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ABSTRACT 

In this paper we develop a two stage algorithm for schedul-
ing call centers with strict SLAs and arrival rate uncertain-
ty.  The first cut schedule can be developed in less than a 
minute using a constructive heuristic.  The schedule is then 
refined via  a simulation based optimization approach.  We 
find that when allowed to run for five minutes or less this 
two stage process can create a schedule with a total ex-
pected cost within a few percentage points of schedules 
generated using much more computationally intensive me-
thods.  This rapid scheduling process is designed to support 
front line managers who wish to evaluate multiple schedul-
ing options in a what if analysis mode.     

1 INTRODUCTION 

Call centers are a large and growing component of the U.S. 
and world economy (Gans, Koole et al. 2003; Aksin, Ar-
mony et al. 2007)  The Incoming Call Management Insti-
tute estimates that by 2008 the US will have over 47,000 
call centers and employ over 2.7 million agents.  Large 
scale call centers are technically and managerially sophis-
ticated operations and have been the subject of substantial 
academic research.  A call center is a facility designed to 
support the delivery of some interactive service via tele-
phone communications, typically an office space with mul-
tiple workstations manned by agents who place and receive 
calls.  Call center applications include telemarketing, cus-
tomer service, help desk support, and emergency dispatch.    

Inbound call center operations are challenging to man-
age; there is considerable uncertainty in estimates of arrival 
rates, and the operation is often subject to strict service 
level constraints.  Our research is motivated in part by re-
cent work with a medium sized provider of call center 
based technical support.  While the scope of services varies 
from account to account, many projects are 24 x 7 support 
and virtually all are subject to some form of Service Level 
Agreement (SLA).  There are multiple types of SLAs, but 
the most common specifies a minimum level of the Tele-
phone Service Factor (TSF).  A TSF SLA specifies the 
proportion of calls that must be answered within a speci-
fied time.  For example, an 80/120 SLA specifies that 80% 

of calls must be answered within 120 seconds.  A very im-
portant point is that the service level applies to an extended 
period, typically a week or a month, which appears to be 
common practice in this segment of the industry.  The SLA 
does not define requirements for a day or an hour; so the 
desk is typically staffed so that at some times the service 
level is underachieved, sometimes overachieved, and is on 
target for the entire month.  The outsourcing contract often 
specifies substantial financial penalties for failing to meet 
the SLA.   

The key difficulty involved with staffing this call cen-
ter is a fixed SLA with a variable and uncertain arrival rate 
pattern.  The number of calls presented in any ½ hour pe-
riod is highly variable with multiple sources of uncertainty.  
In addition to day of week seasonality these call center 
projects also experience very significant time of day seaso-
nality.   

The staffing challenge in this call center is to find a 
minimal cost staffing plan that achieves the global SLA 
target with a high probability.  The schedule must obvious-
ly be locked in before arrival rate uncertainty is revealed.  
While management has some recourse to adjust manpower 
during the course of the day (overtime, early dismissal) 
these actions are generally very limited.     

Standard call center scheduling models typically en-
force the service level in every time period and therefore 
often over staff the call center.  Most models also fail to 
adequately address the uncertainty in inbound call volume 
and tend to under staff in volatile periods.   Managers often 
manually adjust the schedules based on experience to com-
pensate for these shortcomings, making extensive optimi-
zation moot.  Several recent scheduling models attempt to 
address this uncertainty, but result in computationally in-
tensive algorithms.  We develop an algorithm that can de-
velop near optimal schedules very quickly to support inter-
active planning.   

2 LITERATURE REVIEW 

Detailed summaries of the call center oriented literature are 
provided in (Gans, Koole et al. 2003) and (Aksin, Armony 
et al. 2007).   Many call center scheduling models are de-
rivatives of the set covering model developed in (Dantzig 
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1954).   Dantzig’s model assumed by period staffing re-
quirements were defined exogenously, as were a set of 
feasible schedules.  His algorithm seeks the lowest cost 
covering of the requirements.   The set covering model is 
often formulated as a Mixed Integer Program and becomes 
intractable as the number of schedules becomes large, 
which is common if operations are continuous and breaks 
are scheduled explicitly.  Many models implement a two 
phased approach where breaks are ignored in the first 
phase and are then scheduled in a second pass.  This gener-
al approach is outlined in (Pinedo 1995) and examined in 
more detail in (Thompson 1995; Aykin 1996; Brusco and 
Jacobs 2000). 

More recently attention has been focused on the issue 
of uncertainty in arrival rates.  Statistical analysis of call 
center data in (Brown, Gans et al. 2005; Robbins 2007) 
supports the notion that arrival rates are uncertain.   (Bas-
samboo, Harrison et al. 2005) develop a model that at-
tempts to minimize the cost of staffing plus an imputed 
cost for customer abandonment for a call center with mul-
tiple customer and server types when arrival rates are vari-
able and uncertain.  (Harrison and Zeevi 2005) solve the 
staffing problem for call centers with multiple call types, 
multiple agent types, and uncertain arrivals using a fluid 
approximation.   

(Atlason, Epelman et al. 2007) develop an algorithm 
that combines server sizing and staff scheduling into a sin-
gle optimization problem.  This model focuses on the im-
pact that staffing in one time period can affect performance 
in the subsequent period, a fact ignored in many models.   
The algorithm utilizes discrete event simulation to calcu-
late service levels under candidate staffing models, and a 
discrete cutting plane algorithm to search for improving 
solutions.  This approach has the advantage of making ac-
curate service level calculations for call centers with non-
stationary arrival patterns, but this comes at a high compu-
tational cost.  (Robbins and Harrison 2008) develop a 
modified version of the set covering approach that works 
to a globally optimum schedule when arrival rates are un-
certain.  This model is formulated a stochastic mixed in-
teger program and requires significant computational effort 
to solve.   

3 SCHEDULING MODEL 

The objective of this paper is to develop a scheduling mod-
el that can operate in an interactive decision support 
framework.  As such it should allow for very rapid devel-
opment of good schedules to support interactive planning 
in a what-if approach.  It should then allow schedules to be 
refined and optimized.   Finally it should operate on a stan-
dard desktop computer to allow front line supervisors to 
run it interactively.   

To accomplish this objective we developed a two stage 
process.  In the first stage we use a constructive heuristic to 

incrementally develop a preliminary schedule that will sa-
tisfy the aggregate service level requirements based on a 
stationary period by period approximation of the service 
level.  In the second stage we evaluate the schedule via 
discrete event simulation and use a local search algorithm 
to find lower cost schedules.   

3.1 Constructive Heuristic 

The constructive heuristic builds a schedule using a greedy 
algorithm; it iteratively adds assignments that cover the 
highest expected number of calls answered outside of the 
service level requirement.  To define the algorithm more 
formally we use the following notation.   

 
Sets 

I: time periods 
J: possible schedules 
K: scenarios 
 

Decision Variables 

xj: number of resources as-
signed to schedule j 
 
 

Deterministic Parameters 

aij: a 1 if schedule j is staffed 
in time i, 0 otherwise 
g: global SLA goal 
d: allowable delay before a 
call must be answered 
: minimum number of 
agents in any time period  
r:   per  point penalty cost of 
TSF shortfall 
 

State Variables  

Si: Average TSF shortfall 
in period i 
bj: shortfall calls covered 
by schedule j 
Cj: Cover for schedule j 
A: the expected aggregate 
service level 
O: the service level offset 
 
Stochastic Parameters 

nik: number of calls in pe-
riod i of scenario k 
 

Each scenario in the set K represents a vector of call vo-
lumes per time period in the planning horizon.  These call 
volumes can be generated using any approach that can cha-
racterize the variability of the call stream.  In our approach 
we assume that the call volume on any given day is a nor-
mally distributed random variable.  We further assume that 
the proportion of calls received during any 30 minute pe-
riod is a normally distributed random variable.  We assume 
the parameters for each 30 minute period are consistent 
across all days of the weeks.  The call generation algorithm 
is detailed in (Robbins 2007). 
  
The average shortfall in each time period is calculated by:   

 

1 , ,ik ik ij j
k K j J

i

n TSF n a x d

S
K
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 The function ( , , )TSF v n d calculates the telephone 

service factor, the proportion of calls answered within d 
seconds, if call volume is v, and the number of agents is n.  
This calculation is based on the Erlang A model and im-
plemented using the fluid approximations defined in (Gar-
nett, Mandelbaum et al. 2002).  The measure Si is the aver-
age number of calls that are not answered within the 
allowable delay for time period i.  Periods with a large 
number of out of service level calls are good candidates for 
incremental staffing.   

To determine where to best add incremental staffing 
we calculate the cover for each feasible schedule.   The 
cover is defined as the average number of out of service 
level calls presented to this schedule per period.   

 
i ij

i I
j

ij
i I

S a
C
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 (2) 

The next schedule to staff is selected as the schedule 
with the maximum cover.   

Based on these definitions we can outline a basic ini-
tial staffing heuristic as follows.   

 
1. Initialization  

a. Generate a set of K call volume scenarios 
b. Create an initial schedule with no staffing 
c. Define a target service level scheduling bias 

2. Repeat the following until Stop=True 
a. Find the schedule in J with maximum cover Cj and 

increment staffing for that schedule.   
b. Calculate the per period out of service level call vo-

lume Si 
c. Calculate A, the aggregate expected service level, 

i.e. the average proportion of calls answered with d 
seconds.   

d. If A ≥ g + O  then Stop = True 
Figure 3-1 Staffing Heuristic 

 
The algorithm continues until the estimated aggregate 

service level reaches the goal level plus an offset.  The off-
set parameter is a factor that allows the stopping point to 
be biased relative to the goal.  Our empirical results show 
that better schedule can be found by applying a small offset 
that varies based on the seasonality of the project.  The off-
set allows for an adjustment to compensate for any bias in 
the stationary period by period based service level approx-
imation.   

3.1.1 The Minimum Staffing Problem 

The algorithm outlined in Figure 3-1 can quickly generate 
a schedule that will satisfy the aggregate service level re-
quirement, however the resulting schedule may not meet 
minimum  staffing requirements.  A minimum staffing re-

quirement necessitates a minimum number of agents that 
must be scheduled at all times.  In the operation we ana-
lyzed a minimum of two agents are required at all times.   

Because operations are 24 × 7 and overnight call vo-
lume tends to be quite low on some projects, the staffing 
heuristic will often leave portions of the overnight period 
with no staffing, a solution that is clearly unacceptable.   

To address the minimum staffing issue we modified 
the cover calculation to add a bonus for covering time pe-
riods with staffing levels below the minimum.  In practice, 
setting this bonus parameter turned out to be very impor-
tant in terms of the quality of the final schedule generated.  
If the parameter was set too high, off peak hours are sche-
duled too early in the process and the resulting schedule is 
too costly.  If set too low then the schedule will reach the 
aggregate service level goal without satisfying the mini-
mum  staffing constraint.   

After extensive experimentation we settled on a mod-
ified algorithm defined as follows.   

 
1. Initialization 

a. Set the min staffing cover coefficient to an initial 
value 

b. Set Stop = False 
2. Search: repeat until Stop=True 

a. Execute the staffing algorithm outline in Figure 3-1. 
b. If all min staffing constraints are satisfied the Stop 

= True, else increment the min staffing cover 
coefficient 

Figure 3-2 Modified Staffing Heuristic 

3.2 Simulation Based Search 

In this stage we use Discreet Event Simulation (DES) to 
model the operation of the call center.  Unlike the analyti-
cally based model used so far, the DES approach simulates 
individual call processing.  The simulation model is de-
signed to generate call arrivals using the same statistical 
model used to generate call scenarios for the initial heuris-
tic.  The simulation model also varies the number of agents 
based on the time phased staffing model generated from 
the scheduling model.  

Basic DES can evaluate the expected outcome of the 
candidate schedule, but in order to find a better schedule, 
we need to implement some form of optimization algo-
rithm.  We implement a local search algorithm that starts 
with the schedule generated from the heuristic and searches 
the neighborhood of closely related schedules.  The local 
search algorithm is guided by a variable neighborhood 
search (VNS) metaheuristic.  VNS is a metaheuristic that 
makes systematic changes in the neighborhood being 
searched as the search progresses  (Hansen and Mladenov-
ic 2001; Hansen and Mladenovic 2005).  The general struc-
ture of the VNS is as follows: 
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1. Initialization  

a. Select the set of neighborhood structures ,kN for 

max1,...,k k  

b. Construct an initial incumbent solution, Ix , using a 

heuristic procedure. 
c. Select a confidence level  for the selection of a 

new incumbent solution 
2. Search: repeat the following until Stop=True 

a. Set 1k   

b. Find 
minkn candidate solutions, Cx  that are neigh-

bors of Ix  

c. Simulate the system with each candidate and com-
pare the results to the incumbent using a pair wise t 
Test at the  level of significance.  

d. If any Cx is superior to Ix  at the   level then set 
*

I Cx x , where *
Cx is the best candidate solution  

e. Else, set 
minki n , set Found = False, and re-

peat until (
maxki n or Found=True) 

i. Find a new candidate 
ikx   

ii. Simulate the system with each candidate and 
compare the results using a pairwise T Test.  

iii. If 
ikx is superior to Ix  at the   level then 

set 
iI kx x and found = True 

f. If a no new incumbent was found in neighborhood 
k then  

i. set 1k k   

ii. if maxk k then Stop = True 

A common approach in VNS is to define a series of nested 
neighborhood structures such that  

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X       

When defining the neighborhood structure we make the 
distinction between the set of active schedules, those sche-
dules with a non-zero assignment in the candidate sche-
dule, and feasible schedules which include all schedules in 
the feasible schedule set.  Based on this distinction we de-
fine the following neighborhoods 

 1( )N x : Active 1 Change: the set of all staff plans 

where an active schedule is either incremented or de-
cremented by one.   

 2 ( )N x : Active 2 Change: pick any two active sche-

dules and independently increment or decrement each.   

 3 ( )N x : Feasible 1 Change: pick any feasible sche-

dule and add an assignment.     

 4 ( )N x : Feasible 2 Change: pick any feasible sche-

dule and add an assignment, pick an active schedule 
and decrement the number assigned.   

4 NUMERICAL EVALUATION 

To test our algorithm we evaluate it against models devel-
oped for three real world IT support projects.  We refer to 
these projects as Project J, Project S and Project O.  Each 
project has unique characteristics that create different sea-
sonality patterns and different levels of variability.  

Project J is an IT help desk supporting approximately 
30,000 corporate used.  This help desk receives about 
16,000 calls per month and exhibits a strong weekly and 
daily seasonality pattern.  Call volume exhibits a strong 
spike in the morning between 8 and 11 AM and a smaller 
peak in the afternoon between 1 and 3 PM.  Project O sup-
ports a corporate and store employees for a large retail 
chain.  Call volume is slightly lower, at about 15,000 calls 
per month and exhibits a less dramatic daily seasonality 
pattern.  Call volume peaks around 8AM and declines 
steadily throughout the day, without the narrow volume 
peak exhibited in Project J.  Project S also supports retail 
and corporate users and has a seasonality pattern similar to 
Project O.  Call volume is much higher, at about 45,000 
calls per month and is much more volatile than project O.  
More detailed descriptions of these projects, and the para-
meters of the call volume models can be found in (Robbins 
2007).    

For each project we develop schedules for five varia-
bility options; these options allow for various levels of 
part-time staffing.  The least flexible option, A, allows only 
for five day a week eight hour shifts.  With these restric-
tions there are 336 unique schedules to which agents can 
be assigned.  The most flexible option, E, allows five day a 
week four hour shifts and expands the total number of feas-
ible schedules to 3,696.  The scheduling options are sum-
marized in table 4-1.   

Table 4-1 Scheduling Patterns  

Pattern Schedule Types Included 
Feasible 

Schedules 
A 5x8 only 336 
B 5x8, 4x10 1,680 
C 5x8, 4x10, 4x8 3,024 
D 5x8, 4x10, 4x8, 5x6 3,360 
E 5x8, 4x10, 4x8, 5x6, 5x4 3,696 

 
We evaluated each of the three project against the five 

schedule options for a total of 15 test cases.  In each case 
we benchmarked our solution against the solution generat-
ed using the mixed integer stochastic program analyzed in 
(Robbins 2007).  That algorithm generates an optimal solu-
tion based on an analytical approximation of service levels 
using an independent period by period approximation, but 
the resulting solution may not be optimal given interactions 
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between periods and errors due to the analytic approxima-
tion of the service level.  Solution times for this algorithm 
range from 45 to 120 minutes.  The table below summariz-
es the results.  

  
Table 4-2 Objective Value Comparison 

 
 
We tuned the algorithm to optimize the schedule that 

was generated after the staffing heuristic had run and the 
simulation search had run for a few minutes.   Testing re-
vealed that this was best accomplished by setting the offset 
used in the algorithm of Figure 3-1to 5%.  A smaller bias 
improves the quality of the solution found in the heuristic, 
but makes the simulation search more difficult.  We found 
that the simulation search finds improvements solution 
faster when it is offset because improving single changes 
are easier to find than improving two changes.   

Overall we found that our algorithm can find solutions 
that evaluate within a few points of solution found by the 
stochastic integer program within the five minute target 
time frame, in some cases better than the solution found by 
the stochastic program.  (Recall that since the stochastic 
program uses an analytical approximation to estimate the 
service level, it’s solution is not necessarily optimal.)  In 
the worst case the five minute solution is 6% more expen-
sive than the stochastic programming solution; in the best 
case it is 2.7% less expensive.  If allowed to run until it 
reaches its heuristic stopping rule, it often finds a better so-
lution than the stochastic program, and in all but one case 
finds a solution within 1.5%.  This verifies our hope that 
this algorithm can be used to find a good solution fast and 
if allowed to run for a longer period of time can find a near 
optimal solution.  This supports the goal of interactive 
what-if analysis of schedule options – followed by a more 
detailed search for a final schedule.   

The following graphs show how the objective value of 
the incumbent solution evolves for each project for the B 

scheduling option.  (Schedule option B in general had the 
most iterations.)   

 
Figure 4-1 Objective Project J/Schedule B 

 

 
Figure 4-2 Objective Project S/Schedule B 

 

 
Figure 4-3 Objective Project O/Schedule B 

 
In each case the heuristic finds a reasonable solution 

that is quickly improved by the simulation based search.  
The degree and frequency of the improvement then drops 
off rapidly.  In the case of Project J and Project O the algo-
rithm terminates relatively quickly with an objective near 
the objective of the stochastic integer program.  In the case 
of Project S the algorithm runs for an extended period of 
time, but always finds a better solution than the stochastic 
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integer program.  We believe this is due to the fact that call 
volume drops off slowly in Project S so there are many 
schedules that are near optimal.  That relatively higher 
peaks in Projects J and O create a smaller set of near op-
timal solutions.    

5 SUMMARY AND CONCLUSIONS 

In this paper we outline an algorithm and preliminary re-
sults for a call center scheduling model that can be run by a 
front line manager on a desktop computer.  We seek an al-
gorithm that allows the manager to quickly evaluate differ-
ent scheduling options and find that in relatively short pe-
riods of time we can generate quality schedules.   

Because our algorithm is based on simulation and a 
search heuristic we can make no claims about optimality, 
but comparing the results to a optimal analytical approxi-
mation shows favorable results.   

More detailed and more structured testing of our algo-
rithm is required to better understand the tradeoffs made 
when setting key tuning parameters such as the initial heu-
ristic offset.    
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