prefactor is
thus implicit in the 0.95 and the measured stall force
of about 7 pN. Datapoints appear to follow Eq. (5) very
tightly. To explain Eq. (5) we assume that it is after the
completion of the power stroke, i.e. after the relaxation
on the downward slope in Fig. 2, that the detached head
reaches a conformational state in which it is ready to
bind. The time (1 − φ)2/(G − F ) that it takes to deter-
ministically slide down the power stroke part of Fig. 2
can legitimately be identified with the relaxation time
to come to a Boltzmann equilibrium (Bier and Astu-
mian, 1998; Bier et al., 1999). In the context of Figs.
2 and 3 it is reasonable to assume that, after the afore-
mentioned relaxation, the probability of attaching to the
forward binding site equals the probability to be in the
striped segment in Fig. 3. The probability of binding to
the backward binding site is equal to the probability to
be in the grey segment. We put the borderline exactly
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halfway down the power stroke. With a Boltzmann dis-
tribution we have Pf = (1 − e−$G/2)/(1 − e−$G) and
Pb = (e−$G/2 − e−$G)/(1 − e−$G). We thus find for
the ratio of Eq. (5):

Pf

Pb
= e(1/2)$G = e(1/2)G e−(1/2)F . (6)

Eq. (6) employs the dimensionless force F in the second
exponent. If we want to use the force in piconewtons
FpN, then we must insert a redimensionalization factor,
i.e. F/FpN = L/(kBT ) × 10−12. With L = 8 nm, kB =
1.4 × 10−23 J/K, and T = 300 K, the factor L/(2kBT ) ×
10−12 comes out to be exactly the 0.95 that Carter and
Cross observed!

Carter and Cross observed that kinesin still binds
ATP when it is pulled back with a force larger than
the stopping force. In the News and Views column that
accompanied the article of Carter and Cross (Molloy and
Schmitz, 2005) it was pointed out how remarkable this is,
as it points to a fundamental difference between kinesin
and customary ion pumps like, for instance, F0F1-
ATPase. F0F1-ATPase is a rotary engine that couples a
proton flow down a transmembrane proton gradient to the
ADP → ATP reaction. If the proton gradient is reversed,
then the axis starts spinning the other way and ATP
is then consumed instead of produced (Nelson, 2003;
Läuger, 1991). Kinesin’s continuation of ATP hydroly-
sis under backward pulling is implicit in our model. It
is the ATP hydrolysis that drives the coordinated attach-
ment and detachment. Fig. 3 and the reasoning in the
previous paragraph make clear how backward binding
becomes more likely than forward binding for F > G.

Adjusting Eq. (4) for the presence of a load and for
the presence of a nonzero backstep probability, we have:

v ≈ (Pf − Pb)
1

{(1/(G − F ))(1 − φ)2 + (1/2)φ2}
D

L
.

(7)

Fig. 4 shows the load–velocity data that Carter and Cross
recorded. Fig. 4 also shows the theoretical curve accord-
ing to Eq. (7). We use a G, i.e. the free energy made
available in ATP hydrolysis, that we derive from Eqs. (5)
and (6): G = 2 ln 802 = 13.4. We, furthermore, use L =
8 nm and the aforementioned Pf = (1 − e−$G/2)/(1 −
e−$G) and Pb = (e−$G/2 − e−$G)/(1 − e−$G). The
theoretical curve in Fig. 4 was fitted to the data points
with φ = 0.3 and D = 3.5 × 10−16 m2/s. From fits to
other experimental work (Visscher et al., 1999) similar
values for φ and D were obtained (Bier, 2003a,b, 2005).

A striking feature in the experimental data points of
Fig. 4 is that the motor protein appears to move fastest
at F = 0. So even when the load is actually pulling in

Fig. 4. A load–velocity diagram for the motion of kinesin on micro-
tubule. The datapoints are from the reference by Carter and Cross
(2005). The fit is according to the model that was set up in Figs. 2 and
3 and the ensuing Eq. (7). D = 3.5 × 10−16 m2/s and φ = 0.3 leads to
a good fit that is consistent with previous estimates.

the direction of the kinesin movement, i.e. F < 0, the
resulting speed is slower than for F = 0. What is proba-
bly happening is that the load force distorts the shape of
the motor protein; it puts the neck linker of the two heads
in a position from where it takes longer for the detached
head to reach the next binding site. In vivo, kinesin is
not commonly working against a conservative load. It is
working against friction, i.e. a zero load. So evolution can
be expected to have optimized the processive motor pro-
tein for operation in a high friction environment without
distorting static forces. Without more structural knowl-
edge it is impossible to quantitatively incorporate such
distortion effects in Eq. (7). It is therefore meaningless to
excessively belabor the fit of Eq. (7) to the experimental
datapoints.

4. Concluding remarks on the role of polypeptide
internal friction

To conclude, I will make a few remarks on the dif-
fusion coefficient D. D represents the strength of the
Brownian kicks. The flat part in the cycle of conforma-
tional states in Fig. 2 could never be crossed without
diffusion. Going from x = 0 to x = 1 along the reac-
tion coordinate in Fig. 2 corresponds to one mechanical
step of the motor protein. However, it would be wrong
to straightforwardly take the position between x = 0 and
x = 1 of the Brownian particle on the reaction coordinate
(cf. Fig. 2) and interpret it as the fraction of the period
traversed by the center of mass of the moving motor pro-
tein on the biopolymer. As the processive motor protein
is moving along the biopolymer, it may face a diffusion
coefficient that varies with position. The reaction coor-
dinate in Fig. 2 is set up such that D is constant along it.
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There should be an isomorphism connecting the position
on the reaction coordinate and the position of the center
of mass along the biopolymer. But without more detailed
knowledge this isomorphism is hard to construct. The
D = 3.5 × 10−16 m2/s that we derived in the previous
section is therefore to be taken as a spatial average.

In vivo, a motor protein generally pulls an organelle
or a vesicle filled with chemicals from one side of a
cell to another. In vitro, researchers have commonly
attached a silica bead to the motor protein. For a bead
or a vesicle in a liquid, diffusion comes about as a con-
sequence of the random collisions with molecules from
the medium. When the particle is moving (for instance,
when it is pulled by an electric field) there will be more
collisions that hinder that motion than collisons that
further propel that motion. It is thus that diffusion is
connected to friction. It is in this way that we get to Ein-
stein’s fluctuation–dissipation theorem, i.e. β = kBT/D.
The theorem, derived independently a century ago by
Sutherland (1905) and Einstein (1905), is as simple as it
is profound. kB is the Boltzmann constant and T is the
absolute temperature. kBT thus represents the average
energy in the thermal noiseband at temperature T.

Already Svoboda et al. (1993) let kinesin pull a little
bead of about a micrometer in diameter. They observed
that the speed of the stepping motor protein is not
affected when the radius of the bead is varied. If the
friction of the bead (i.e. β = 6πηr, where η is the vis-
cosity of the liquid and r is the radius of the bead)
had determined the speed of the entire motor protein-
bead complex, then there should have been an inverse
proportionality between speed and bead diameter. So
apparently it is the internal friction of the motor protein
that dominates. The internal friction of a protein that is
going through a sequence of conformational changes is
harder to intuit than the hydrodynamic friction of a bead.
However, in his classic textbook “Scaling Concepts in
Polymer Physics” (de Gennes, 1979), de Gennes already
pointed out that intrachain collisions within a polymer
can lead to a diffusion in conformational space as well
as to a resistance when the protein is forced to move
through that space. Intrachain collisions would thus lead
to a fluctuation–dissipation relation of their own.

The D = 3.5 × 10−16 m2/s that we found in our fit
leads, through the fluctuation–dissipation theorem, to a
friction of β = 1.2 × 10−5 s−1. Such friction is indeed
much larger than the hydrodynamic friction of a microm-
eter size bead and it has to be explained through internal
friction. Recently, there have been measurements and
studies on the internal friction of polypeptides other than
motor proteins and it will be interesting to see whether
the β-estimates derived therein are compatible with ours.

I will briefly summarize a line of research that is more
comprehensively described in the reference by Hagen et
al. (2005).

When a protein is forced through a conformational
cycle it is found that the conformational cycle takes
more time to complete in a solution of higher viscos-
ity. This can be understood by realizing that the protein
has to move the surrounding liquid when a conforma-
tional change is accompanied by a change of shape. The
relation is generally found to be linear. However, extrap-
olating to zero viscosity turns out to still lead to nonzero
turnover time for the protein. This remainder is due to
intrachain friction.

For a protein consisting of N peptides going through
a conformational change, the internal friction would be
expected to be proportional to N if every amino acid in
the chain only interacted with its two direct neighbors in
the chain and it would be expected to be proportional to
N2 if every amino acid in the chain interacted with all
other amino acids in the chain. So as an Ansatz we take
βint ∝ Nα, where 1 < α < 2, for the coefficient of inter-
nal friction. In the course of a conformational change
a peptide will, most likely, interact with only a limited
fraction of the peptides that are not its direct neighbors.
So α is expected to be close to 1.

TrpCage is a peptide of only 20 amino acids long that
folds within a microsecond. In its folded form the peptide
fluoresces differently from the way it does in its unfolded
form. The folding and unfolding can thus be probed with
fluorescence measurements. The zero-viscosity folding
speed of TrpCage has been observed to be independent
of temperature. The zero-viscosity unfolding speed, on
the other hand, follows an Arrhenius dependence (Hagen
et al., 2005).

The interpretation of this is clear. Folding is an ener-
getically downhill process. There is no activation barrier.
The energy profile in conformational space is like the
power stroke in Fig. 2. In the course of the folding a
free energy E = FfrL = βL2/τ is dissipated. Here L
is the distance covered in conformational space, τ is
the time that the folding takes, and β is the friction
coefficient that we are after. As the unfolding is appar-
ently energetically uphill, it requires thermal activation.
By measuring the average unfolding time at different
temperatures and making an Arrhenius fit, the energy
E can be obtained (Pauling, 1988). For the unfolding
and folding of TrpCage it was found that E ≈ 20kBT

at T = 300 K and τ = 0.7 ! sec. Substituting this in
E = βL2/τ, we see that the quantity βL2 equals about
6 × 10−26 m2/s. As was mentioned before, L represents
the distance traveled in conformational space. We do not
have an exact relationship between L and the physical
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displacement. What we will do here is employ the phys-
ical displacement nevertheless in order to set up some
benchmarks and make an order of magnitude assess-
ment. An α-helix of 20 peptides measures about 4 nm
in length. So the average displacement of a an atom in
TrpCage when folding is about 1 nm. Taking this as an
estimate for L, we find βTrpC ≈ 6 × 10−8 s−1. For the
stepping kinesin we had βkin ≈ 10−5 s−1. The two step-
ping kinesin heads together consist of about 800 amino
acids. From βkin/βTrpC ≈ (Nkin/NTrpC)α, we derive α ≈
1.4. This number is consistent with our earlier Ansatz.

For a tightly folded protein the volume will be pro-
portional to the number of peptides, i.e. V ∝ N. The
surface area of such a protein is proportional to V 2/3 ∝
N2/3. When a protein moves against the viscosity of a
surrounding liquid, its friction can be taken to be propor-
tional to the surface area, so β ∝ N2/3. Comparing this
to βint ∝ Nα, with 1 < α < 2, it is obvious that the inter-
nal friction takes on more relative significance for larger
proteins. Kinesin is a large protein that has to do a lot of
internal rearrangement in the course of its step. It is thus
not entirely implausible that the internal friction of the
stepping kinesin exceeds the combined hydrodynamic
friction of the protein and the pulled bead.
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