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The motor protein kinesin literally walks on two legs along the biopoly-
mer microtubule as it hydrolyzes ATP for its fuel supply. The fraction of
accidental backsteps that kinesin takes appears to be about seven orders
of magnitude larger than what one would expect given the amount of free
energy that ATP hydrolysis makes available. This is puzzling, as more than
a billion years of natural selection should have optimized the motor protein
for its speed and efficiency. With an imagined device, Szilard has shown
that the dissipation of information can drive motion. A higher backstep-
ping probability creates more randomness in the walk and, consequently,
leads to production of more entropy. If the product state of a transition has
a higher entropy, then the free energy of that product state is lower. With
the free energy that is made available by the production of “backstepping
entropy”, the catalytic cycle of the kinesin can be speeded up. We show
quantitatively how the actually measured backstepping rate represents an
optimum at which maximal net forward speed is achieved. We, further-
more, show how this thermodynamic mechanism can realistically operate
on a biomolecular level. The results suggest that kinesin uses backstep-
ping as a source of energy and that natural selection has manipulated the
backstepping rate to optimize kinesin’s speed.
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1. Introduction: how to model a processive motor protein?

In the early 1990s experimentalists developed the ability to follow and
manipulate an individual kinesin as it is stepping along a microtubule poly-
mer. The speed could be measured and separate steps could be resolved [1].
It became possible to vary the ATP concentration and apply a piconewton
magnitude load at the same time. The ensuing speeds and backstep frequen-
cies could be measured. The plethora of new data opened up a true Valhalla
for theoreticians. A new world of molecular size engines had become acces-
sible for experimental probing. Ideas could be worked out and next falsified
or verified [2].

The first models that were developed were bottom-up. Kinesin “walks”
with 8 nm steps on microtubule, a polymer with an 8 nm period. Kinesin
and microtubule, like proteins in general, are very polar molecules. So it is
envisioned that the kinesin faces an 8 nm periodic potential as it moves along
the microtubule. As the kinesin is hydrolyzing ATP, its 3D architecture
is changing in the course of the catalytic cycle. Such changes mean that
the aforementioned periodic potential will fluctuate. We also need to be
aware that kinesin, because of its size and because of the fact that it is
moving in a liquid, is doing overdamped motion and is subject to Brownian
fluctuations. With these ingredients it is possible to set up a crude “Brownian
Ratchet” model without freely adjustable parameters. Next, one can take
measured input parameters and use the model to “predict” other measured
parameters. The ensuing Brownian Ratchet “predictions” generally turn out
correct within an order of magnitude [3, 4]. The relative success of a crude
model in describing the operation of a complicated protein that consists of
about 700 amino acids is a rare feat and very encouraging. But what the
Brownian Ratchet models fail to predict is the tight coupling that kinesin
and other motors exhibit: one step for every ATP hydrolyzed and one ATP
for every step [5, 6, 7]. Also backstepping appears to be much rarer than
simple Brownian Ratchet models predict. Real motors are ultimately more
efficient than Brownian Ratchets.

It is possible to get to the higher efficiency by putting embellishments on
the Brownian Ratchet models. One can put more states in the cycle, employ
chemical kinetics, and add states and rates until a good fit is achieved [8].
The shape of the potentials is also something that can be tinkered with.
Working out such larger and more complicated models generally requires ex-
tensive numerics. The usefulness of this approach is questionable. The rates
are not known experimentally and can be freely fitted to achieve good fit.
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Another approach has consisted in raw molecular dynamics simulation.
A successful numerical simulation of a processive motor protein may be a
worthy goal and leads to an ultimate validation of the bottom-up approach.
However, it will do little to help increase understanding and build intuition.

What we will describe in this article is an approach to molecular motors
from the opposite direction, i.e. a top–down approach very much like the
one that Statistical Mechanics takes. In Statistical Mechanics the details of
many molecular interactions are left for what they are. Instead, it is realized,
that in the course of the motion in a many dimensional phase space, one
does not need to specify the microstate of the system at each point in time.
The state of the system is appropriately described by just a few observables
that describe the macrostate of the system. With the idea of microstates
and macrostates the values of some macroscopic observables can be derived
as optima.

Awareness is building in the motor protein community that modeling in
terms of jumps between discrete states along a one-dimensional coordinate
does not yield an accurate picture. In Ref. [9] it is described how the catalytic
cycle of a motor protein should be viewed as diffusive motion through a
corridor in a many-dimensional conformational space. As this motion is
taking place, the motor protein is functioning as a conduit for a chemical-
to-mechanical energy conversion. In the course of about one billion years of
evolution, natural selection should have optimized kinesin for its task. As we
will see below, this optimization allows us to derive some features. Features
that can be checked against experimental data.

2. Why speed is an issue for a processive motor protein

One criterion in the aforementioned natural selection of kinesin should
be speed. As it runs along microtubule, kinesin pulls vesicles with chemicals.
Generally, chemicals are made near the centrosome of the cell and needed
where the action is taking place, which is often at the edges near the mem-
brane. The speed with which a cell or organism can respond to a stimulus
or environmental challenge can hinge on the speed with which kinesin runs
along microtubule.

This is particularly salient for the case of fast neuronal transport [10].
For a nerve cell, the distance between the cell body and a synapse can be
up to about a meter. It is kinesin walking on microtubule that pulls cargo
(e.g. neurotransmitter) from the cell body along the axon to the synapses.
At about 40 centimeter per day, such transport can take days. Alzheimer’s
disease is an example of an ailment that is associated with obstruction of
fast neuronal transport [11]. It is obvious that faster fast-neuronal-transport
can give an organism an advantage.
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In the next few sections, we will show how kinesin can employ a “trick”
to move a little faster. The trick works because the motor operates in an
overdamped, Brownian environment. No similar mechanism would work for
a macroscopic engine.

The “trick” mentioned in the last paragraph explains why the actual
backstep fraction for a stepping kinesin is about 7 orders of magnitude higher
than expected if backsteps were reversed forward steps. Under physiological
conditions the hydrolysis of ATP makes about 22 kBT units of free energy
available. The simplest possible kinetic scheme for a two-legged kinesin
would be one cycle in which the different necessary chemical transitions
(binding of ATP, hydrolysis of ATP, release of ADP and P, detachment of
the rear leg, forward move of detached leg, and forward attachment of de-
tached leg) follow each other up. In a scheme with tight coupling between
the chemistry and the stepping mechanics, a backstep would originate from
the reverse process and correspond to ATP synthesis. Such a reverse pro-
cess would require a very unlikely Brownian fluctuation. With 22 kBT for the
ATP hydrolysis, we would have one backstep for every exp[22] ≈ 3×109 for-
ward steps. What is, instead, observed in the most recent and most accurate
experiments is a backstep fraction of between 1/100 and 1/1000 [12,13].

The “trick” we will show increases the speed of kinesin by less than
1%. Among those not familiar with the more quantitative approach to
evolution, it may be surprising that such a small selective advantage can
drive evolution. Nevertheless, that appears to be the case. In the 1930s the
so-called “New Evolutionary Synthesis” took place. Evolutionary biologists,
geneticists, population dynamicists, and mathematicians came together to
combine Darwin’s basic idea with Mendelian genetics and with the study
of partial differential equations that describe the spread of a gene through
a population. The textbook by D. Futuyma [14] summarizes some of the
findings: “. . . a character state with even a miniscule advantage will be fixed
by natural selection. Hence even very slight differences among species, in
seemingly trivial characters such as the distribution of hairs on a fly or veins
on a leaf, could conceivably have evolved as adaptations.”

The California kangaroo rat provides a nice illustrative example from
the field [15]. This burrowing rodent lives in a California desert that is,
about once in every 50 years, hit by an earthquake that is strong enough
to collapse the burrows. The kangaroo rat, however, has evolved a seismic-
escape response. It picks up on precursors of the earthquake and utilizes
the less than one minute time that it has to make a run for the surface.
The earthquake happens about once every 200 generations. So the seismic
escape cannot be a trained response. If, without seismic response, 10% of the
colony dies in the collapse (this is a low estimate), then the genetic fixation
of the response implies a selective advantage of 0.05%. With computer
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simulations Kirschvink shows that it takes about 12 seismic events, i.e. 600
years, to eliminate the fraction of the population that does not have the
seismic escape response. “Simulations in which the trait (no seismic-escape
response) is present in small amounts indicate that it is quickly eliminated
from the population even after only a few dozen seismic events, even for only
a 10% advantage of the competing A genes expressed only once every 50
years (a net selective advantage of only 0.05%).” Futuyma’s aforementioned
textbook actually gives analytic formulae for the speed of genetic fixation.

Eukaryotic cells use processive motor proteins for active transport needs.
Faster active transport leads to a selective advantage that is independent
of the fitness landscape around the organism. Even the smallest selective
advantage is likely to have been genetically fixed in the more than one billion
years that eukaryotic cells have existed.

3. The Szilard machine

In 1929 Leo Szilard connected the concepts of information and energy.
The unit of information, the “bit”, is owed to Szilard. He derived how one
bit is associated with kBT ln 2 of energy [16].

Figure 1 shows what we will call a “Szilard machine”. A unit con-
sists of two vacuum compartments with a movable partition in between.
The unit also contains one molecule and the molecule can be either in
the left compartment (corresponding to a 0) or in the right compartment
(corresponding to a 1). Knowledge of the molecule’s location thus corre-
sponds to one bit of information. If we have that bit of information, then
the information can be put to work in the following way. Insert a pis-
ton into the vacant compartment, i.e. the compartment that does not con-
tain the molecule. Next, take away the partition and allow for isothermal
expansion. With one molecule involved, Boyle’s Law for an ideal gas is
PV = kBT . The work that is delivered by the isothermal expansion is
W =

�
P dV = kBT

�
(1/V ) dV = kBT ln(V2/V1). For V2 = 2V1, this leads

to W = kBT ln 2. In this way, information can be used to fuel a motor
(see [17] for a general theory). If it has to be guessed in which compartment
the molecule is located and if the probability of the guess being right is p,
then the average work made available will be (1 − 2p)kBT ln 2. Obviously,
the machine can be reversed. Work can be turned into information. Forcing
the molecule into one of the compartments involves compression to half the
original volume and requires kBT ln 2 of work. After completion of the com-
pression, the partition can be brought into the cell at x = 1/2. Doing that,
one creates one bit of information. Good explanations of Szilard’s machine
are found in Refs. [18, 19,20].
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Fig. 1. In a Szilard engine the operator knows on which side of the partition at
x = 1/2 the particle is located. He brings in the piston on the other side and re-
moves the partition. The isothermal doubling of the volume then releases kBT ln 2
of energy. In the “molecular motor”-context, compartment I corresponds to a for-
ward step and compartment II corresponds to a backstep. Eliminating the back-
step requires the kBT ln 2 of energy that it takes to push the piston from x = 1
to x = 1/2. By not pushing the piston to x = 1/2, but to x = ϕ, we save some
energy, but at the expense of a possible mistake, i.e. backstep.

The Szilard machine was intended as an abstraction to show that mere
information can actually be turned into work. But with today’s experiments
on the molecular scale, it has become a quantitative reality [21]

It does not have to be a real space that is halved. If a system has two
equally likely options (e.g. spin up and spin down), then forcing that system
into one of the two requires an energy of at least kBT ln 2. The best way to
understand this is through recognizing that such forcing implies a compres-
sion of the available phase space to half of the original volume. The number
of available microstates for the system reduces from Ω to Ω/2 and the con-
current entropy decrease is kB [lnΩ − ln(Ω/2)] = kB ln 2. The associated
free energy, kBT ln 2, is too small to be of any consequence in most engi-
neering applications. Even in the smallest computers, the energies involved
in storing and processing a bit of information are orders of magnitude larger
than kBT . They actually have to be in order to not be affected by thermal
noise and stay deterministic.

Now consider the possibility of not going all the way to x = 1/2 in
Fig. 1 when creating the bit of information. One saves energy in that case,
but at the expense of making a possible “mistake” (corresponding to the
striped area in Fig. 1). There is then, in the end, a small probability that
the molecule will end up in the wrong compartment when the partition is
brought in.

The energies involved in biomolecular conversions and transitions are
commonly between 1 and 10 kBT units. In the optimization of such bio-
molecular operations the kBT ln 2 can be an issue. If the processive motor
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protein can make a forward step or backward step with equal probability, the
step will involve a doubling of the available phase space, implying kBT ln 2 of
free energy becoming available to do work (Fig. 2). No such expansion of the
available phase space occurs when the motor moves forward like clockwork
and has the negligible backstep probability of exp[−22] that corresponds to
running the entire ATP-driven cycle in reverse. Allowing for a small backstep
probability, 0 < pb < 1/2, will produce entropy and make an amount of free
energy available that is between 0 and kBT ln 2. The backstep probability
corresponds to the striped area in Fig. 1. The backstep is the possible
“mistake” and it is the price paid for a small amount of free energy. That
free energy can be put towards speeding up the catalytic cycle. In Ref. [22]
variational calculus is employed to quantitatively show that, for kinesin, the
startlingly high backstep fraction is a “programmed erring” that actually
optimizes the stepper for speed. Below we will add rigor to the argument
and work out the correspondence between the Brownian stepper and the
Szilard unit.

In the remainder of the paper we will keep the formulae concise by taking
kB = 1 and T = 1 (which implies kBT as the unit of energy).

Fig. 2. Reprinted from [22]. The processive motor protein kinesin literally makes
steps of a length L = 8 nm along the biopolymer microtubule. As kinesin is hy-
drolyzing ATP, it also goes through the mechanical cycle. After the rear leg de-
taches, the attached head reorients so that the detached leg is brought to the
vicinity of the next forward binding site. After attachment there, a new step can
commence. There is, however, a probability for the detached leg to rebind at the
rear binding site. Such rebinding is generally assumed to lead to a backstep. With
the shape of the indents on the track, it is indicated that the directionality of
kinesin’s motion is due to the anisotropy of the microtubule.
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4. The Szilard machine and its thermodynamic consistency

We take a “Szilard piston” as depicted in Fig. 1. Compartment I corre-
sponds to a forward step of our molecular motor. Compartment II corre-
sponds to a backstep. To completely eliminate the probability for a backstep
requires compression of the volume to half of the original volume, i.e. an en-
ergy of ln 2. Pushing only up till x = ϕ requires W = − lnϕ. We next
put in the partition. The probability pb now corresponds to the probabil-
ity of the molecule being in the striped volume. We have pf = 1/(2ϕ) and
pb = 1− 1/(2ϕ). This leads to ϕ = 1/(2pf) = 1/ (2 (1− pb)). In terms of pf

and pb the “saved” work equals ∆W = ln 2− ln [2 (1− pb)] = − ln (1− pb) =
− ln pf . For small pb this boils down to simply ∆W ≈ pb.

After compression to x = ϕ and putting in the partition, we need to reset
the piston to x = 1 to get it ready for the next step. Furthermore, the bit of
information is only established if we have two compartments of equal volume
(i.e. the piston at x = 1) and the molecule in one known compartment while
the other is empty. No work would have been involved in the reset if the
piston had gone all the way to x = 1/2. But if the molecule happens to be
in the striped pb-area, then energy will be released in the expansion. If the
pb-volume is expanded to the same volume as pf , then the released energy is
ln (pf/pb). The probability of this happening is pb. So per step the released
energy is pb ln (pf/pb).

So, all in all, we have saved ∆G = − ln pf + pb ln (pf/pb) in the course of
the cycle by going to x = ϕ instead of going all the way to x = 1/2. After
some algebra this expression can be put in a very well-known form [20]

∆G = − (pf ln pf + pb ln pb) . (1)

This is the entropy production per step when a finite pb is allowed. The
indeterminacy in the stepping direction leads to an expansion of the available
phase space at every step.

Suppose that, in the absence of backsteps, we have a speed v0 = f0L,
where f0 is the stepping frequency and L is the steplength. Upon allowing
for a nonzero backstep probability pb we have

v = fL(pf − pb) . (2)

As was mentioned before, the idea is that the energy ∆G that we save by
allowing for backsteps can be put towards increasing the stepping frequency,
i.e. towards getting f > f0. So we do not put in the entire kBT ln 2 that is
required to get into the pf compartment for the full 100%. We save some
energy by allowing for a small pb. There is an explicit dependence on pb
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in Eq. (2) that reduces the net velocity, but the “f > f0”-effect can more
than compensate for this. In the next section we will derive the pb that
leads to the optimum speed.

On a more intuitive level, one can also think as follows of how backstep-
ping increases the number of microstates. Imagine a large number, N , of
motor proteins that are all at the same position. There is only one possible
microstate for this macrostate. Next, let all of these N motors take a step.
If all of these motors step forward, then we will continue to have only one
microstate for the macrostate of the system. But if, on the other hand, we
allow for one single backstep in these N steps, then N possible microstates
ensue. This is because the backstep can occur with any one of the N motors.
The increase in the number of microstates implies an increase in entropy that
follows Boltzmann’s well-known formula: ∆S = lnN .

5. Speeding up the catalytic cycle

The catalytic cycle of kinesin consists of about 10 identifiable chemical
transitions [23]. The cycle includes transitions like the binding of ATP, the
release of ADP, the release of an inorganic phosphate, the attachment of a
detached head, and the detachment of an attached head. Every catalytic
cycle also includes the actual 8 nanometer mechanical steps. It appears that
there is no single rate limiting transition in kinesin’s cycle [23]. From an evo-
lutionary point of view this is understandable. If there is selectional pressure
for a process to be fast and if there is a single bottleneck in the chemical
cycle, then the course of evolution will be to speed up the bottleneck transi-
tion. However, once the bottleneck transition is as fast as the second slowest
transition there will be equal selectional pressure on both transitions to be
speeded up. It is thus that in most metabolic networks and enzymatically
driven cycles there is no single rate limiting transition. Instead, control is
distributed over several transitions. This is also the case for kinesin [23].

Below we will first perform a simple calculation in which we assume
that all of the ∆G that is gained by allowing for a finite pb goes towards
speeding up a rate limiting step. This will give us an upper bound for the
pb that maximizes the net walking speed of the processive motor protein.
Subsequently, we will explain how a situation with distributed control is to
be dealt with. An explanation to that effect is also found in [22].

If there is a single rate limiting transition in the catalytic cycle of the pro-
cessive motor protein, then the mechanical stepping rate equals the rate of
this rate-limiting transition. Figure 3 depicts the reaction coordinate of this
presumed rate-limiting transition. If this transition involves the thermally
activated crossing of a barrier of height G0, then we have f0 ∝ exp [−G0].
Now suppose that the ∆G of Eq. (1) goes towards lowering the energy of
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both the product state and the activation barrier. In Section 7 we will ex-
plain how this can occur on the biomolecular level. After the lowering of
the barrier we have f ∝ exp [−G0 + ∆G]. With this proportionality, with
Eqs. (2) and (1), and with pf = 1− pb, we can express the full dependence
of the stepping speed v on pb

v ∝ e∆G (1− 2pb) = e−(1−pb) ln(1−pb)−pb ln pb (1− 2pb) . (3)

Figure 3 (b) depicts v as a function of pb according to Eq. (3). There is a
maximum for v, where v/v0 = 1.11, at p∗b = 0.08.

G
0

v/v0 

pb 





Fig. 3. (a) The reaction coordinate for a presumed rate limiting transition in the
catalytic cycle of a processive motor protein. The activation barrier has a height G0.
The arrows show how the energy ∆G (cf. Eq. (1)) brings down the activation barrier
and the product state. (b) The speed v as a function of the backstep probability
pb according to Eq. (3). v0 is the speed if no backstepping occurs (pb = 0). The
speed v is seen to have a maximum for pb = 0.08.

The value p∗b = 0.08 constitutes an upper bound. It results when the
energy that is made available following Eq. (1) goes for the full 100% to-
wards lowering the activation barrier of the rate-limiting transition. A more
common situation in chemical kinetics is that when the energy of the prod-
uct state is being varied by ∆G, the activation barrier varies along by only
α∆G, where α is the so-called apportionment factor. This apportionment
factor also expresses how the effect of an energy change of one of the two
involved states is distributed over the forward and backward transition rates
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between these states. The apportionment factor is generally found to be be-
tween 0.2 and 0.8 [24]. Implementing the effect of the apportionment brings
in the factor α as a prefactor for the exponent in Eq. (3). The exponential
term in Eq. (3) expresses how the walking speed v increases with pb. The
(1− 2pb)-term describes a decrease with pb. It is obvious that introducing
the smaller than unity prefactor α in the exponent reduces the ability of
the backstepping to speed up the motor protein. The effect of this is that
the optimum backstep probability, p∗b, is pushed towards values smaller than
0.08.

Another issue arises when the transition that takes on the ∆G of Eq. (1)
is no longer the obvious rate-limiting transition. In that case we have to
utilize the formalism of control coefficients [22,25,26]. The control coefficient
Cv

i can be thought of as the percentage by which the walking speed v of the
processive motor protein increases if the transition i in the chemical cycle
is speeded up by 1%. Obviously, Cv

i is a number between 0 and 1; we
have Cv

i → 1 if the transition i is rate-limiting and we have Cv
i → 0 if the

transition i is already so fast that a small variation is not of any consequence
for the time to go through the catalytic cycle as a whole. Implementing the
effect of distributed control over the speed v means that control coefficients
enter our formalism.

For small ∆G we can take exp[∆G] ≈ 1 + ∆G. So for a small pb the
exponent in Eq. (3) simply describes the relative increase of the speed due
to the activation barrier going down by ∆G. However, if the transition of
which the activation barrier is affected comes with a control coefficient of
Cv

i , then the relative change in the speed will be Cv
i ∆G. Next, we enter

the apportionment factor α and the control coefficient Cv
i into Eq. (3) and

obtain a concise formula

v ∝ eαCv
i ∆G(1− 2pb) . (4)

Upon using a first order approximation in pb in the exponent, i.e. ∆G ≈
(1− ln pb)pb (cf. Eq. (1)), we obtain

v ∝ exp [αCv
i (1− ln pb) pb] (1− 2pb) . (5)

Using again the approximation exp[δ] ≈ 1 + δ for small δ, we establish the
following simple first order approximation for the speed v in pb

v ∝ 1 + [αCv
i (1− ln pb)− 2] pb . . . . (6)

For very small pb, the term in square brackets is positive and v increases as
a function of pb. Clearly, for larger pb (pb → 1) the −2 will dominate and
the term in square brackets will become negative. The walking speed v will
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then decrease as a function of pb. Taking the derivative of Eq. (6) w.r.t. pb

and setting it equal to zero leads to a simple approximate formula for the
optimal backstep probability p∗b

− ln p∗b ≈
2

αCv
i

. (7)

With methods of variational calculus, a similar formula was derived in [22].
For the aforementioned upper limit case of p∗b = 0.08, the maximal v/v0

in Eq. (3) becomes v∗/v0 = 1.11. So the free-energy-out-of-backstepping
scenario that we describe speeds up the processive motor protein by at most
about 11%. Dynein is a processive motor protein that walks on microtubule,
but in the direction opposite to kinesin’s walking. Recent measurements
have revealed that about 13% of dynein’s steps are backward [27]. To our
knowledge, that is the highest load-free backstep fraction that has been
measured for a processive motor protein. However, we do not have sufficient
additional data to link dynein’s backstepping to our mechanism. In Eq. (7)
we see that it is the logarithm of p∗b that is related to the kinetic parameters α
and Cv

i . Parameters of chemical kinetics are generally not easy to accurately
determine. So, ultimately, an order-of-magnitude estimate of p∗b is the best
we can get out of Eq. (7). But within these confines, Eq. (7) accounts for
experimentally obtained data on kinesin. References [12] and [13] report
backstep fractions of between 10−2 and 10−3. This means that − ln p∗b is
between about 4.5 and 7. For kinesin, the steps with the highest control
come with coefficients of 0.3 and 0.4 [23, 22]. As was mentioned before, α
should be between 0.2 and 0.8. Operating within these allowable ranges for
α and Cv

i , the right-hand side of Eq. (7) can be brought to between 6 and
7. Of course, for such small p∗b’s, the speeding up is much smaller than the
maximal 10%. Take, for instance, as p∗b the pb = 1/220 that was measured
and reported for kinesin in [12]. We then have ∆G = 0.03 (cf. Eq. (1)) and
we find v/v0 = 1.0016 upon substitution in Eq. (4) (using αCv

i = −2/ ln p∗b),
i.e. a speeding up of about 0.16%. If we take the pb = 1/802 that is found for
kinesin in [13], then we derive ∆G = 0.01 (cf. Eq. (1)) and a speeding up of
about 0.04%. Although the improvement may seem small, it is worthwhile
to note that this is a selective advantage comparable to the one for the
aforementioned seismic escape response of the California kangaroo rat.

That Eq. (7) accounts for measured data indicates that the backstepping-
to-increase-speed mechanism may be real, that a Szilard machine is actually
at work in a processive motor protein, and that the machine has evolved to
make the motor perform optimally.
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6. Free energy from entropy production and the situation
near equilibrium

Entropy production can make free energy available. Decreasing entropy
requires an input of free energy. Biology is full of examples of this. Bringing
an electroneutral molecule from where it has a low concentration to where
it has a high concentration requires energy. This is a purely entropic effect.
Usable free energy can, in turn, be acquired if the molecule is allowed to
go the opposite way. This is the way in which the operation of membrane
pumps and transporters can be understood.

The Na,K,2Cl-cotransporter [28] picks up one sodium ion, one potas-
sium ion, and two chloride ions on the outside of the cell. It next brings
them to the inside of the cell. The net charge transport is zero, so it is only
concentration differences that matter. Sodium and chloride have high con-
centrations (∼ 100mM) outside the cell and low concentrations (∼ 10mM)
inside the cell. For potassium it is the other way round. The transporter
thus effectively uses the chemical potentials of sodium and chloride as an
energy source to pump a potassium ion against its chemical potential.

Another good example is entropic coiling. Take a polymer consisting
of N “rigid rods” of length l. When it is stretched out, it has an end-
to-end distance of L = Nl. There is only one microstate for an end-to-
end distance of L. It is obvious that for smaller end-to-end distances, the
polymer can have many different configurations (i.e. microstates). For an
unconstrained polymer we have an average end-to-end distance of about
L ≈ l

√
N [29]. When a stretched-out polymer coils to a smaller end-to-end

distance, it generates an actual force. Such a so-called “entropic force” is
encountered in many biological systems [30, 31]. Entropic forces of coiling
polymers are also thought to play a key role in the force-generation of the
stepping kinesin [32, 33,34].

A cute case of diffusion being put to work is the so-called “drinking bird”
or “dippy bird” [35, 36]. It is a popular gadget in the instruction of under-
graduates and there is also a good Wikipedia page about it. Evaporation of
the water is what eventually drives the up and down motion of the bird. The
felt covered beak of the bird gets submerged in the water and absorbs some
of that water. Because of the large surface area of the beak and because
surface tension is no longer an issue, the water evaporates relatively fast
from the felt-covered beak once the bird is upright. What ultimately drives
the cycle is the water going from the confinement in a liquid to the much
larger space that is has in vapor form, i.e. phase space expansion and the
ensuing entropy production. In essence, the bird with its felt beak catalyzes
the evaporation of water and harnesses some of the released free energy of
that evaporation to drive the up-and-down motion. So it catalyzes an ener-
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getically downhill process (the evaporation) and couples the downhill energy
flow to push the reciprocal motion. In its traditional form, the dippy bird
“uses” the evaporation to cool part of the bird. Next, the up and down mo-
tion of the bird is effectively the work of a heat engine [35,36]. But a dippy
bird variation with no temperature gradients has been constructed and an-
alyzed [37]. In this construction the coupling of evaporation to motion, i.e.
of entropy production to mechanical work, is direct.

To check on the thermodynamic consistency of the mechanism that we
propose, we will look at what happens when the system is near equilibrium.
This will occur when the ATP-ADP chemical potential is close to zero, i.e.
GT→D → 0. Life is a far-from-equilibrium phenomenon, so such a situation
is nonphysiological. In vitro the equilibrium situation can be achieved with
the right (but unphysiologically high) ADP-to-ATP concentration ratio in
the bath. The motor’s speed should vanish linearly as the driving potential
is made to vanish. As we saw earlier in this section, it is possible for diffusion
to be a source of energy. However, it is not possible for mere diffusion to
bias its own direction to the left or right on a periodic track (cf. Fig. 2).
Such biasing requires a macroscopic force, an explicit conversion mechanism
(as with the aforementioned transporter), or some input of other energy [38].
The fact that the track is obviously anisotropic (i.e., the left-to-right and
the right-to-left direction are distinguishable) does not change that.

Figure 4 helps us understand, in terms of the basic ingredients of the
system, how there is indeed no directionality to the diffusion at chemical
equilibrium. The circles in the horizontal plane represent the chemical cy-
cle. The ordinary physiological ATP-to-ADP conversion corresponds to the
clockwise direction. The mechanical direction is perpendicular to the hor-
izontal plane. It is at the mechanical junction that a “decision” is made
whether to take a forward (solid arrow) or backward (dashed arrow) step.
Near equilibrium we have (f+ − f−) ∝ GT→D, where f+ is the number of
clockwise cycles that is circled per unit of time and f− is the number of
counterclockwise cycles that is circled per unit of time. When circling clock-
wise, the route of the solid arrow (pf) is taken more frequently because it has
a lower activation barrier. That difference in activation barrier height is the
same when moving counterclockwise. Therefore, the solid arrows depict the
dominant route also for counterclockwise motion. Backstepping will thus
dominate for ATP synthesis. For the stepping velocity due to the clockwise
cycles we have v+ ∝ (pf − pb)f+ and for stepping due to counterclockwise
cycles we have v− ∝ (pb−pf)f−, which is negative. Inspection of the arrows
at the chemical–mechanical junction in Fig. 4 makes clear why the difference
(pf − pb) gets a minus sign for a cycle in the counterclockwise direction. For
the net velocity we obtain

vnet = v+ + v− ∝ (pf − pb)(f+ − f−) ∝ (pf − pb)GT→D . (8)
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So near equilibrium the motor’s speed is proportional to the chemical po-
tential and to the difference (pf − pb). Close-to-equilibrium our mechanism
reduces to a simple linear force-flow relationship as it should [39].

Fig. 4. Reprinted from [22]. Kinesin catalyzes the ATP-to-ADP conversion. Under
physiological conditions such conversion makes 22 kBT -units of energy available.
Kinesin couples the chemical conversion to the mechanical stepping and some of
the released energy is thus used to drive the stepping. The chemical cycle is in
the horizontal plane. The mechanical direction is perpendicular to the chemical
plane. On the right side of the circle, the solid and dashed arrows indicate the
chemo-mechanical junction. This is where the actual coupling occurs and where
the forward vs. backward “decision” is made. This picture also helps us understand
how near chemical equilibrium, the net speed of the molecular motor vanishes even
if pf �= pb. At chemical equilibrium there are as many clockwise (ATP-to-ADP)
chemical conversions as that there are counterclockwise (ADP-to-ATP) chemical
conversions.

7. The biomolecular realization of Szilard’s mechanism

The model presented in the previous sections is thermodynamically
sound and consistent. It is, however, still legitimate to ask how a biomolecule
can operate like the piston in Fig. 1. Next, we will point our how features
of the Szilard machine can be realized in a working protein.

Before we start this explanation, it is important to realize the following
again. A cycle that is driven by 22 kBT -units of energy has a probability to
be run in the reverse direction just through a “Brownian conspiracy”. For
such a cycle, on average one out of every exp[22] cycles will be in the reverse
direction. The observed backstep fraction is much higher and that means
that a mechanism has been built into the molecule to “deliberately” increase
the backstep fraction. Below we will ignore the extremely rare backsteps
that originate in a reversal of the cycle.
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Kinesin is a dimer each unit of which consists of about 350 amino acids.
Within this large protein there are many clusters of amino acids with con-
siderable flexibility. Imagine that, in a certain state S1 in kinesin’s catalytic
cycle, the position of such a cluster within the kinesin determines whether
a step will be forward or backward. We can depict this situation with the
double well as shown in figures 5 (a) and 5 (b). When the cluster is in the
left well a forward step is made. When the cluster is in the right well a
backstep occurs. The symmetric double well of Fig. 5 (a) corresponds to
pf = pb = 1/2. For a smaller backstep probability, the right well has a
correspondingly higher level than the left well (see Fig. 5 (b)). Complete
removal of the backstep possibility corresponds to eliminating the right well
from the reaction coordinate. Such removal means that, in the state S1, the
number of possible positions for the cluster is reduced. Removal of part of
the available phase space implies an effective increase of the free energy of
state S1. For the case of the symmetric double well of Fig. 5 (a), it is obvious
that taking away the right well (i.e. going from the dashed to the dotted
situation) halves the available phase space and thus increases the free energy
level of S1 by ln 2 kBT -units.

Fig. 5. A model for the mechanism behind the backstepping and the acquiring of
the associated entropic energy. Whether a step goes forward or backward depends
on the position of a cluster within the processive motor protein. The corresponding
reaction coordinate for the cluster is depicted. The left and right well stand for
forward and backward step, respectively. A pf = pb = 1/2 situation is depicted
by a symmetric double well as in (a). Eliminating the backstepping would mean
eliminating the right well, i.e. replacing the dashed part by the dotted part. Such
a change halves the number of states at level E∗ and effectively increases the free
energy of that level by kBT ln 2. The situation with a finite small pb corresponds to
an energy level difference ε between the wells (b). Panel (c) depicts the mechanism
in terms of chemical kinetics. The states S1f and S1b correspond to the left and
right well of (b), respectively. The S0 → S1 transition is speeded up by adding the
state S1b.

Implementing a small nonzero backstep probability means that we in-
sert the small higher well as in Fig. 5 (b). Within state S1 of the catalytic
cycle we then get a situation where the cluster faces a reaction coordinate
as in Fig. 5 (b) and, effectively, makes a “choice”. The activation barrier
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between the states in Fig. 5 (b) needs to be sufficiently low for quick equili-
bration to take place. A Boltzmann distribution between the two wells then
determines the forward-versus-backward step probability. For the energy
difference between the wells we have, following Boltzmann, ε = ln(pf/pb).
For kinesin, with a backstep fraction of 1/802 [13], the resulting energy dif-
ference is ε ≈ 7 kBT -units. The energy ε is related to, but not identical to
the “saved” energy ∆W that was introduced in Section 2. The energy ∆W
that is saved on the ln 2 kBT -units of energy that guarantee a forward step is
much smaller than ε. Putting that rightmost well at a height ε = ln [pf/pb]
above the left well leads to ∆W = − ln pf = − ln [1− pb]. The derivation
of that quantity is found in Section 2 in the context of Fig. 1. For small pb

we have − ln [1− pb] ≈ pb ≈ pb/pf . This leads to ∆W ≈ exp[−ε] for the
connection between ε and ∆W .

In Section 2 we saw that there was also an energy release of pb ln [pf/pb] =
pbε involved in the reset of the piston. In the case of the biomolecule, this
energy can be acquired after a next conformational change in which the
position of our cluster becomes energetically integrated into the progress of
the catalytic cycle. In that case an energy ε = ln [pf/pb] can help drive
the catalytic cycle forward if the cluster is in the backstep well on the right.
With a Boltzmann distribution, the probability to be in that right well is pb.
So, with our biomolecule, we indeed collect ∆G = ∆W + pb ln [pf/pb] =
− ln pf + pb ln [pf/pb] of energy per stepping cycle from the backstepping.
This is the same expression for ∆G that we found in Section 2 with the
system of Fig. 1, and that ultimately reduced to Eq. (1).

Figure 5 (c) shows what this boils down to in the language of chemical
kinetics. Let S0, S1, . . . , Sk be the subsequent states in the course of the
full catalytic cycle. We took S1 for the state where the forward–backward
“split” occurs. This means that we effectively get a “fork” at the S0 → S1

transition. The dotted double arrow corresponds to the reaction coordinate
depicted in Fig. 5 (b). Quick equilibration between the wells is assumed to
occur there. The lower and the higher well in Fig. 5 (b) correspond to S1f

and S1b, respectively. The addition of the state S1b speeds up the transition
from S0 to S1. Proceeding from S1f means that a forward step has occurred.
Proceeding from S1b means a backstep has occurred.

8. Discussion

Boltzmann’s entropy formula ∆S = kB ln(Ωf/Ωi) and the ensuing
∆W = kBT ln(Ωf/Ωi) establish a connection between work and statistics.
The connection is counterintuitive. On a macroscopic level no energy release
is involved when an apple is put in a larger basket. But when a thermally
agitated molecule is involved, the shrinking or expanding of the available
phase space implies changes in free energy.
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On the biomolecular scale, where the energy kBT is significant, informa-
tion can be traded for energy. The Szilard machine was originally devised
as a thought experiment to illustrate this. But, as that scale has become
experimentally accessible, the machine has become part of the experimental-
ist’s reality [21]. At the end of Ref. [21] it is written “We demonstrated that
free energy is obtained by a feedback control using the information about
the system; information is converted to free energy, as the first realization of
Szilard-type Maxwell’s demon”. It would be misguided to think that, in the
course of evolution, such an information-for-energy trading has not occurred
where it can occur and where it can help a processive motor protein to go
faster. The formula ln p∗b = −2/(αCv

i ) that we derived for the optimum,
appears to be followed by actual processive motor proteins. Indications are
strong that a processive motor protein has indeed exploited backstepping
statistics to maximize its speed.

That, in a Brownian environment, statistical “wiggle room” is equivalent
to energy is well-known in the study of protein folding. In the textbook by
Jackson [40] it is pointed out how entropic energy can play an important
role in protein folding. For a polypeptide to go from a random coil to a
correctly folded protein generally requires many kBT ’s. After all, energy
has to be invested into driving the protein from a macrostate with a large
number of microstates to the unique folded state. In order to reduce this
energy difference, some proteins apparently retain flexible clusters in their
folded form.

Myosin V and myosin VI are processive motor proteins that walk on
actin. These motor proteins have been more recently discovered. It appears
that for these motor proteins the stepsize does not consistently cover one
period of the biopolymer. Instead, stepsizes are large and there appears to
be a fairly wide distribution of forward as well as backward stepsizes [41,42].
Such variable steplength is also a way to produce entropy and make free en-
ergy available. After all, the variable stepsize means that there are different
ways to cover a fixed distance along the biopolymer. So for the same initial
and final state, we can have multiple pathways, involving combinations of
different microstates. An analysis analogous to that in this paper could, in
principle, apply.

Many ailments involve a malfunctioning of processive motor protein
transport. Getting a good understanding of the operation of processive
motor proteins, therefore, has a medical significance and is essential for ef-
fective drug development. As biology is going down to the molecular level, it
is becoming an ever more quantitative science. The study of motor proteins
is now the realm of physicists as much as it is of biologists. A theoretical
physicist may look at a helium atom and ask how he can manipulate the
Schrödinger equation most effectively to compute the atom’s energy levels.
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But the hard core bottom-up methodology that yielded success in atomic
physics may not be so fruitful when facing the catalytic cycle of a com-
plex protein. Ultimately, the mere complexity of motor proteins may be
well beyond what simulations and fits can capture anyway. At this point
it makes sense to step back and ask the why question again. In his famous
1973 essay Nothing in Biology Makes Sense Except in the Light of Evolution,
the evolutionary biologist T. Dobzhansky wrote: “Seen in the light of evo-
lution, biology is, perhaps, intellectually the most satisfying and inspiring
science. Without that light it becomes a pile of sundry facts, some of them
interesting or curious, but making no meaningful picture as a whole” [43].
Unlike helium atoms, motor proteins, and proteins in general, have evolved
to be robust and efficient. Sense can be made of the operation of a motor
protein upon the realization that the dynamics represent a stable optimum.
Physicists have many methods at their disposal to compute optima. It is
with the application of these methods that they may put some quantitative
rigor behind Dobzhansky’s insight and behind the understanding of motor
protein operation.
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