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Abstract. We consider the category of Hodge substructures of the
cohomology of abelian varieties, and ask when a Tate twist of such a
Hodge structure belongs to the same category.

1. Introduction

A (rational) Hodge structure VC =
⊕

p+q=n V
p,q is said to be effective if

V p,q = 0 unless p, q ≥ 0, and, it is said to be geometric if it is isomorphic to
a Hodge substructure of Hn(X,Q) for some smooth, projective variety X
over C. For m ∈ Z, the Tate twist V (m) is the Hodge structure of weight
n− 2m defined by V (m)p,q = V p+m,q+m.

A geometric Hodge structure must be effective and polarizable, but not
conversely (Grothendieck [17, p. 300, 2nd footnote]). Any effective and
polarizable Hodge structure of weight 1 is the first cohomology of an abelian
variety, and hence geometric. In [7] we have shown that any Hodge structure
of cm-type is geometric. These are the only known criteria for an abstract
Hodge structure to be geometric [15, p. 305].

The general Hodge conjecture as formulated by Grothendieck [17] implies
that any effective Tate twist of a geometric Hodge structure is again geo-
metric. In a series of papers [1–9] we have shown that, for certain abelian
varieties A, every effective Tate twist of a Hodge structure in the cohomol-
ogy of A is isomorphic to a Hodge structure occurring in the cohomology
of some abelian variety. Moreover, we have used this to prove the general
Hodge conjecture for certain abelian varieties. We have also shown the ex-
istence of a Hodge structure which occurs in the cohomology of an abelian
variety, but which has an effective Tate twist that does not occur in the
cohomology of any abelian variety [5, Theorem 5.5, p. 926].

We now outline the contents and organization of this paper. We begin
in §2 with a summary of the definitions and basic properties of the Hodge
and Lefschetz groups of an abelian variety, and the Kuga fiber varieties
associated with them. In §3 we formulate our problem in representation
theoretic form. In the following four sections we review our results for various
classes of abelian varieties. In §8, we discuss the abelian varieties for which
the general Hodge conjecture is known; the full list of such abelian varieties
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is given in Appendix A—in all these cases the general Hodge conjecture
follows from known cases of the usual Hodge conjecture and the results
included in this article. §9 is a remark on the open cases.

The results mentioned above have appeared in various papers with incon-
sistent definitions, notations and terminology. Our goal in this article is to
give a unified presentation, with simplifications and generalizations where
possible. Certain errors crept into the earlier articles; Appendix B alerts the
reader to them.

Notations and conventions. All representations are finite-dimensional and
algebraic. The derived group of a group G is denoted by G′. All abelian
varieties are over C. For an abelian variety A, we let D(A) = End(A)⊗Q be
its endomorphism algebra, L(A) its Lefschetz group, G(A) its Hodge group,
L′(A) the derived group of L(A), and, G′(A) the derived group of G(A).
For a finite field extension E of a field F , we let ResE/F be the restriction of
scalars functor, from varieties over E to varieties over F . For an algebraic
or topological group G, we denote by G0 the connected component of the
identity.

2. Algebraic groups and abelian varieties

2.1. Abelian varieties. Let A be an abelian variety over C, and let V =
H1(A,Q). As a complex manifold, A is the torus VR/VZ with a complex
structure J on VR, where VZ is the lattice H1(A,Z). We view V as a left
vector space over the endomorphism algebra D = D(A) = End(A)⊗Q.

Recall that a polarization of A induces an involution a 7→ a on D, and a
Riemann form β, i.e., an alternating Q-bilinear form on V such that β(x, Jy)
is symmetric and positive definite, β(VZ, VZ) ⊂ Z, and such that β(ax, y) =
β(x, ay) for a ∈ D. We use the nondegenerate form β to identify V with its
dual H1(A,Q), and thus

∧n V with Hn(A,Q).

2.2. Hodge group. The Hodge group (or Special Mumford-Tate group) of
A is defined to be the smallest Q-algebraic subgroup G = G(A) of GL(V )
such that G(R) contains exp(θJ) for all θ ∈ R (Mumford [28]). It is a
connected, reductive group characterized by the property that its invariants
in H?(Ak,Q) are precisely the Hodge classes for any positive integer k.

2.3. Lefschetz group. The Lefschetz group L(A) is defined to be the cen-
tralizer of End(A) in Sp(V, β); it is characterized by the property that for
any positive integer k, the subring of H?(Ak,Q) generated by the classes of

divisors equals H?(Ak,C)L(A)C∩H?(Ak,Q) (Milne [27, Theorem 3.2, p. 656]
and Murty [31, §3.6.2, p. 93]). Since any divisor class is a Hodge class, it
follows that G(A) ⊂ L(A) ⊂ Sp(V, β).

2.4. Classification. Assume, now, that A is simple. Then by Albert’s clas-
sification, D is one of the following [37]:

type I: a totally real number field F ;
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type II: a totally indefinite quaternion algebra over a totally real num-
ber field F ;

type III: a totally definite quaternion algebra over a totally real num-
ber field F ;

type IV: a division algebra over a cm-field E. In this case let F be
the maximal totally real subfield of E.

In each case there exists a unique F -bilinear form T : V ×V → D such that
β(x, y) = TrD/Q T (x, y), T (ax, by) = aT (x, y)b, and, T (y, x) = −T (x, y) for
all x, y ∈ V , a, b ∈ D [38, Lemma 1.2, p. 162]. The Lefschetz group is then
the restriction of scalars, from F to Q, of the unitary group of T :

(2.1) L(A) = ResF/Q U(T ) = ResF/Q AutD(V, T ).

Let S be the set of embeddings of F into R. We can write

(2.2) L(A)R =
∏
α∈S

Lα and VR =
⊕
α∈S

Vα,

where Lα acts trivially on Vα′ unless α = α′. Then Lα and its action on Vα
are given as follows [30]:

type I: Lα = Sp(Vα, βα) is a symplectic group acting via its standard
representation on Vα;

type II: Lα is a symplectic group acting on Vα as two copies of the
standard representation;

type III: Lα,C is an orthogonal group acting on Vα,C as two copies of
the standard representation;

type IV: Lα = U(pα, qα), and Lα,C ∼= GLm(C) acts on Vα,C as the
direct sum of the standard representation and its contragredient.

2.5. Kuga fiber varieties. We review below the construction of Kuga fiber
varieties. These are families of abelian varieties which include the solutions
to fine moduli problems for abelian varieties with additional structures such
as Hodge cycles (Mumford [28]) or pel-structures (polarizations, endomor-
phisms, level structures) (Shimura [39]).

Let β be a nondegenerate alternating form on a finite-dimensional vector
space V over Q, and L a lattice in V . The symplectic group Sp(V, β) is a
reductive group of hermitian type, which acts by conjugation on the Siegel
space S consisting of all complex structures J on VR such that β(x, Jy) is
symmetric and positive definite. If Γ′ is a torsion-free arithmetic subgroup
of Sp(V, β), then V′ = Γ\S is a quasiprojective algebraic variety, and there
exists a universal family of abelian varieties A′ → V′ such that the fiber over
P ∈ V′ is the torus VR/L with the complex structure J , where J is a point
of S lying over P .

Now let G be a semisimple Q-algebraic group of hermitian type, Γ a
torsion-free arithmetic subgroup of G(Q), K a maximal compact subgroup of
G(R)0, and, X = G(R)0/K the corresponding bounded symmetric domain.
Suppose given a representation ρ : G→ Sp(V, β) such that ρ(Γ) ⊂ Γ′, and an
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equivariant holomorphic map τ : X → S, between the symmetric domains
of the two groups. The family of abelian varieties A → V = Γ\X obtained
as the pullback of the universal family A′ → V′ is called a Kuga fiber variety,
We refer the reader to [1] or [33] for details.

For A as in §2.1, the semisimple parts of the groups G(A) and L(A)0

are of hermitian type, and their inclusions into Sp(V, β) define Kuga fiber
varieties which are the Hodge families of Mumford [28] and (generalizations
of) the pel-families of Shimura [39], respectively.

2.6. Abelian varieties of PEL-type. We say that an abelian variety A
is of pel-type if the semisimple parts of G(A) and L(A)0 are equal. Thus
a simple abelian variety is of pel-type if and only if it is a general member
of a pel-family of abelian varieties (see [1, §1 and §4.6]). This means in
essence that for each k ≥ 1, Ak has no Hodge classes other than those it is
required to have by virtue of its endomorphisms. We note that all abelian
varieties of cm-type, all abelian varieties of dimension less than 4, and, all
abelian varieties for which the general Hodge conjecture is currently known,
are of pel-type.

3. Dominating varieties

We say that a Hodge structure V of weight w is fully twisted if V is
effective, and V w,0 6= 0. Thus V is fully twisted if and only if V is effective,
but V (1) is not effective. More generally, for a subfield F of C, we say that
an F -subspace U of VF is fully twisted if UC ∩ V w,0 6= 0.

Definition 3.1. A smooth, projective, complex algebraic variety A is said to
be dominated by a class X of smooth, projective, complex algebraic varieties
if, given any irreducible Hodge structure V in the cohomology of A, there
exists a fully twisted Hodge structure V ′ in the cohomology of some X ∈ X

such that V ′ is isomorphic to a Tate twist of V .

This definition is motivated by the following observation of Grothendieck
(for a proof, see the proof of [1, Proposition 2.1, p. 243]).

Proposition 3.2 (Grothendieck [17, p. 301]). Let A be a smooth projective
variety over C which is dominated by X. If the usual Hodge conjecture holds
for A×X for each X ∈ X, then the general Hodge conjecture holds for A.

Hodge structures in the cohomology of an abelian variety A correspond
to G(A)-submodules of H?(A,Q). Thus A is dominated by X if and only if
given any irreducible G(A)-submodule, V , of H?(A,Q), there exist B ∈ X,
and a fully twisted G(B)-submodule V ′ of Hn(B,Q) for some n, such that
V and V ′ are isomorphic as G(A × B)-modules. (Note that G(A × B) is
a subgroup of G(A) × G(B), so it makes sense to consider V and V ′ as
G(A×B)-modules.)

Since it is usually easier to work over C than over Q, it is natural to modify
the above by extending scalars. Given a subfield F of C, which will usually
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be either Q or C, we say that A is F -dominated by a class X of abelian
varieties if, given any irreducible G(A)F -submodule, V , of H?(A,F ), there
exist B ∈ X, and a fully twisted G(B)F -submodule V ′ of Hn(B,F ) for some
n, such that V and V ′ are isomorphic as G(A×B)F -modules. In particular,
A is dominated by X if and only if A is Q-dominated by X. We then have
the following results:

Lemma 3.3 (Abdulali [8, Lemma 2, p. 1165]). If an abelian variety A is
F -dominated by X for some subfield F of C, then A is dominated by X.

Theorem 3.4 (Abdulali [8, Propositions 3 and 4, p. 1166]). Let A and B
be abelian varieties such that G(A×B) = G(A)×G(B).

(1) If A is C-dominated by X and B is C-dominated by Y, then A × B
is C-dominated by X · Y.

(2) If A is C-dominated by X and B is dominated by Y, then A × B is
dominated by X · Y.

Here, X · Y = {X × Y | X ∈ X, Y ∈ Y }.

4. semisimple Hodge groups

We begin with abelian varieties with semisimple Hodge groups, without
factors of type III. Abelian varieties of type III will be dealt with in §7.

Theorem 4.1 (Abdulali [1, Theorem 5.1, p. 348]). Let A be an abelian
variety of pel-type. Suppose that the Hodge group of A is semisimple and
A has no factors of type III. Then A is C-dominated by the set of powers of
itself. The usual Hodge conjecture for A implies the general Hodge conjecture
for all powers of A.

Idea of proof. We illustrate the idea of proof of this theorem in the simplest
case: a generic abelian variety A of dimension n. Let β be a Riemann
form for A. Then the Hodge group of A is the symplectic group G =
Sp(V, β), acting on V = H1(A,Q) via the standard representation. By the
representation theory of the symplectic group, for 2 ≤ k ≤ dimA, we have

k∧
V = πk ⊕

k−2∧
V,

where πk is an irreducible representation of G. Thus

Hk(A,Q) = Vk ⊕Hk−2(A,Q)(−1),

where Vk is equivalent to πk as a G-module. Since Hk−2(A,C)(−1) cannot
contain any (k, 0)-forms, it follows that all (k, 0)-forms are in Vk,C. For each
irreducible representation πk of G in the cohomology of A we have found
a fully twisted Hodge structure Vk in H?(A,Q) with πk equivalent to Vk,
proving that A is dominated by itself. Since the usual Hodge conjecture
is known for A × A, this proves the general Hodge conjecture for A (due
originally to Mattuck [26]). �
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The abelian varieties for which the general Hodge conjecture follows from
this theorem are listed in Appendix A (see item (1)).

5. The cm-case

A polarizable Hodge structure is said to be of cm-type if its Hodge group
is commutative. As shown by Mumford [29], an abelian variety A is of
cm-type if and only if the Hodge structure H1(A,Q) is of cm-type.

Theorem 5.1 (Abdulali [7, Theorem 3, p. 159]). Every effective Hodge
structure of cm-type occurs in the cohomology of an abelian variety of cm-
type.

Theorem 5.2 (Abdulali [7, Theorem 4, p. 159]). Any abelian variety of
cm-type is dominated by the class of all cm abelian varieties. If A is a
simple abelian variety of cm-type with cm by E, then any power of A is
dominated by the set of products of abelian varieties with cm by E.

Theorem 5.3 (Abdulali [7, Proposition 5, p. 160]). Let E1, . . . , Em be cm-
fields whose Galois closures are linearly disjoint over Q. For each i =
1, . . . ,m, let Ai be an abelian variety with complex multiplication by Ei, and
let Xi be a class of abelian varieties which dominates Ai. Then A =

∏m
i=1Ai

is dominated by X = {
∏m
i=1Xi | Xi ∈ Xi }.

Using Theorem 5.2, we can prove the general Hodge conjecture for certain
abelian varieties (see Appendix A, item (3)). We note that Hazama [19,20]
had independently proved that the usual Hodge conjecture for all cm abelian
varieties implies the general Hodge conjecture for all cm abelian varieties.

For further discussion of Theorem 5.1 see [16].

6. Abelian varieties of type IV

We have dealt above with the extreme cases where the Hodge group is
either semisimple or commutative. The general situation turns out to be
quite subtle. In light of Theorem 5.1, it is tempting to rephrase the defi-
nition of C-domination of abelian varieties in terms of just the semisimple
part G′(A) of the Hodge group. One might, for example, say that A is
“semisimply dominated” by X if, given any irreducible G′(A)C-submodule V
of H?(A,C), there exists a fully twisted G′(B)C-submodule V ′ of H?(B,C)
for some B ∈ X, which is equivalent to V as a G′(A × B)C-module. It
is tempting to hope that in this situation A will be dominated by abelian
varieties of the form B × C, where B ∈ X and C is of cm-type. This is
unfortunately not true. It turns out that we require not just V ′, but all of
its Galois conjugates, to be fully twisted. The formal definition follows.

Definition 6.1. An abelian variety A is semidominated by a set X of abelian
varieties if, given any nontrivial irreducible representation ρ of G′(A)C such
that ρ occurs in Hn(A,C) for some n, there exist Aρ ∈ X, a positive integer
cρ, and, Vρ ⊂ Hcρ(Aρ,C), such that
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(1) Vρ is a G(Aρ)C-submodule of Hcρ(Aρ,C),
(2) the action of G′(A×Aρ)C on Vρ is equivalent to ρ ◦ p1, where

G′(A)×G′(Aρ) ⊃ G′(A×Aρ)
p1−→ G′(A)

is the projection to the first factor, and,
(3) for each σ ∈ Aut(C), the conjugate (Vρ)

σ contains a nonzero (cρ, 0)-
form.

Theorem 6.2 (Abdulali [9, Theorem 7]). Let A be an abelian variety
semidominated by X. Then A is dominated by the set of abelian varieties of
the form B × C, where B ∈ X, and C is of cm-type.

Remark 6.3. The converse of Theorem 6.2 is false. For example, the abelian
varieties in Theorem 7.1 are dominated by the set of powers of themselves,
but are not semidominated by any class of abelian varieties [9, Remark 5].

Lemma 6.4 (Abdulali [9, Lemma 6]). If A is semidominated by X and B
is semidominated by Y, and if G′(A × B) = G′(A) × G′(B), then A × B is
semidominated by

X · Y = {X × Y | X ∈ X, Y ∈ Y}.
In the next two theorems we use these ideas to show that certain abelian

varieties of type IV are dominated by abelian varieties. In a few cases we
can also deduce the general Hodge conjecture (see Appendix A, item (4)).

Theorem 6.5 (Abdulali [8, Theorem 10, p. 1167]). Let A be an abelian
variety of pel-type such that each simple factor of A is of type IV. Then
we can write G′(A)(R) ∼=

∏
α∈S SU(pα, qα). Assume that for each α ∈ S we

have |pα − qα| = 1. Then A is semidominated by the set of powers of A.

Theorem 6.6 (Abdulali [9, Theorem 10]). Let A be an abelian variety
such that each simple factor of G′(A)(R) is isomorphic to SU(p, 1) for some
p > 1. Then A is dominated by abelian varieties.

Idea of proof. Using Lemma 6.4, we reduce to the case of a power of a simple
abelian variety A0. Then A0 = AP is the fiber at a general point P of a
Hodge family A → V. For k = 1, . . . , p, Satake [32] constructs Kuga fiber
varieties Ak → V, from symplectic representations ρk : G′(A) → Sp(Vk, βk)

such that a simple factor of G′(A)(R) acts as the direct sum of
∧k and its

contragredient. Let Ak be the fiber over P of Ak. It follows from Satake’s
classification [32] that A is isogenous to Ak and hence A0 is isogenous to Ak
for some k. Let

X =
{
An1

1 × · · · ×A
np
p | ni ≥ 0

}
.

We then show that every member of X is semidominated by X, and hence
dominated by abelian varieties. �

Remark 6.7. The families of abelian varieties Ak → V in the proof of The-
orem 6.6 are not, in general, pel-families, so the abelian varieties in X are
not, in general, of pel-type.
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7. Abelian varieties of type III

We now consider a simple abelian variety A of pel-type whose endomor-
phism algebra is a totally definite quaternion algebra D = D(A) over a
totally real number field F . We use the notations of §2, so that T : V ×V →
D is now a quaternionic skew-hermitian form. Let m = dimD V . The
Hodge group G = G(A) is the connected component of the identity of
ResF/Q Aut(V, T ), and G(R) =

∏
α∈S Gα, where each Gα is isomorphic

to the group of type Dm called SO?(2m) by Helgason [21, p. 445], and
SU−(m,H) by Satake [33, Exercise 2, p. 278].

The discriminant, discrT , plays a crucial role here. Theorem 7.1 deals
with the cases where discrT is not a square. When discrT is a square, we
deal with the cases m = 4 and m > 4 in Theorems 7.2 and 7.3, respectively.

Theorem 7.1 (Abdulali [5, Theorem 4.1, p. 922]). Let A be a simple abelian
variety of pel-type such that D(A) is a totally definite quaternion algebra
over Q. Let T be the skew-hermitian form determined by a polarization of A.
If discrT is not a square, then any power of A is dominated by the set of
powers of A, and the usual Hodge conjecture for A implies the general Hodge
conjecture for all powers of A.

Outline of proof. We have VC = W ⊕W , with GC acting as the standard
representation on both W and W , and, dimW = 2m. As explained in
[5, p. 923], W = W 1,0⊕W 0,1, where W 1,0 is an m-dimensional space of (1, 0)-
forms, and W 0,1 is an m-dimensional space of (0, 1)-forms. Let {u1, . . . , um}
be a basis of W 1,0.

Let g be the Lie algebra of GC. We denote by µ1, . . . , µm, the fundamental
weights of g with respect to a Cartan algebra h (see [5, §3.3, p. 921] and

[44, p. 329]). For 1 ≤ j ≤ m − 2,
∧jW is an irreducible g-module with

highest weight µj which contains the (j, 0)-form u1∧· · ·∧uj . The irreducible

g-module
∧m−1W has highest weight µm−1+µm, and contains the (m−1, 0)-

form u1∧· · ·∧um−1. However,
∧mW is the direct sum of two irreducible g-

modules, say U1 and U2, having highest weights 2µm−1 and 2µm respectively.
The (m, 0)-form u1 ∧ · · · ∧ um is in U2, while U1 contains no (m, 0)-forms.
The assumption that discrT is not a square implies that the weights 2µm−1
and 2µm belong to the same orbit of Gal(Q/Q). Hence if a Hodge structure
U is such that UC contains U1, then it must also contain U2, and thus be
fully twisted.

Now let M be an irreducible Hodge structure in the cohomology of a
power of A, and M0 an irreducible g-submodule of MC. Let µ be the highest
weight of M0, and write µ = a1µ1+· · ·+amµm, for some nonnegative integers
a1, . . . , am. Since the representation occurs in the tensor algebra generated
by VC, we must have am−1 ≡ am (mod 2).

If am ≥ am−1, we have

µ = a1µ1 + · · ·+ am−2µm−2 + am−1(µm−1 + µm) + bm(2µm)
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with bm = am− am−1 ≥ 0. We have seen above that for each of the weights
µ1, . . . , µm−2, µm−1 + µm, 2µm, there exists an irreducible and fully twisted
g-module in the cohomology of A with that highest weight. Hence, taking
tensor products, we obtain a fully twisted g-module M1 of highest weight
µ in the cohomology of some power of A. An irreducible Hodge structure
containing M1 is fully twisted and isomorphic to a Tate twist of M .

If am < am−1, we have

µ = a1µ1 + · · ·+ am−2µm−2 + am−1(µm−1 + µm) + cm(2µm−1)

with cm = am−1 − am ≥ 0. This is a Galois conjugate of

µ′ = a1µ1 + · · ·+ am−2µm−2 + am−1(µm−1 + µm) + cm(2µm)

so we can apply the arguments of the previous paragraph to a conjugate of
M0 contained in MC. �

Theorem 7.1 implies the general Hodge conjecture for some abelian vari-
eties of type III (see Appendix A, item (2)).

Theorem 7.2 (Abdulali [5, Theorem 5.3, p. 925]). Let A be a simple abelian
variety of pel-type of type III. Let T be the skew-hermitian form determined
by a polarization of A. If discrT is a square and dimD(A)H1(V,Q) = 4, then
there exists an abelian variety B such that each power of A is C-dominated
by the set of abelian varieties of the form Ai ×Bj.

Idea of proof. Assume, for simplicity, that the center of D(A) is Q. The
spin group Spin(6, 2) is a 2-fold covering of SO?(8), so their symmetric
domains are isomorphic (cf. [33, Exercise 1, p. 289]). We thus get two Kuga
fiber varieties A→ V and B→ V over the same arithmetic variety V, where
A→ V is the pel-family having A as the fiber over a point P , and, Spin(6, 2)
acts on the first cohomology of B = BP via the spin representation with
highest weight µ3. Thus H2(B × B,C) contains a fully twisted Spin(6, 2)-
module which is equivalent to the representation U1 constructed in the proof
of Theorem 7.1. �

Theorem 7.3 (Abdulali [5, Theorem 5.5, p. 926]). Let A be a simple abelian
variety of pel-type of type III. Let T be the skew-hermitian form determined
by a polarization of A. If discrT is a square, and dimD(A)H1(V,Q) > 4,
then A is not dominated by abelian varieties.

Sketch of proof. Assume, for simplicity, that the center of D(A) is Q. Let
A be the fiber at P of the pel-family A → V. Let M be an irreducible
Hodge structure in Hm(A,Q) such that MC contains the representation
U1 constructed in the proof of Theorem 7.1. Then M(1) is effective, but
representation theory shows that a representation equivalent to U1 cannot
occur in Hm−2(Ak,C) for any positive integer k [5, Lemma 3.3.1, p. 921].
This shows that A is not dominated by the set of powers of A. Next, we
prove that if M(1) were to occur in the cohomology of an abelian variety B,
then we could take B to be the fiber over P of a Kuga fiber variety B→ V.
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Finally, we invoke Satake’s classification of Kuga fiber varieties [32, 33] to
rule out the existence of such an abelian variety. �

8. The general Hodge conjecture

8.1. Some special cases. In Appendix A we give a list of abelian varieties
for which the general Hodge conjecture can be unconditionally proved using
the methods of this paper. These include the following interesting special
cases:

(1) Combining cases (1a), (3c), and, (5) of Appendix A, we obtain the
general Hodge conjecture for any product of three (or fewer) elliptic
curves.

(2) An abelian surface is either a product of two elliptic curves, or, of
cm-type (Case (3d)), or, its Hodge group is simple and it belongs to
Case (1a). Thus the general Hodge conjecture is true for any power
of an abelian surface.

(3) Bardelli [10] proves the general Hodge conjecture for various abelian
3-folds. All of these are included in our list.

8.2. An open problem. Let E be a quadratic imaginary number field, and
A an abelian m-fold of pel-type with D(A) = E. Then the Lefschetz group
of A is a Q-form of U(p, q), where (p, q) is the signature of the hermitian
form determined by a polarization of A. The Weil Hodge structure W ⊂
Hm(A,Q) is a 2-dimensional Hodge structure of type {(p, q), (q, p)}. Schoen
[35, §6] has proved the general Hodge conjecture for W in the following
cases:

(1) m = 4, (p, q) = (3, 1), E = Q(
√
−1), and,

(2) m = 6, (p, q) = (5, 1), E = Q(
√
−3).

W is of cm-type, and isomorphic to a Hodge substructure of Cw where
C is an elliptic curve with cm by E, and, w = |p − q| [6]. The full general
Hodge conjecture for (powers of) these abelian varieties is open, and perhaps
approachable using known methods.

9. Concluding remark

I have given above large classes of abelian varieties which are dominated
by abelian varieties, and one example of an abelian variety not dominated by
abelian varieties. I believe that the exception is the rule, and “most” abelian
varieties not considered above are not dominated by abelian varieties—and
expect to provide evidence for this in a future paper.

Appendix A. Known Cases

The following is a list of abelian varieties for which the general Hodge
conjecture is currently known. All these cases can be proved using the
methods of this paper.
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(1) An abelian variety A of pel-type such that G(A) is semisimple, and,
each simple factor of A is one of the following (see Theorem 4.1):
(a) Any simple abelian variety A0 of pel-type of type I or type

II. The usual Hodge conjecture for all powers of A0 is due to
Kuga [25, pp. 79–80]. The general Hodge conjecture was first
proved by Hazama [18] and Tankeev [41]. Special cases have
been proved by Mattuck [26], Knight [22, 23], Gordon [13, 14],
and, Tankeev [42,43].

(b) A simple 2m-dimensional abelian variety A0 of pel-type such
that D(A0) = Q

(√
−d
)
, and polarization given by a hermitian

form H of signature (m,m), in the following cases:
(i) m = 2 and d ∈ {1, 3};
(ii) m = 3, d ∈ {1, 3}, and, discrH = −1.

The usual Hodge conjecture for these abelian varieties is due to
Schoen [34,36], van Geemen [12], and Koike [24].

(2) Any power of one of the following abelian varieties of type III:
(a) A 4-dimensional abelian variety A of type III such that D(A)

contains a square root of −3 or −1 [5, Corollary 4.3].
(b) A 6-dimensional abelian variety A of pel-type of type III such

that D(A) contains a square root of −3 or −1, and the polar-
ization is given by a skew-hermitian form of discriminant −1
[2, Example 5.1].

(3) The following abelian varieties of cm-type [7, §4, pp. 160-161]:
(a) Any power of an abelian variety A with cm by a cm-field E such

that [E : F ] = 2d, where F is the maximal totally real subfield
of E, d = [F : Q], and, bars denote Galois closure (Tankeev
[41, Theorem 2, p. 180]). Dodson [11, Proposition 2.2.2, p. 82]
provides examples of such cm-fields.

(b) Any power of an elliptic curve of cm-type [40].

(c) Any abelian variety of the form Aj1×Ak2×A`3, where A1, A2, A3

are elliptic curves of cm-type.
(d) Any power of an abelian surface of cm-type.

(4) Any abelian variety of pel-type which is isogenous to a product of
abelian varieties of the following types (Abdulali [8, Theorem 14,
p. 1169]):
(a) a simple 3-dimensional abelian variety with endomorphism al-

gebra either Q(
√
−1) or Q(

√
−3), and with a polarization given

by a hermitian form of signature (2, 1);
(b) a simple 5-dimensional abelian variety with endomorphism al-

gebra either Q(
√
−1) or Q(

√
−3), and with a polarization given

by a hermitian form of signature (3, 2);
(c) an elliptic curve with cm by either Q(

√
−1) or Q(

√
−3).

(5) An abelian variety isogenous to a product A × B, where A is as in
Case (1), and B is in one of the other cases above (Theorem 3.4).
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Appendix B. Errata to earlier papers

I thank Chad Schoen for kindly pointing out to me that Proposition 4.4.1
of [1] is false. This requires several modifications to subsequent papers.

B.1. Abelian varieties and the general Hodge conjecture [1].

(1) page 341, line 7 from bottom: replace V (−r) by V (r).
(2) page 345, line 4: replace (−r) by (r).
(3) Proposition 4.4.1 is false. It should be replaced by [8, Propositions

3 and 4, p. 1166] and [7, Proposition 5, p. 160] (see Theorems 3.4
and 5.3 of this paper.) Consequently,
(a) Theorem 5.1 requires the additional hypothesis that there is at

most one simple factor of type III.
(b) Theorem 6.1 requires the additional hypothesis that the cm-

fields corresponding to the factors of cm-type are linearly dis-
joint.

B.2. Filtrations on the cohomology of abelian varieties [3].

(1) page 7, line 10: replace V (−r) by V (r).
(2) §7 of [3] is corrected, updated, and expanded by Appendix A of

the current paper. In particular, [3, 7.1 (2), 7.1 (4), and, 7.2.1] are
incorrect.

(3) page 10, line 20: replace U(−1) by U(1).

B.3. Hodge structures on abelian varieties of CM-type [4]. Theo-
rem 3.1 as stated is false. Consequently, some of the examples in Section
4 are incorrect. Correct results and examples may be found in [7], and are
summarized in §5 of this paper.

B.4. Hodge structures on abelian varieties of type III [5]. Add to
the hypotheses of Theorem 4.1 that the center of D(A) is Q (see Theorem
7.1 of this paper).

B.5. Hodge structures on abelian varieties of type IV [6]. Theorems
3.1 and 3.2 require the additional hypothesis that the signature (p, q) of
the hermitian form satisfies |p − q| = 1. Hence Remark 3.4 is invalid, but,
Corollary 3.3 is correct as stated.
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