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Mechanochemical Coupling of the Motion of Molecular Motors to
ATP Hydrolysis
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ABSTRACT The typical biochemical paradigm for coupling between hydrolysis of ATP and the performance of chemical or
mechanical work involves a well-defined sequence of events (a kinetic mechanism) with a fixed stoichiometry between the
number of ATP molecules hydrolyzed and the turnover of the output reaction. Recent experiments show, however, that such
a deterministic picture of coupling may not be adequate to explain observed behavior of molecular motor proteins in the
presence of applied forces. Here we present a general model in which the binding of ATP and release of ADP serve to
modulate the binding energy of a motor protein as it travels along a biopolymer backbone. The mechanism is loosely
coupled-the average number of ATPs hydrolyzed to cause a single step from one binding site to the next depends strongly
on the magnitude of an applied force and on the effective viscous drag force. The statistical mechanical perspective
described here offers insight into how local anisotropy along the "track" for a molecular motor, combined with an energy-
releasing chemical reaction to provide a source of nonequilibrium fluctuations, can lead to macroscopic motion.

INTRODUCTION

Biological "motors" are examples of systems at the inter-
face between the microscopic and macroscopic world. It has
become possible to follow experimentally actin or microtu-
bule movement along immobilized kinesin or myosin
(Howard et al., 1989; Kuo and Scheetz, 1993) and, more
recently, to follow a single kinesin molecule as it moves
along a biopolymer "highway" of microtubule (Svoboda
et al., 1993). It is even possible to apply an external force at
a molecular level using optical tweezers and directly show
that work is performed, driven by the hydrolysis of ATP.
The motion of these molecular machines is dominated not
by inertia and acceleration in response to a macroscopic
force, but by very large viscosity and by random Brownian
forces arising from collisions with the molecules of the
medium. Thermal noise alone cannot of course provide the
energy for powering a motor. On the other hand, the release
of energy by a biochemical process such as ATP hydrolysis
allows Brownian motion to be rectified (Feynman et al.,
1966), resulting in net flow and work. This can in principle
be accomplished by ATP hydrolysis providing a zero aver-
age fluctuating net force (Magnasco, 1993; Meister et al.,
1989; Peskin et al., 1993; Vale and Oosawa, 1990) or by
causing a fluctuation of the energy barriers for the diffusive
process (Astumian and Bier, 1994; Peskin et al., 1994; Prost
et al., 1994). The frequency response for these two mech-
anisms is very different (Astumian and Bier, 1994). The
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fluctuating force causes net flow at low frequency. With
increasing frequency the flow decreases monotonically, ap-
proaching zero at very high frequency if the average force is
zero. But when, with a zero net force, the heights of the
barriers are caused to fluctuate, a maximum flow occurs in
an intermediate frequency range and the flow vanishes at
high and low frequencies. This leads to an interesting par-
adox. Consider diffusion on a periodic potential energy
surface, where the barrier fluctuates between two states as
shown in Scheme 1.

U4t

U+t
0 aL L

0

7+ C ) ~
x

Scheme 1

U+(x) and U-(x) describe the potential energy profiles of
the + and - states, respectively, transitions from U+ to U-
and from U- to U+ take place at rates + and y , respec-
tively, and a defines the symmetry of the potential within a
period. When the transition rates zy and y- are very small
or very large, the flux is zero. However, at intermediate fre-
quencies the average flux is directed from left to right. It is
necessary that a be smaller than 1/2 for the diffusion to be
biased from left to right. If a is greater than 1/2, the diffusion is
biased in the direction from right to left, as discussed by
Astumian and Bier (1994). This mechanism works only by
virtue of diffusion, and the ability to take energy from the
nonequilibrium fluctuations is lost in the absence of thermal
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noise. This paradox is similar to one discussed previously in
which it was shown that fluctuation of kinetic barriers for an
enzyme-catalyzed process can drive the reaction thermody-
namically uphill (Astumian et al., 1987, 1989; Astumian and
Robertson, 1993) even if the chemical affinity is constant.
To develop a feel for this mechanism, let us consider how

net flow arises. In the -state, the particle is pinned by the
potential and so is localized near the bottom of a well.
Immediately after a transition from the - to the + state the
particle, now on a flat surface, will diffuse. This occurs by
a random walk, with an equal number of steps to the left and
to the right. When the state of the system undergoes a
transition back to the - state, the particle is again trapped in
one of the wells. If the particle has moved to the right by a
distance greater than aL but less than (1 + a)L it feels a
potential gradient leading it to the well one period to the
right of the starting point; if it has moved to the left by more
than (1 - a)L but less than (2 - a)L it will similarly be
trapped in the well one period to the left of the starting
point; if it has stayed between aL on the right and (1 - a)L
on the left it will remain in the well from which it started.
The anisotropy introduced by having the barrier at a posi-
tion not equally spaced from the well to the right and left
introduces a bias in the diffusion when the system is caused
to fluctuate between the + and - states. If a < ½/2, diffusion
is biased to the right because it is more probable that the
particle will diffuse a short distance aL to the right than a
longer distance (1 - a)L to the left. If the fluctuation
frequency is very low, the velocity is small because in this
regime the number of "steps" (i.e., periodic displacements)
per cycle - + - is constant. As the frequency
increases so does the velocity. At very high frequencies,
however, the diffusion does not even have a chance to get
started in the + state before a transition back to the
pinned - state occurs and so the velocity decreases at
high frequency, approaching zero as the frequency be-
comes infinite.

This mechanism can also serve to allow a net flow uphill,
i.e., in the presence of an applied force. At some point, the
applied force will be just large enough that the chance for a
particle to diffuse a distance (1 - a)L to the left will be
exactly the same as the chance to diffuse a distance aL to
the right so that the velocity is zero. This is the stopping
force.
How might such an asymmetric potential arise, and what

could provide a mechanism for generating nonequilibrium
fluctuations of an energy barrier height? Below we present
a simple model in which the energy profile for a motor
molecule travelling along a macromolecular highway is
changed by the binding of ATP and release of ADP. As a
simple example of how a potential that is periodic but
locally anisotropic can arise we consider a purely electro-
static model but recognize that the situation for any actual
motor must be much more complicated, involving van der
Waals and hydrophobic interactions as well as conforma-
tional interactions due to the flexibility of the motor mole-
cule. In Fig. 1 a we have plotted the electrostatic potential

c I X',,1,/XIz 2f-
a

= -(iL j
% a x

+Z -Z +Z---- -- +d --Z--±Z --
1- .. .I

b
P = 6(X.,) x1/2 IP3B(X..t) = (4x1l)t) exp)(-x-/41)t)

ALIAk'

L

AIDP + P

FIGURE 1 (a) A depiction of our model. A sphere with a charge q is
diffusing on a head-to-tail linear array of dipoles (dipole moment = z [L -
28]). The distance 8 specifies how far the charges are from the end of the
dipole, and the distance d specifies the charge separation when the sphere is
immediately above a charge on the dipole. On top we have plotted the electric
potential energy (in dimensionless units) as a function of position assuming
only Coulombic interaction. The two charges on the dipole that the sphere is
on as well as six charges (three dipoles) on either side were taken into
account. With the dielectric constant E = 20, period L = 8 nm, d = 1110,
8 = L110, q = 2 elementary charges, and z = 3 elementary charges, the height
of the barriers relative to the wells is about 8 kBT at T = 300 K. The distance
between the barrier (x = 0.15 L) and the well on the right (x = 0.85 L) is about
0.7 L. (b) The behavior of a motor protein in this setup. The potential without
ATP bound is treated as a piecewise linear function (for definition see text)
with a barrier large enough that the probability distribution can be considered
a Dirac delta function at the minimum of the potential. Pu and PB define the
probability distributions in the unbound and bound states, respectively. When
ATP binds and neutralizes the charge on the Brownian particle, the potential
becomes flat and the particle diffuses symmetrically. After a time
interval of about l/k,ff = .01 s, there is significant probability to the
right of aL (the darkly shaded region), which will be caught in the well
at +L when ADP and Pi dissociate, but there is almost no probability to
the left of -(1 - a) L (the lightly shaded region). The difference in the
amount of probability on the left and right is the number of steps per
ATP hydrolyzed with no applied force.

energy of a charged particle (representing kinesin) along the
axis of an array of dipoles (representing tubulin monomers)
aligned head to tail. For simplicity, the individual mono-
mers are shown with all of the positive charge localized on
the left-hand side and all of the negative charge localized
on the right-hand side of each monomer, and the calculation
of the potential energy as a function of position was done
using only Coulomb's law without screening. This allows
us express the potential energy in the nondimensional form
shown on the graph in Fig. 1 a. When Debye-Huckel
screening is included in the calculation for this simple case,
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the relative energy difference between wells and barriers is
about the same, but the potential due to the charges drops
off much faster, so the wells and barriers are more localized,
with a significant stretch of flat potential surface separating
them. If, however, the dipole is more accurately modeled as
a distribution of fixed charges given by a charge density
p(r'), the electrostatic potential energy for the sphere with
charge q as a function of position r is

Jpr=rr'I exp(-KIr-r'l) dr'.

This equation explicitly includes Debye screening, where
1/K is the Debye length of around 1-2 nm at physiological
ionic strength. In this case, a potential similar both with
respect to amplitude and the long-range character shown in
the graph above Fig. 1 a is obtained for a reasonable dipole
moment. As a simple explicit example, consider that the
"monomer" has equally spaced charges, arranged in order
from left to right, of +3, +2, + 1,-1, -2, -3. Then, as the
motor moves along the axis of the monomer, it is always
within a Debye length of one of the charges. This gives rise
to a potential similar in appearance to that calculated for the
case of only two charges without screening.

If an ATP were to bind and neutralize the charge on the
motor, the potential would then be almost flat. This leads us
to consider the idealized model depicted in Fig. 1 b. In terms
of Scheme 1, the transition rate from the - to + potential
y- is kon [ATP], whereas the transition rate from the + to
the - potential y+ is k0ff. We ignore the binding of ADP
and release of ATP, which is reasonable if the ATP hydro-
lysis reaction is far from equilibrium.
When the barriers are up (i.e., when the motor is not

bound to nucleoside phosphate) the motor is trapped in the
wells and the probability density can be approximated by an
array of delta functions at -L, 0, L, 2L, etc. Numerically it
appears that this approximation is reasonable for barriers
higher than about 8 kBT, where kB is Boltzmann's constant
and T is the Kelvin temperature. When, at t = 0, ATP binds,
the barriers go down and the particle at x = 0 diffuses
according to (Berg, 1983)

1 [-(x - (F/lp) t)2]
P(OIx; t) =e4xD)Lp D ] 1

where F represents an applied force, (3 is the coefficient of
viscous friction, and D is the effective diffusion coefficient
related to 3 through Einstein's relation D = kBTI3. P(O Ix,
t) is the conditional probability density that the motor is at
position x at time t given that it starts at x = 0 at t = 0. The
ATP remains bound for an average of l/koff units of time
and then dissociates, causing the barriers to go back up.
Motors between aL and (a + 1)L are caught in the well at
L (i.e., one period to the right of the starting point). The

probability for this is obtained by integrating the probability
density Eq. 1 between these limits at the time t = l/koff

(a+2)L

PL l

JacL

P (O x; l/k0ff) dx. (2)

Similarly, the probability for the particle to be between
-(1 - a)L and -(2 - a)L and thus to be caught one period
to the left of the starting point, in the well at -L, is

J-(1-a)L

P-L --

(2-a)L

P (O x; I/koff) dx. (3)

When the barrier returns to the up state by dissociation ofADP,
an amount PL will be caught in the well at x = L and an
amount P-L will be caught in the well at x = -L. A net
amount L - P-L is transferred to the right by one period. In
a similar fashion, integrals P2L and P-2L can be set up for the
amounts of probability ending up in the wells at -2L and 2L
and so on for -iL and iL, where the limits of integration to be
used are (a + i - 1)L to (a + i)L, and (-(i + 1 - a)L to -(i
- a)L, respectively. The difference in the number of particles
that end up in the well at iL and in the well at -iL is (PiL-
P_mL), and this contributes a net number of "steps" equal to i
(PiL- PiL). Thus R, the average number of steps of distance
L per hydrolyzed ATP, equals Ei i(PiLP-PiL). This result can
be expressed in terms of error functions, which are tabulated
functions available in most packages for either symbolic or
numerical algebra facilitating computation ofR as a function of
the various parameters. An error function results from integrat-
ing a Gaussian between limits symmetric about zero, and the
complement is what is left over, i.e., twice the integral from the
limit to infinity (Abramowitz and Stegun, 1970). To obtain an
expression in terms of error functions, we write PjL:
I(a+2)L

P (O x; 1/k0ff) dx
(ca+i-I)L

J(a+i-I)L

P (O x; l/k0ff) dx- f
I(a+i)L

(4)

P (O I x; l/kQff)dx.

A similar expression can be written for p-iL. A neat feature
of diffusion on a flat but tilted potential (i.e., the situation
when nucleoside phosphate is bound and the motor is acted
on by a homogeneous external applied force) is that the
probability distribution is never distorted. Thus after a time
t the probability density described by Eq. 1 is a symmetric
Gaussian function even if F is not zero, but the center is at
(tF/0) rather than at zero. Thus, using Eq. 1 we have

I
F ~

koffl

PP(O Ix'; IIk ff) dx' = erfc[(x _ F ) +M]
x ~2 koff 4D J'
x

(5)

where erfc(x) is the complement of the error function
(Abramowitz and Stegun, 1970). In the evaluation of the
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probability for a particle to move to the left of zero, the term
F/(/3 k0ff) must be added to x in the argument of the
complementary error function. The argument of the error
function is dimensionless. It is useful and interesting to
group the parameters in terms of ratios of characteristic time
and energy scales. We define the dimensionless ratios y =
koffL2/D and s = LFI(kBT). L2/D defines the characteristic
time for diffusion of a particle a distance L on a flat
one-dimensional surface, and l/koff is the average lifetime
for the "flat" (unpinned) state. LF is the energy gain (loss)
when a particle is displaced by one period in the presence of
an applied force F, and kBT is the energy of the heat bath.
Using Eqs. 4 and 5 and these definitions, we write

iPiL = 2 erfcj(a + i - )
i-i i-i2 y

-erfc( (( a + i)- (6)

E2 erfc 2 ((a+ 1)-)).

The net number of steps R per ATP hydrolyzed can thus be
expressed as

E i(PiL-P iL) = R = E-erfc- (ja + i-- 1) J)

- erfc( -((i - a) + (7)

For y <<1 and s = 0, the series converges to approximately
(1/2- a), whereas for y ' 1 the first term of the series is a
very good approximation. The theoretical maximum of R is
one step per two ATP's hydrolyzed because the particle
diffuses to the left or to the right with equal probability but
only diffusion to the right is productive. For the flux to be
zero, the arguments of the two error functions in Eq. 7 must
be identical. Thus we find the force necessary to stop the
particle to be

kBT

which is independent of ATP concentration. Multiplying R
by the rate of ATP hydrolysis and by the period L we find
the average velocity to be

(v) [ATP]konkoff LR (9)(koff + [ATP]kon)
Note that the velocity is a Michaelis-Menten type function of
the ATP concentration. The thermodynamic efficiency is cal-
culated as follows. When the motor moves at an average speed
(v) it overcomes a drag force of ,B(v), and the output power is
the product 13(v)2. In the presence of an applied force, F(v) is

added to this quantity. The input power is the rate of ATP
hydrolysis multiplied by the AGATP for ATP hydrolysis, which
is around 20 kBT under physiological conditions.
The primary purpose of this model is didactic-to illus-

trate the general principle that local anisotropy coupled with
a source of nonequilibrium fluctuations, modeled here as the
stochastic binding of ATP and release of ADP, can give rise
to effectively unidirectional motion. The model emphasizes
the possibility of a purely diffusion-based mechanism. The
only ingredient used in the formulation of the model has
been diffusion theory. The basic principles of the model
have been recently investigated experimentally using a sin-
gle polystyrene sphere subjected to a modulated optical trap
(Faucheux et al., 1995). The scaling for velocity versus
fluctuation frequency evident in the above equations holds
up very well, although no attempt was made to apply a net
external force in these experiments.

Let us consider whether the model can reproduce veloc-
ities and forces experimentally observed for kinesin when
reasonable parameters known for kinesin are inserted. The
parameters in our model are L, 13, koff and (k0n[ATP]), and
a. For kinesin motion on a microtubule, L appears to be
about 8 nm, both from direct observation of the stepping of
kinesin (Svoboda and Block, 1994; Svoboda et al., 1993)
and from measurements of the spacing of inactive kinesin
bound to the microtubule (Ray et al., 1993). The potential is
flat when ATP is bound in our model. This means that in the
presence of saturating ATP, the motion is relatively smooth,
and an estimate of the coefficient of viscous friction 13 can
be obtained by dividing the force needed to stop the particle
by the average velocity in the absence of load. In their
experiments, done at saturating ATP (500 ,M), Svoboda
et al. (1993) measured a maximum velocity of 500 nm/s and
a stopping force of 5 pN. Taking the ratio we estimate 13 =
10-5 N s/m. Using Einstein's relation, D = kBTI/, we find
a diffusion coefficient of D = 4 x 10-16 m2/s. The kinetic
parameters koff and kon[ATP] can be obtained by measuring
the rate of ATP hydrolysis by active kinesin in the presence
of microtubule as a function of [ATP]. At very large [ATP],
the rate is approximately koff. At very low ATP, the rate is
approximately k1n [ATP]. We use estimates for the values
for these constants in the figures because definitive exper-
imental results are not available. The parameter a reflects
the asymmetry of the potential surface, which in our model
depends on the strength of the dipole of a monomer of
tubulin. We used a = 0.15 as a reasonable value in line with
the simple picture given in Fig. 1 a. In Fig. 2 a we have
plotted the velocity versus koff for L = 8 nm, a = 0.15, and
D = 4 X 10- 16 m2/s. The time it takes to diffuse over one
period when the barriers are down is around L2/D, with L =
8 nm and D on the order of 10- 16 m2/s; this time scale is
around 0.01 s. The other important time scale in the setup is
1/k.ff, the average time that the potential remains flat. Sig-
nificant flow occurs when these two time scales are on the
same order of magnitude (Fig. 2 a). We have also plotted
the calculated velocity as a function of [ATP] with zero
applied force (Fig. 2 b). The calculated maximum velocity
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FIGURE 2 (a) Plot of the velocity versus log[k0ff] as

9 with F = 0, L = 8 nm, f3 = 10-5N s/m (the ratio of
to stopping force from Svoboda et al., 1993), kOn[ATP
= 0.15. (b) A plot of velocity versus log(ko0[ATP]) usi
other parameters as in a. We checked all of our calcul
done by solving the Fokker-Planck equation (Astumia
which does not require the approximation that the probab
delta function when the barriers are down. For energy ba
kBT all numerical results were within 25% of the values

at saturating ATP is 550 nm/s, with a stc
almost 5 pN. These values are consistent v

ments of Svoboda et al. (1993).
In Fig. 3, we have plotted the velocity a
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FIGURE 3 A plot of velocity versus applied force, .
for saturating, half-saturating, and subsaturating ATP (

all other parameter values the same as in Fig. 2 a.

the force for subsaturating, half-saturating, and saturating
concentrations of ATP. The stopping force is independent
of ATP concentration, consistent with the recent data of
Svoboda and Block (1994).
The maximum velocity and the stopping force are not in-

dependent predictions inasmuch as we obtained the value of (3
used in the calculation from the ratio of the experimental
maximum velocity and stopping force. Furthermore, at first
glance it might seem that the value of (3 is unreasonably high,
given known diffusion coefficients for proteins in solution that
are several orders of magnitude larger than the value D = 4 X

34 10-16 m2/s. However, even the self diffusion of ions in con-
centrated polyelectrolyte solutions can be much smaller than
predicted, based solely on the hydrodynamic diffusion coeffi-
cient of an ion in a polyelectrolyte solution due to an effective
roughening of the energy along the diffusion path-the ion
must hop over many small activation barriers provided by its
near neighbors (Lifson and Jackson, 1962). Furthennore, Hunt
et al. (1994) have recently measured the force exerted by a
single kinesin motor against a viscous load. They immobilized
kinesin on a glass surface and measured the velocity of micro-
tubules of various lengths induced by the kinesin. At low
solution viscosity, the velocity was independent of the length
of the microtubules. At a solution viscosity 100 times that of

4 5 water, however, the velocity depended strongly on the length
of the microtubules. These results are consistent with the
effective viscosity between the kinesin and the microtubule

calculated from Eq being the sum of an internal viscosity coefficient, f3int = 1O-5
maximum velocity Ns/m, intrinsic to the interaction between kinesin and micro-
= 103 s-1, and a tubule, and an external viscosity, (3ext = Cllql, where C0l is a

ing k0ff = 250/s and dimensionless drag coefficient (determined to be about 7 by
ations against those Hunt et al. (1994)), q is the solution viscosity (in N s/i2), and

ility distribution is a 1 is the length of the microtubule. In the experiments the
uTiers greater tian 8 velocity decreased to about half its maximum value when (3ext
obtained here. = 3 X 10-6 N s/m, which is within an order of magnitude of

the value for Pint, determined as the ratio of stopping force to
maximum velocity measured by Svoboda et al. (1993). We

pping force of expect the velocity to be about half its maximum value when
vith the experi- (3ext = 3int, and thus determination of the value (3ext for which

this holds amounts to an independent measurement of the
is a function of effective viscosity coefficient, and thus the theoretical values

for stopping force and velocity are independent predictions
from the model. We have plotted the velocity versus external
viscosity in Fig. 4 a.

Hunt et al. (1994) also plotted the velocity versus the
apparent viscous drag force, Fdrag = (3ext(v). They assumed
this to be a linear relationship and extrapolated the experi-
mental curve to the (v) = 0 axis, interpreting the intercept
4.2 + 0.5 pN (i.e., the drag force at zero velocity) as the
stopping force. For our diffusion-based model the viscous
drag force must approach zero when the velocity goes to
zero. In Fig. 4 b we have plotted parametrically the velocity
(which through Eq. 7 has an explicit viscosity dependence)
versus Fdrag = (int + I3ext)(v) according to Eq. 9. Our graph

according to Eq. 9 shows that at viscosities below 20 t,N s/m (velocities
concentration, with greater than 250 nm/s) the plot of drag force versus velocity

is nearly linear. In the experiments of Hunt et al. (1994) at
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due to the potential is always zero. I

models, however, that are consistent v

versus t3ext(V) over a much wider rang(
such as that shown in Scheme 2 (Ch'

For simplicity, we have taken the I
- states to be identical except with a r
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have taken the asymmetry such that a = 0. As pointed out
by Chauwin et al. (1994), this mechanism requires no dif-
fusive steps. Each binding of ATP (with rate y-) and
release of ADP (with rate y+) results in a deterministic
displacement of the motor to the right resulting from the
force due to the potential, which for all particles is AU/L.
What this scheme describes is a situation in which the
binding site for the motor is at one position along a mono-
mer when ATP is bound and at a different position when
nucleoside phosphate is not bound. The transitions between
the bound + and unbound - states occur adiabatically, and

60 80 100 deterministic relaxation of the motor to its preferred site
ity (gNs/m) occurs after association of ATP or dissociation of ADP.

The velocity of the motor sliding down the potential is
AU/(13L), so the characteristic time scale for displacement
by one period is kBTL2/(DAU). We have shown a typical
trajectory by the dashed line for the case that the fluctua-
tions occur slowly relative to this time scale. The displace-
ment gets smaller as either the viscosity or the applied force
is increased, but so long as the viscosity is finite and the
applied force is less than AU/L, the displacement per ATP
is not zero, although the number of periods of 8 nm per
ATP hydrolyzed becomes very small. Because the stopping
force is 5-6 pN, we take AU = 10 kBT, which when divided

3(4N) by L = 8 nm represents a force of 5 pN at room temperature.
-1(pN) A plot of (v) = AU/[L(Qint + I3ext)] versus I3ext (V) is indeed
nal viscosity, according to linear, as shown in Fig. 4 b as the dashed line, where we

fline), with all other param- have taken as before P3int = 10,N s/m. In Fig. 4 a, the plot
ished line shows the same of velocity versus viscosity is shown as the dashed curve.
lot of velocity versus drag Schemes 1 and 2 represent limiting cases of mechanisms
)r different I3ext according to involving biased diffusion and "power strokes," respec-
ine). tively. In Scheme 1, if diffusion is very slow compared to

transitions between the chemical states, the particle never
cosity was at most 10 moves away from a point where the potential energy is a

D our model. For very local minimum. In the limit of very large (3ext, where (v)
ersus drag force "turns goes to zero, all of the particles feel zero force due to the
rield a zero drag force potential, and hence the drag force must go to zero as well.
because the particles The effect of the coefficient of viscosity appears in the
wells, where the force exponent as well as in the pre-exponent (see Eq. 1). In
'here are other similar Scheme 2, on the other hand, all of the particles feel the
vith a linear plot of (v) same force F = AUIL.
e of external viscosity, Interestingly, a number of motor proteins such as dynein
auwin et al., 1994). and the kinesin-like motor ncd move along the microtubule
potential in the + and in the opposite direction of kinesin (MacDonald et al., 1990;
)hase shift AO, and we Walker et al., 1990). In the model in Fig. 1, the direction of

flow is reversed if the charge on the protein when ATP is
not bound is zero instead of positive. A change of only a
very few charged amino acids can dramatically change the
behavior of the motor. The Eqs. 2 to 5 can be modified for
this case by substituting a -> (1 - a), koff > kon[ATP], and
kon[ATP] -> koff. One prediction is that unlike the case
described in Fig. 1 b the motor molecule will diffuse rather

sA \ freely on the microtubule at low ATP concentration because
\ \ the barriers are low when ATP is not bound.

Our model is phrased in terms of basic physics (electro-
static interaction and diffusion) and is very symmetric in

Scheme 2 ~~~~~most of its features. For the case without an applied force,
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the potential energy is a periodic function of position at
every instant in time, and the kinesin itself is modeled as a
sphere. Even the fluctuations of the sphere's charge can be
symmetric when koff = kon[ATP]. The only asymmetry is
within a spatial period, where one slope is steeper than the
other. The net flow is induced without any macroscopic
force. In fact, in our model the role of ATP is to eliminate
all local forces along the microtubule axis as well. When
ATP binds, the potential is flat and the kinesin diffuses with
equal probability forward and backward. The local anisot-
ropy in the potential that arises when ATP dissociates
catches the kinesin preferentially in the well to the right. If
a is small, backstepping (taking a step in the "wrong"
direction, i.e., right to left) is essentially precluded. In the
example given with a = 0.15, only one step backwards is
predicted for every 100 steps in the forward direction. Our
approach is to find in terms of basic physics (electrostatics
and diffusion) the simplest and most symmetric model
capable of generating the basic features of molecular mo-
tors-unidirectional motion and generation of force. This
provides a fundamental theoretical basis for understanding
how motor proteins may actually work in terms of experi-
mentally determined structural features. The mechanism
that we have discussed, i.e., causing flux by time-dependent
shifting of kinetic barriers, is quite general and may well be
important in many other biological processes, including
movement of polymerase along DNA (Kabata, et al., 1993)
and transport of material across membranes (Tsong and
Astumian, 1986, 1988).
From the heuristic models illustrated by Fig. 1 and

Schemes 1 and 2 we have learned that nonequilibrium
fluctuations acting on a particle moving on an anisotropic
potential can cause unidirectional motion. Furthermore,
when the length and energy scales of molecular motors such
as kinesin are entered into the equations resulting from
consideration of these models, the calculated velocity and
stopping force for the motor are consistent with what is seen
experimentally. More detailed calculations show that nei-
ther model is entirely consistent with experimental fact. In
particular, the viscosity dependence observed by Hunt et al.
(1994) is not perfectly met by Scheme 1 and the fit coeffi-
cient of viscosity ,3, the stoichiometry for the number of
ATP's per step, and the rate of ATP hydrolysis necessary to
reproduce the experimentally determined velocities and
stopping force are surprising, based on expectations from
some measurements. On the other hand, in Scheme 2 we
would expect that the peaks in the space correlation function
(the "step" size reported by Svoboda and Block (1994))
should shift to smaller values as an applied force causes the
displacement per ATP to decrease, but this is not seen
experimentally.
We must remember that the two models in Schemes 1 and

2 are chosen to illustrate limiting cases for motors that
strictly involve only biased Brownian motion or determin-
istic drift, respectively. Naturally, the actual mechanism for
motion of kinesin, or any other molecular motor, most likely
involves both types of motion, and it is unlikely that the

potential energy as a function of the position along the
microtubule is a simple "piecewise" linear function-a
function that is composed of pieces, each one of which is a
line-as we have used. Also, we have implicitly taken the
free energy of hydrolysis of ATP to be very large in both
Schemes 1 and 2. For the physiologically relevant behavior
of molecular motors this is reasonable, but from a theoret-
ical perspective it would be comforting to be able to relax
the phosphorylation potential to zero and see that, as we
know must be the case, the flow also goes to zero. To go
further in the description of mechanochemical coupling it is
necessary to treat a more general case.

A MORE GENERAL MODEL

The models described above already illustrate many of the
properties of molecular motors seen experimentally. How-
ever, the analysis is valid only for the particular forms of
the potential shown in Fig. 1. Furthermore, implicit in the
approximations is that the AGATP for ATP hydrolysis is
very large compared to the barrier heights. Thus we see no
dependence of the velocity on AGATP or on the height of the
barriers in the resulting equations. Next we present a more
general approach. Binding rates and release rates of the
nucleoside phosphates at position x0 now may depend on
the energy difference between the bound and unbound states
at x0, and the motion of the motor on each of the individual
potentials is the result of the local potential gradient, of
diffusion, and of any externally applied forced. The model
is based on a Langevin equation:

dx d
-_= 0-1 U(x, t) +F + ((t), (10)

Acceleration (d2x/dt2) does not appear in the above formu-
lation because the mass of a molecular motor is small
enough and the viscosity is large enough that the motion is
damped on a time scale very short compared to any other
time scale of interest. Another way of saying this is that
terminal velocity after an impulse force is reached essen-
tially instantaneously. A very lucid fundamental discussion
of physics under these conditions has been given by Purcell
(1977). In Eq. 10, U(x, t) is the potential that undergoes
transitions between the two states + and - as ATP is bound
and ADP is released.

kon[ATP]
U-(x) < U+(x),

koff
(1 1)

where U+(x) is the potential function when nucleoside
phosphate is bound, and U-(x) is the potential function
when nucleoside phosphate is not bound to the motor. In
this treatment we do not put any constraint on the shapes of
Ufree(X) and UbOUnd(x), except that they are periodic, because
the polymer backbone (i.e., the microtubule) is periodic. F
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is an external force applied, for example, by optical twee-
zers, and ((t) represents Gaussian white noise with

Z = ((t) = 0;

The first of the two Eq. 12 tells us that the noise term has a
zero average, and the second equation fixes the amplitude of
the noise. There is a delta function in the second equation to
represent the fact that we assume the noise amplitude at any
time t' = t + At to have no correlation' to the amplitude at
time t, no matter how small At is, i.e., the noise is taken to
be "white." Equation 12 defines the statistical properties of
the Gaussian noise at), specified by

27rP [ 2=2 ]
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which we use in simulating the Langevin Eq. 10. The delta
function correlation in the expression for o.2 indicates that
in the simulation a new value of ( must be assigned very
often compared to any other time scale in the problem, in
which case S(t,t') -> 1. To carry out a simulation, we take
the particle at x = 0 when t = 0, and select a value for (
from a Gaussian probability distribution Eq. 13 and an
initial state ("bound" or "unbound") at random. The prob-
ability of being in the "bound" versus the "unbound" state is
determined by the ratio y-/ y+. The selection of the state
specifies the potential function U, and ( sets the additive
force, which together determine the initial velocity of the
particle. The particle moves according to Eq. 10 for a short
time At, so the particle is somewhere other than x = 0. We
then select a new value for ( and give the particle a chance
to change state. The probability for this change of state is
given by a Poisson distribution

exp(-m)m~
p(change)== !m '

where i = t/IAt and m = 1/(,y-At), depending on whether the
particle is in the + bound state or - unbound state. The
Poisson distribution is sharply peaked about the centers
lI/y+. To meet the statistical recipe of Eq. 12 with its delta
function correlation, it is necessary to choose At much
smaller than any of the time scales 1/'y+, l/,y-, or L2/D. The
calculation is iterated many times, keeping track of the
position x of the particle at all times t.
The elements that go into the model are: 1) the two

potential functions, U+(x) for when the particle is bound to
ATP or ADP, and U-(x) for when the particle is not bound
to a nucleoside phosphate; 2) the external force F exerted
by, for example, an optical trap; 3) the coefficient of viscous
friction (3, which is related to the diffusion coefficient
through D = kBT/I3; 4) the "white" Gaussian noise ((t).
Simulation of Eq. 10 with appropriately chosen U-, U+,
and D (motivated by the symmetry consideration discussed
in the previous section) results in a plot of x versus t (Fig.
5 a), which is similar to that observed experimentally (Finer
et al., 1994; Svoboda and Block, 1994; Svoboda et al.,
1993).

0.5 1.0 1.5 2.0
Time (sec)

0.2
Time (sec)

FIGURE 5 Stochastic simulation of Eq. 10 for a piecewise linear barrier
of 12 kBT in the free state and flat in the bound state, k0ff = 100 s-1,
kon [ATP] = 100 s-' (with negligible reverse rates), and an asymmetry of
a = 0.1 (b) A close-up of a short time period within a typical simulation
with k0ff = 50 s-1 and k0n [ATP] = 10 s-1. Note that most binding
dissociation events do not lead to motion. Notice also that around t = 0.12
s a step occurs without hydrolysis. This just reflects the underlying nois-
iness of the process.

An interesting and possibly experimentally testable fea-
ture of the motion is that the amplitude in the fluctuations in
position (i.e., the variance) depends on whether nucleoside
phosphate is bound or not in models involving biased dif-
fusion such as in Scheme 1, as seen in Fig. 5 b. When
nucleoside phosphate is not bound in this model, the kBT
fluctuations can only take the particle a small distance away
from the bottom of the well because the energy increases
rapidly on either side of a well. On the other hand, when
nucleoside phosphate is bound and the motor is in the flat +
state, the potential energy does not change as the particle
diffuses to the left or right and so the variance of the
position caused by thermal noise is greater in this state. This
difference is evident in the amplitude of the "jitter" or
"jiggle" seen in Fig. 5 b. Thus, in principle, individual
binding events can be monitored while watching an indi-
vidual motor move, allowing for simultaneous determina-
tion of both velocity and ATP hydrolysis rate. The origin of
the "jitter" in both the bound and unbound states is just the
thermal noise acting on the system. The difference in the
amplitude occurs because the kBT energy uncertainty trans-
lates to larger noisy excursions in systems that are not
constrained than in those that are energetically "stiff."
The stochastic differential Eq. 10 can be converted to a

mathematically equivalent partial differential equation for
the time evolution of the probability density. For a partic-
ularly elegant -discussion of the equivalence of the Langevin
approach and the Fokker-Planck-Smoluchowski approach

r---im
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outlined below see Doi and Edwards (1986). Here we will
sketch the steps leading from a continuity equation, which is
very general because it is simply an expression of conser-
vation of probability for a system, to a set of linear ordinary
differential equations for the steady-state probability density
as a function of position P+(x) and "state." The statistical
average for any quantity of interest-the average velocity,
the average "step" spacing, etc.- can be calculated from the
solution P+(x), and thus comparison to experimental obser-
vation can be made. The equations of continuity for a
system that can exist in two chemically distinct states are

a a
- P+(x, t) = - J+(x, t) - 'y(x)P+(x, t) + y-(x)P- (x, t)at a

(14)
a ~~a
tP-(x, t) = J- (x, t) - y-(x)P- (x, t) + y+(x)P+(x, t),

where + indicates bound and - indicates free. The quan-
tities P+(x,t) and P-(x,t) are the joint probability densities
of finding the particle in the + or - state, respectively, and
at position x at time t. The y are the now possibly x-depen-
dent rates at which transitions occur between the states from
+ to - (y+) and from - to + (,y-). These equations
represent the conservation conditions for the system. In
words, they state that any change in the probability density
of particles at position x and in state + (-) is due either to
particles already in state + (-) flowing into or out of the
infinitesimal region around x, or to a change in state of
particles already at position x. For the case where inertial
effects can be safely neglected, the fluxes J+ and J- are
given by

/au+ a__
J+= ax + F}P + D (x

(15)
aU- ap-

_J- =3- ax1 + F P- + D d

The notation has been somewhat compressed by leaving off
the explicit denotation of the functional dependence of P
and U on x and t. At steady state, the time derivatives in Eq.
14 are zero, leading to two coupled ordinary differential
equations for the steady-state probability distributions

d2 1 d [/dU+ \
D dXp P+ + d -+ F)P+ _7+p+ + Y_P- = O

(16)
d2 1 d /dU- \

D P+- +11 +FJP- _y-P+y+P+= 0.dx f3dxL\dx ,+

These equations can be solved explicitly for "piecewise
linear" potentials with constant y+ (Astumian and Bier,
1994). Numerical solutions for p+ can be obtained for
arbitrary U-(x) and y+(x).
The utility of the above reaction-diffusion equation for

the probability density P is that the average value of any

function flx) can be calculated as (f(x)) = fL f(X)P(x) dX.
The average force on a diffusing particle then is seen to be

(Force) = F + JP( + P- ax )dx.
ax a

(17)

The average velocity is related to the force through (v) =
(Force)/f3. The integral is the force that is "caused" by the
fluctuations. When the integral has a larger absolute value
than F and a sign opposite to that of F, we get net flow
against the external force.

EQUILIBRIUM VERSUS
NON-EQUILIBRIUM FLUCTUATIONS

Inevitably, the question arises as to what distinguishes equi-
librium fluctuations from non-equilibrium fluctuations, and
why the former can and the latter cannot give rise to net
flow. Consider the following diagram:

/ \1

Scheme 3

The amount of energy, AU = U - U+, necessary to
change the potential from + to - depends on where the
Brownian particle is along the coordinate. We will prove
that if the transition rates obey the relation y-/,y+ =
Bexp[AU/kBfl, where B is any constant, the flow is zero,
irrespective of the properties of the potentials or the time
scale of the fluctuations.

There is equilibrium if all macroscopic forces and flows
vanish. In Eq. 15, this means that F = 0, and both J+ and
J- must individually equal zero. It is easy to verify that this
is the case if P+ = C+ exp(- Ul/kBT) where C+ are
arbitrary constants. By direct substitution, we see that P- =
C- exp(-U- /kBT) is a solution of Eq. 17 if and only if the
ratio y-l/y+ = B exp[(U - U+)/kBIT. Thus the flows
J- = 0 if y-/,y+ = B exp[(U - U+)/kBT, independent of
U-(x) and independent of the time scale for the fluctuation.
The above relationship between y+ and y- provides a

necessary and sufficient condition for J+ and J- to be
individually zero. It is not necessary for this relationship to
hold for the net flow J+ + J- to be zero (J+ = -J- 0),
which occurs if both potentials U+ and U- are isotropic
(i.e., have mirror symmetry), or for the net flow to approach
zero, which occurs if the fluctuations are very fast or very
slow.
The issues surrounding equilibrium versus nonequilib-

rium noise have recently been muddied by several state-
ments in the literature that have focused on the correlation
time of the fluctuation as a key indicator of whether a
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system is in equilibrium. Perhaps this is because the flow
induced by fluctuations goes to zero when the fluctuation
frequency becomes very large (i.e., the correlation time
becomes very small) in all models if the macroscopic av-
erage force is zero. It has been suggested that "'Coloured'
noise is itself a sign of a system out of equilibrium," which
is simply not true. The color of noise relates to its frequency
spectrum. If the spectrum is flat (featureless) at all frequen-
cies the noise is said to be white, which is approximated by
very fast fluctuations. On the other hand, if the spectrum has
some features such as a drop-off at a finite frequency, the
noise is said to be colored. Every chemical reaction whether
at equilibrium or not gives rise to fluctuations, and the color
of the fluctuations is determined by the chemical relaxation
time. We have shown above that the relation y-/,y+ = B
exp[(U- - U+)/kB7] is sufficient for all flows forces to
vanish, irrespective of the individual time scales if y+ and
y . In the following we give an explicit example for a case
where fluctuations are caused by a chemical reaction. We
show that if the chemical reaction is at equilibrium the
condition y-/,y+ = B exp[(U - U+)/kBT holds and there
is no flow, even though the equilibrium reaction still causes
fluctuations, and these fluctuations have a finite nonzero
correlation time.
One mechanism by which a non-Boltzmann distribution

can be obtained is through the hydrolysis of an energy-
releasing compound such as ATP. Consider the simple
mechanism for ATP hydrolysis:

ATP
E. kATP

koff
ADP +Pi

Scheme 4

where + denotes that the motor E is bound to nucleoside
phosphate and - denotes that the motor is not bound to
nucleoside phosphate. The hydrolysis of ATP at the active
site is not explicitly shown in this standard Michaelis-
Menten mechanism, but is implicit in the rate constants and
their ratios, which define the overall thermodynamics of the
process. From this mechanism for the ATP hydrolysis re-
action, the y are given as the sums

y- koATP[ATP] + kAnDP[ADP]; (18)
7+ kATP + kADPoffk0 +kff

where [Pi] is considered to be buffered and incorporated
in kADP
The ratio of the on and off rate constants for each tran-

sition must be in accord with detailed balance, i.e.,

kA'I"[ATP] P[ ]l

k ATDP[ADP] [U- - U+1 [AG2]
kATP = exp- kBT exp RT J

off

(19)

where AG1 and AG2 are the position-independent free en-
ergy changes of binding ATP and ADP + Pi to the motor,
respectively, and the U values depend on the location x. The
overall thermodynamics of ATP hydrolysis is governed by
the relation

konkAP[ATP] oAGATP
AT? .= expkoffkADP[ADP] xpRT I

(20)

with AGATP = AG1 - AG2. Using Eqs. 18, 19, and 20, it is
easy to show that

-[U--U+- FAG2]
y

+ exp kBT exp RT
(21)

If AGATP = 0 (i.e., if there is chemical equilibrium between
ATP and ADP), Eq. 21 reduces to the form y-/,y+ = B
exp[(U - U+)/kB]. This is a sufficient condition for the
flux to be zero (if F = 0). Furthermore, we see that if the
ratio kAfTP/kADP is independent of the position x the flow is
zero even if the AGATP is large. What this means is that the
position dependence due to exp(A/BkT) must be expressed
between the on and off rates constants differently for ATP
versus ADP binding and release. The simplest case is if all
of the position dependence for the ATP binding is in the
"off' rate while all of the position dependence for the ADP
association-dissociation is in the "on" rate. Then, far from
equilibrium, only the "on" rate for ATP and "off' rate for
ADP will be expressed, and the -y in Eq. 18 will be effec-
tively position independent. Using the relations in Eq. 19,
and taking k ATP and k ADP to be position independent, we
can write the y+ and y- in terms of these rate constants as

- AATPTP ADP'AG2~ Au~
,y- = konL[ATP] + koff exp RT ,exp(-kT)'

(22)
+ = kAD?P +kATP[ RT )exp( kBTexp

When AG, = -AG2 (i.e., when AGATP = 0), %Y /Y =
Bexp(AU/kB), and there is no fluctuation-induced flow.
However, when AGATP >>I AU/kBTI for every position x,
at least one of the -y is approximately position independent,
and /,y+ # Bexp[(U - U+)/kBT].
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RELATIONSHIP BETWEEN "RATCHET" MODELS
AND "KINETIC" MODELS

Some earlier work on ratchet-like models for energy trans-
duction from a fluctuating potential was motivated by con-
sideration of the effects of fluctuation and oscillation of the
membrane potential on molecular pumps-proteins in the
cell and organelle membranes that use energy from ATP to
do work on a concentration gradient of a substance across
the membrane. As a specific example, it was shown exper-
imentally (Serpersu and Tsong, 1984; Liu et al., 1990) that
application of an oscillating electric field to a suspension of
red blood cells can activate the Na+K+ ATPase to pump
both Na+ and K+ from regions of low electrochemical
potential to high electrochemical potential. Furthermore, the
field-induced activity was independent of ATP concentra-
tion over a wide range, showing that at least part of the en-
ergy necessary for this uphill transport came from the ap-
plied field, even though the time average of the field was
zero. The effect was theoretically interpreted in terms of a
ratchet model (Tsong and Astumian, 1986; Astumian and
Robertson, 1989; Robertson and Astumian, 1990, 1991) in
which the effect of the field was to change the relative
Gibbs free energies of the various states within the catalytic
cycle. Surprisingly the mechanism was shown to work even
if the substance transported would be electrically neutral, in
which case the free-energy change through an entire cycle
would be independent of the applied field and given by the
difference of the chemical potentials of the transported
substance on the two sides of the membrane-in other
words a picture very similar to that of Scheme 1 or 2. An
applied force corresponds to the difference of the electro-
chemical potentials, and the relative energies of the states in
the catalytic cycle correspond to the details of the potential
shape within a period. Based on this theoretical work, we
predicted that a randomly fluctuating field would also be
able to drive the transport reactions (Astumian et al., 1987,
1989). This was recently verified experimentally by Xie
et al. (1994).
The theoretical work on the effects of fluctuations and

oscillations of the rate constants for a chemical kinetic
mechanism has much in common with more recent ratchet
models involving pure diffusion (Astumian and Bier, 1994)
or drift (Chauwin et al., 1994) in terms of the symmetry
considerations involved. To clarify this, we have illustrated
in Fig. 6, a and b, kinetic models that parallel Schemes 1
and 2, respectively. States 1 and 2 represent different posi-
tions of the motor within a period, or equivalently, different
conformations of the motor protein. Each of the two states
can bind both ATP and ADP, and catalyze hydrolysis, but
the binding affinities depend on whether the motor is in
state 1 or 2, and in turn, the relative energies of states 1 and
2 depend on whether nucleoside phosphate is or is not
bound. Analogous with Schemes 1 and 2, the top curve in
Fig. 6, a and b, represents the potential when nucleoside
phosphate is not bound, and the bottom curve represents the
potential when nucleoside phosphate is bound to the motor

a
az = Aexp[ -8U/kBT]
a = Aexp[ +6U/kBT] U. t 2

=A1=

a+2= A

Pt8-= A U+ t_

b
oq = A exp[ -6U/kBT]

a2= A exp[ +8U/kET]

k=A
a1+= A exp[ +BUAkBT
a+2= A exp[ -8U/kBT ]

Pt= A
P= A

U- t \

I + +

U+T WY
FIGURE 6 The reaction coordinates of two-state kinetic models super-
imposed on analogous piecewise linear ratchets (dashed lines). On the left
are the rate constants for the different chemical transitions (discussed in
text). (a) Flow is brought about by the anisotropic lowering and raising of
activation barriers by BU as nucleoside phosphates are bound and released.
The mechanism is analogous to Scheme 1. (b) The two-state reduction of
the model of Robertson and Astumian (1990) superimposed on the piece-
wise linear ratchet of Chauwin et al. (1994). In this most symmetric and
simplest incarnation, the top and bottom potentials are identical except for
a horizontal displacement, which leads to net flow, as indicated by the
curved arrows.

protein. In the kinetic picture, the binding and release of
nucleoside phosphate causes the transitions I - X# 1+ or 2-
< 2+, where each of the states F-, 1+, 2-, 2+ are consid-
ered to be in very rapid local equilibrium, and there is no
"tension" in any one of the states. Net motion is possible
because the nonequilibrium fluctuations between the + and
- states induced by binding, and hydrolysis of ATP and
release of ADP cause a kinetic transition to the left to be
more probable than a transition to the right.
The connection between a kinetic theory involving acti-

vated transitions over potential energy barriers and a diffu-
sion theory approach based on a Fokker-Planck equation
was given by Kramers (1940). For a recent review see
Hanggi et al. (1990). Kramers based his approach on a
separation of time scales due to the presence of barriers
along a one-dimensional coordinate. The time scale for
equilibration within a well is much shorter than that for
equilibration between wells across the barrier if the barrier
is larger than several kBT. In this case, the rate of transition
across a barrier from well i to well i + 1 is given by the total
"concentration" in well i, ni, multiplied by a rate constant of
the form a exp(AUj/kBT), where a is a frequency factor
relating to the time scale of intra-well relaxation. For the
models shown in Fig. 6, the frequency factor is a 4 DIL2,
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where D is the diffusion coefficient and L is the spatial
period. The factor 4 appears because each well has a
"length" L/2. In these models, the activation barriers
are U0, U0, + SU, or U0 - 6U. Thus a factor A = 4D
exp(UO/kBT)/L2 appears in front of each rate constant for
the lateral transitions in Fig. 6, a and b. The factor D
exp(- Uo/kBT) can be thought of as an effective diffusion
coefficient (Lifson and Jackson, 1962; Jackson and Coriell,
1963; Hanggi, et al., 1990) for motion of the particle along
the potential. With D = 10-12 m2/s (the hydrodynamic
diffusion coefficient for a typical protein) and U0 = 8 kBT,
D exp(-Uo/kBT) = 3.3 10-16 m2/s, which is in good
agreement with the experimental value of Hunt et al. (1994)
and with the ratio of maximum velocity and stopping force
measured by Svoboda and Block (1994). This may provide
a resolution to-the question raised by the fact that the ratio
between the stopping force and maximum velocity of a
motor is much greater than the hydrodynamic coefficient of
viscosity measured for motion of a typical protein through
water.

Fig. 6 a illustrates a potential energy setup similar to that
described by Astumian and Bier (1994) and Prost et al.
(1994), and in the introductory part of this paper. Here, in
the absence of an external field the energy is periodic in
both the + and - potentials. When the nucleoside phos-
phate is not bound to the motor, the potential energy profile
is anisotropic and the motor is tightly bound, predominantly

Eni [ (at +/ + y) -(a+ + 2)
d[n4 /dt+ -(at+13t - y2) (a2+13+y2+22 72)

1- [-Qyt- 2-2) -(a2 +12)

in state 1. When nucleoside phosphate is bound the profile
is more isotropic. The motors (most of which start in state
1) can execute a transition to state 2 either to the left or right
with equal probability, or remain in the original state 1.
When ADP dissociates, those motors that had moved to
state 2 to the right now execute with high probability a
transition to state 1 half a period further to the right, whereas
those that had moved to state 2 to the left will predominately
return to the original state. Thus there will be net flow from
left to right, with a maximum stoichiometry of one step per
two ATPs hydrolyzed. This mechanism can give rise to a
maximum velocity and stopping force consistent with ex-
periment. However, the stoichiometry necessary to obtain a
velocity of 500 nm/s is greater than 5 ATPs per step with
L = 10 nm. Thus the rate of ATP hydrolysis would have to
be in excess of 250 s-1.

Fig. 6 b is a reduction of a four-state kinetic model
(Tsong and Astumian, 1986; Westerhoff et al., 1986; As-
tumian et al., 1987; and Robertson and Astumian; 1990), as
discussed by Astumian and Robertson (1989). The analo-
gous piecewise linear model shown as Scheme 2 and illus-
trated by the dashed lines in Fig. 6 b has been recently
discussed by Chauwin et al. (1994). Here, + and - poten-

tials work in conjunction with one another to shepherd flow
from left to right, so this mechanism offers the possibility of
a one-to-one stoichiometry. When nucleoside phosphate is
bound, state 1 is energetically favored over state 2, and
when the motor is not bound to nucleoside phosphate, state
2 has a lower energy than state 1. The net flow is achieved
because of the asymmetry of the rate constants. In the
language of chemical kinetics, we have postulated that the
transition state between state 2 and state 1 to the left "looks"
more like state 2, whereas the transition state between state
2 and state 1 to the right "looks" more like state 1. Because
of the possibility of one-to-one stoichiometry, this model
may be the most realistic possibility for the kinesin-micro-
tubule system of the two, especially because various lines of
kinetic evidence suggest that the rate of ATP hydrolysis is
probably not much greater than 100 s-1 (Gilbert and John-
son, 1993; Huang and Hackney, 1994), presumably even
while the motor is moving. Additionally, fluctuation anal-
ysis while the motor is bound to microtubule recently pre-
sented by Svoboda et al. (1994) suggests that at low load the
stoichiometry is between 1 and 2 ATPs per step. The
analysis of Svoboda et al. further suggests that the number
of ATPs per step (i.e., the randomness) should increase with
increasing load.

In general, the kinetics of the models such as those shown
in Fig. 6 can be described in terms of a matrix differential
equation (Astumian et al., 1989)

- Yi
(2

(a- + p- + Y- + 22 + L()][n2[(a +32)1

(23)

where we have used conservation of probability n2- = 1 -
nj+ - n + - nj-. The states are given by the n, the
subscript distinguishes between the lateral states 1 and 2,
and the superscript distinguishes between the vertical states
+ and -. The a denote transition constants for a step to the
right, the 13 denote the transition constants for a step to the
left, the -y denote vertical transitions between the + and -
states, and the super- and subscripts denote the originating
state. Thus, f3j denotes the transition constant for a step to
the left starting from state nj. At steady state, the time
derivative is zero, and so the steady-state probabilities can
be obtained explicitly by inverting the matrix of rate coef-
ficients. The specific transition constants in terms of the
potential energies of Fig. 6, a and b, are shown in the figure.

In Fig. 7 a, we see an alternative, equivalent way to write
the mechanisms shown in Fig. 6, where now the separate
transitions for ATP binding and dissociation and ADP bind-
ing and dissociation are made explicit. A similar model for
coupling a redox reaction to proton flow across a membrane
has been presented by Kamp et al. (1988). Movement by
one period along the coordinate marked "chemistry," e.g.,
undergoing transition 2- -> 2 -+ 2- from bottom to top,
represents hydrolysis of one ATP, and movement by one
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FIGURE 7 (a) A kinetic lattice model depicting an alternative way of writing the mechanisms of Fig. 6, a and b. The rate constants shown on the diagram
are consistent with those for Fig. 6 b. The bold-faced transitions indicate the "coupled pathway." The steady-state probabilities are calculated from Eq. 23
with ryi+ + 'yj = (k4) + k/4), -y2+ = [k4 + k/((I2(4)], and Y2- = (k(4 + k-(D2/1p). (b) Calculation of the "physical" flow Jphy. along the x axis (solid line)
induced by a small AGATP with F = 0, and the "chemical" flow Jche.. along the y axis (dashed line) induced by a small F, with AGATp = 0. The flow-force
relations are very symmetric in this region close to equilibrium. We used k = A = 1 and SU = 9 kBT. (c-e) We used the standard values for the parameters
k/A = 1, SU = 9 kBT, F = 0, AGATP = 20 RT in c, d, and e, except that we varied one parameter in each graph, keeping the others constant. (c) A plot
of Jchem and Jphys versus the ratio of the chemical and physical time scales, k and A, respectively. When the chemical time scale is slow compared to the
physical time scale, the coupling is very tight, but as the chemical time scale becomes large compared to that for physical motion, the rate of hydrolysis
continues to increase even though the rate of physical motion levels off. Thus the coupling ratio decreases. (d) Plot of Jphys and Jchem versus an applied
external force F. At intermediate values of F, the rate of ATP hydrolysis decreases in parallel with the rate of physical motion of the motor. At large values
of F, the rate of ATP hydrolysis increases, while the rate of physical motion continues to decrease. (e) Plot of Jphys and Jchem versus the interaction energy.

For the kinetic models, this is equivalent to the asymmetry discussed in Scheme 1 and Fig. 1. At small SU, there is approximately no coupling between
the physical and chemical processes. At intermediate SU, the coupling is strong and the flows remain appreciable. At very large SU, the coupling is

essentially complete, but both chemical and physical flows become very small.

period along the coordinate marked "physical motion," e.g.,

undergoing transitions 2- 1-> 2- from left to right,

represents displacement of the motor by one period to the
right along its track. The rate constants shown on Fig. 7 a

are consistent with the mechanism shown in Fig. 6 b. This
way of writing the mechanism is perhaps more familiar to
biochemists and stresses the coupling between physical
motion, on the "x axis," and chemical hydrolysis of ATP, on

the "y axis." The parametrization of the rate constants for
ATP hydrolysis is by no means unique. We have taken the
overall AGATP in the term to be equally apportioned in the
four rate constants involved in ATP hydrolysis, the position
dependence in the term (D to be entirely in the "off' rate
constant for ATP and the "on" rate constant for ADP, and
for simplicity, we have taken the characteristic time for both
ATP and ADP binding to be the same, given by k. The ratio
of the product of forward and reverse rate constants along
any path leading from a state at the bottom of the figure to
the equivalent state at the top of the figure immediately
above is exp(AGATp/kBT). For example, along the path 2-
<* 1- 1 + < 2X'< 2- going from bottom to top the ratio
of forward to reverse rate constants is (A(D)(kO)(AcF)(k))/
[(k(D2/4)(A)(k/4)(A)] = 04 = exp(AGATp/R7). In the ab-

sence of an applied force, the ratio of the products of the
forward and reverse rate constants for a similar lateral
displacement by a period with no vertical change is unity. If
there is an applied homogeneous external force F (not too
large), each of the left-to-right transition constants (the a)
must be multiplied by exp[-FL'(4kBl)] and each of the
right-to-left transition constants (the ,3) must be multiplied
by exp[+FL/(4kBT)] so that the ratio of the products of
forward and reverse rate constants is exp(F/kBT). In Fig. 7
b we have plotted the physical flow of the motor (in periods
L per time 1/A) as a function of the AGATw with no applied
force as the solid line. The dashed line is the rate of ATP
hydrolysis (ATPs per motor per unit time 1/A) caused by
application of an external force with AGATP = 0. The
curves demonstrate the reciprocal behavior proved by On-
sager (1931) for generalized coupled forces and flows-in
principle, a molecular motor must be able to act as an ATP
synthase at very small AGATP-
With the rate constants shown in Fig. 7 a, Yj = y =

(k¢ + k/O), Y2+ = [k4) + k/((D20)], and y2- = (k4) +

k(D2/4)), where = exp(AGATp/4kBI) and (F = exp(WU/
4kBT). When AGATP is very large (i.e., when 0>>(D), all of

A
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the y approach k4). In this case, the transition rates between
the chemical states + and - are independent of the physical
position of the motor specified by state 1 or 2, which is
sufficient to break detailed balance, as discussed in the
section Equilibrium versus Nonequilibrium Fluctuations.
The fluxes can be written in terms of the state probabilities
and the rate constants. The physical flow along the ordinate
can be written iphys = (A(D- A) n + + (A/¢)- A) nl
Similarly, the rate of hydrolysis can be written Jchem = (k
-k/o)n+ + [k4 - k/Q(D20)]n2+. In Fig. 7, c-e, we show
how the chemical versus physical flow varies differently
with changing time scale (kI/A), external force (F), and
interaction energy (SU), respectively, where the standard
values are taken to be klA = 1, F = 0, and SU = 9 kBT. We
have used units of periods L per unit time (1/A) for the
physical flow Jphys to directly compare the stoichiometry
between physical motion and ATP hydrolysis (Jchem), which
is give in units of ATPs per motor per unit time (1/A). The
stoichiometry is the ratio Jphys/Jchem- We see that the stoi-
chiometry can indeed be close to unity under a wide range
of circumstances, but this coupling is not like interlocked
gears of a mechanical device. With gears, if one gear is
driven so hard that the other cannot keep up, or the load is
too large, the teeth of the gears may break, but it is impos-
sible to change the coupling ratio. The coupling described
by the mechanism of Fig. 7 a is gentler. If the viscosity of
the system is changed, changing the relative time scales for
physical versus chemical flow, the stoichiometry changes as
seen in Fig. 7 c. Similarly, as an external force is applied to
the motor, the system responds by changing the stoichiom-
etry. Interestingly, a large applied force actually stimulates
ATP hydrolysis, so that the rate of hydrolysis when the
motor is stalled is about the same as that when there is no
applied force. At intermediate forces, however, the system
is still tightly coupled, and so the ATP hydrolysis initially
decreases parallel with the velocity of the motor. Fig. 7 e
illustrates the behavior as a function of interaction energy
6U. At small values of SU, there is no coupling, as expected.
The coupling becomes tighter as SU increases, but as 6U
becomes very large, both flows "shut down" and approach
zero.
The coupling evident in Fig. 7 a is based on kinetics-

thermodynamically, the transition 2 -> 2+ is far more
favorable than the transition 2- * 1-, with an equilibrium
constant of 02(12 for the former as compared to (1 for the
latter transition. Yet, if AF > k4, the transition 2- 1-
will predominate. Is this inequality reasonable based on
what we know? At large AGATp = 2OkBT, as is the case
physiologically, the rate of ATP hydrolysis is k4)(n1+ +
n2+), which implies that k4 is of the order 100/s and so k
1/s. A = 4 D exp(-Uo/kBT)/L2 is about 2/s for D = 10-12
m2/s, L = 10-8 m, and UO = 10 kBT. With 6U = 9 kBT,
A'»>>kO, and at each juncture in Fig. 7 a the rate constant
for the boldfaced transition along the coupled pathway is
much greater than that for any escape transition off of the
path. The pathway is set by the asymmetry, which for these

predominate flow would be along the boldfaced corridor,
but the system would simply execute a random walk along
this path, with no net flow in any direction. A nonzero

AGATP is equivalent to tilting the lattice shown in Fig. 7 a

such that the bottom is higher than the top, but where there
is no tilt from left to right in the absence of an applied force
F. Coupling is achieved when the lateral transitions 2 ->

1- and + -> 2+ are faster than the thermodynamically
more favorable vertical transitions 2- > 2+ and + -> -,
respectively. It might seem that the fastest coupled flow
would occur when 8U becomes very large, but this is not the
case, as seen in Fig. 7 e. When 6U is very large, the
backward transition 2 -> 2+ becomes very large compared
to the forward transition 2 -- 1-. Essentially, the motor

becomes "stuck" in state 2+.
Because none of the values used to obtain this condition

of strong coupling are out of line with experimental values,
we can conclude that the type of model proposed in Fig. 7
a is not inconsistent with our present knowledge of the
behavior of molecular motors. Our model has predictive
value in that the approach directly allows analysis of the
behavior of the system under external load or at very high
viscosity, as shown in Fig. 7, c-e. This is particularly
valuable because recent advances have opened experimental
approaches to carrying out such experiments at the level of
a single molecule.

DISCUSSION AND CONCLUSION

Much of the work of a biological organism involves trans-
port of material from one place to another. This includes the
movement of cells and organelles by molecular motors such
as kinesin and muscle, and the transport of solutes across
membranes by molecular pumps such as the NaK-ATPase.
Normally, we think in terms of net movement as being due
to the action of macroscopic forces that provide direction-
ality to the motion, as in the case of an object falling to the
ground in the earth's gravitational field, or charged proteins
electrophoresed through a gel due to an applied electric
field. Molecular motors and pumps, however, effect net
motion even in the absence of a macroscopic force. The
energy for the movement comes typically from the hydro-
lysis of ATP or some other nucleoside phosphate, but it is
far from clear how this chemical reaction provides a spatial
gradient to define a preferred direction of motion. An emer-

gent perspective is that a microscopic statistical mechanical
point of view can offer useful insight into mechanochemical
coupling.

Typically, the description of mechanoenzymes such as

kinesin in muscle has involved concepts based on macro-
scopic ideas. These descriptions are very evocative because
we all can easily relate to our own experience in the mac-

roscopic world. Yet the picture evoked may be misleading.
For example, consider the recent observation that a bead
attached to a kinesin molecule has a space correlation func-

kinetic models is given by SU. Even if AGATP were zero, the

650 Biophysical Journal

tion that is peaked at 8 nm (Svoboda and Block, 1994).



Mechanochemical Coupling

Physically, what this means is that there is a preferred
spacing between locations of the bead at different times, and
that a spacing of 8 nm is more likely than other spacings. It
has been argued that this supports models involving "step-
pping" of the two kinesin heads rather than "sliding," where
presumably the meaning of these words is what one would
expect from a macroscopic picture. This was thought to be
somewhat paradoxical because the largest dimension of the
kinesin molecule is barely the size of an 8-nm period.
Recent experiments have been carried out in which motion
of a polystyrene particle is induced by turning on and off the
modulation of an optical trap (Faucheux et al., 1995) in a
manner very similar to that outlined in Scheme 1 in this
paper. The space correlation function for this motion is also
peaked, with a spacing given by the spatial period of the
modulation of the optical trap. The physical size of the
particle does not in any way determine the spacing, and
because the particle is more or less spherical, moving in
water, constrained by light, any description of this motion as
stepping in the sense that we normally visualize stepping is
not appropriate. In many instances, it seems that we should
abandon classical macroscopic descriptions of the motion of
motor proteins. There is no good macroscopic analogy to
diffusion. The typical picture of a drunken individual un-
dergoing a random walk is reasonable to a point, but even
then we do not normally think of drunken people moving in
a substance with a viscosity far greater than that of molas-
ses-so great that the Reynold's number for the motion of
the person is very small (Purcell, 1977). And yet this is the
environment in which molecular motors must work.

Irreversible statistical mechanics offers an alternative to
macroscopically motivated descriptions of molecular mo-
tors. A statistical mechanical description involves funda-
mental quantities-position, energy, and time. In such a
picture, a model is specified by giving the potential energy
as a function of position for each of the chemically distinct
states of the motor and the transition constants (which
also depend on position) for exchange between these dif-
ferent chemical states. The probability distribution is then
calculated from the coupled Fokker-Planck-Smoluchowski
equations for diffusion in the presence of local potential
gradients and external forces (Eq. 16). Under certain cir-
cumstances, particularly if the potential energy functions
describe several wells separated by large (>2-3 kBT) bar-
riers within a period, the description can be simplified,
taking a local equilibrium approximation within each well.
This results in a kinetic description, with rate constants
given by Kramers' formulae (Kramers, 1940). It is impor-
tant to remember that this kinetic approach is predicated on
a separation of the time scale for local equilibration within
a well from the time scale for equilibration between wells.
Application of strong external forces or carrying out exper-
iments at very high viscosity can in many cases blur the
distinction between these time scales. This results in a
breakdown of the local equilibrium approximation, in which

A major advantage and disadvantage of the statistical
mechanical description is that no mention whatsoever of the
structure of the protein is made. All information pertaining
to the structures of the proteins is compressed into the
potential energy functions. This explains the surprising re-
sult that much of the behavior of an admittedly very com-
plex and conformationally flexible molecular motor, for
which the potential energy function must involve many
individual interactions, can be captured by equations de-
scribing the behavior of a hard sphere moving in one di-
mension along a lattice of dipoles. The physical motion of
any two systems that for whatever reason have identical (or
sufficiently similar) reduced one-dimensional potential
functions will be the same, irrespective of how complex or
how simple the specific interactions giving rise to the po-
tential functions might be.

Indeed, none of the discussion in this paper should be
taken to imply that conformational change is not important
in the mechanism by which molecular motors move. Almost
certainly the shape of a protein changes when ATP binds,
and presumably again when ATP is hydrolyzed. What
seems to be important, however, and possibly experimen-
tally distinguishable, is not so much whether this shape
change occurs, but rather the character of the motion by
which the change occurs. Does the conformational change
occur between conformations having about the same en-
ergy, through a configurational pathway without any very

large single barriers? If so, the conformational change can

perhaps best be thought of as a configurational diffusion
process. Or does the process occur over a large (>2-3 kB7)
barrier? In which case the conformational change can per-

haps be most appropriately modeled as an activated pro-

cess-i.e., a chemical transformation. Or do the conforma-
tional states involved have widely different potential
energies with any barriers between them smaller than this
energy difference? In this case, the effect of ATP can

perhaps be viewed as releasing a constraint on the system,
and the resulting conformational change modeled as a clas-
sical "power stroke."

Aside from the lack of structural input, another disadvan-
tage to models based on statistical mechanics is that it is
only practical to take a one-dimensional approximation with
respect to the physical coordinate. This is not an inherent
weakness in the approach. The equations can easily be
generalized to an arbitrary number of degrees of freedom.
However, the complexity of numerical simulation of the
equations increases dramatically, even with only two di-
mensions. Thus even such an obviously important property
of kinesin as its dissociation from a microtubule cannot be
practically incorporated in a description based on the Fok-
ker-Planck-Smoluchowski equations.

Nevertheless, statistical mechanical pictures offer useful
insight. The equations are derived from very fundamental
physics and describe how local anisotropy along a molec-
ular pathway, coupled with a source of nonequilibrium
fluctuation, can lead to macroscopic motion in the absence

case a kinetic description is not appropriate.
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for the transduction of chemical energy released by hydro-
lysis of ATP into mechanical energy of motion of a motor
protein. The periodicity implied by the structure of micro-
tubule and other biopolymers is a major feature of the
model. For cases with no external force, the potential energy
is a periodic function, and there is no net force in either the
bound or the unbound state. This highlights what we con-
sider to be the central property of molecular motors-when
ATP is not bound to the motor there is no preferred direc-
tion of motion; when ATP is bound to the motor there is
also no preferred direction of motion; and yet somehow the
cycling between the bound and unbound states leads to
unidirectional motion. We also demonstrated that the flow
stops when the ATP hydrolytic reaction is at equilibrium.
The basic principles of the models have been recently

tested experimentally. Rousselet et al. (1994) constructed a
device similar to a standard electrophoresis apparatus along
the lines suggested by Ajdari and Prost (1992), with an array
of electrodes not at the ends, but along the sides. They could
thus turn on and off a dielectrophoretic periodic potential
without having a macroscopic force driving particles along
the lane. Nevertheless, oscillation of the periodic potential
caused net flow. In an even simpler system, Faucheux et al.
(1995) have used an optical trap to demonstrate that time-
dependent switching between periodic potential with no net
force at any instant in time can still lead to unidirectional
motion.
Coming from quite a different direction, the effects of

oscillations and fluctuations on enzyme catalysis and par-
ticularly on membrane transport have also been studied.
Recently, Xie et al. (1994) have shown that random electric
pulses applied to a suspension of red blood cells can be
rectified to cause unidirectional flow of ions through the
NaK-ATPase. Earlier it had been shown that an externally
imposed oscillation of the membrane potential acting on the
NaK-ATPase is able to drive uphill transport of ions against
an electrochemical gradient, even without hydrolysis of
ATP (Liu, et al., 1990). The data in both cases can be fit by
a four-state kinetic model similar to that of Robertson and
Astumian (1990).
A major difference between recent Brownian ratchet

models and more traditional tightly coupled kinetic cycle
models is that ratchet models based on either diffusion or on
chemical kinetics are intrinsically loosely coupled. Under
certain circumstances it is possible to have an approxi-
mately constant ratio between the number of ATPs hydro-
lyzed and the number of steps traveled over a range of
conditions, but the underlying physics does not insist on a
fixed stoichiometry. Thus in the presence of an external
force, the number of ATP molecules needed to cause a step
is expected to increase. On the other hand, the basic picture
of a cyclic kinetic model starts with the assumption of a
specific sequence of steps leading to coupling between
motion and hydrolysis, and only in response to experimental
necessity are "slip" transitions added to the mechanism. An
interesting mixture between these two pictures has been
recently provided by Leibler and Huse (1993), who consider

a stochastic formulation of a classical tightly coupled finite
state model and treat the case of collective behavior of many
motors working simultaneously.
The basic idea motivating our model is that the potential

energy profile for the motor along the biopolymer track on
which it moves depends on whether ATP is bound. This
suggests an interesting and possibly powerful experimental
test of our model. The amplitude of the fluctuations in the
position of the motor must depend on the details of the
potential. Thus, if the second moment of the position of the
motor could be determined as a function of time (averaging
for a time period long compared with the time scale of
Brownian motion but short compared to the time scale of
the individual steps involved in ATP hydrolysis) it should
be possible to detect the individual transitions correspond-
ing to binding and release of ATP (Funatsu et al., 1995).
This would directly provide a way of determining the ATP
hydrolytic rate while observing the motion of an individual
motor molecule and would provide a test for distinguishing
between various models.
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