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Objective: To determine if the time required to perform mitral valve repairs using telemanipulation technology
decreases with experience and how that decrease is influenced by patient and procedure variables.

Methods: A single-center retrospective review was conducted using perioperative and outcomes data collected
contemporaneously on 458 mitral valve repair surgeries using telemanipulative technology. A regression model
was constructed to assess learning with this technology and predict total robot time using multiple predictive
variables. Statistical analysis was used to determine if models were significantly useful, to rule out correlation
between predictor variables, and to identify terms that did not contribute to the prediction of total robot time.

Results: We found a statistically significant learning curve (P<.01). The institutional learning percentage*
derived from total robot timesy for the first 458 recorded cases of mitral valve repair using telemanipulative tech-
nology is 95% (R2¼ .40). More than one third of the variability in total robot time can be explained through our
model using the following variables: type of repair (chordal procedures, ablations, and leaflet resections), band
size, use of clips alone in band implantation, and the presence of a fellow at bedside (P<.01).

Conclusions: Learning in mitral valve repair surgery using telemanipulative technology occurs at the East Car-
olina Heart Institute according to a logarithmic curve, with a learning percentage of 95%. From our regression
output, we can make an approximate prediction of total robot time using an additive model. These metrics can be
used by programs for benchmarking to manage the implementation of this new technology, as well as for capac-
ity planning, scheduling, and capital budget analysis. (J Thorac Cardiovasc Surg 2011;142:404-10)
Hermann Ebbinghaus1 was the first to describe learning
effects using empiric methods in his 1885 article Memory: A
Contribution to Experimental Psychology. Since then, the
learning curve has been studied in many fields, from
manufacturing to surgery.2-7 Learning curve analysis has
been used in manufacturing as a way to forecast costs and
project completion dates. Further, it has been used as
a mechanism for maintaining labor efficiency through goal
setting and benchmarking. It has also helped to prevent
delay in bringing problems to the attention of management.4

With the initiation of telemanipulation technology in cardio-
thoracic surgery, data on learning curves could be helpful to
surgeons and administrators alike inmanaging technology im-
plementation, training surgeons,8,9 capacity planning,4,6

scheduling,4 and business forecasting.4,10

The use of telemanipulation technology has grown rap-
idly since its introduction in surgery.11 Studies presented
in the journalManagement Science have looked at learning
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associated with this technology in cardiothoracic surgery
and shown that the learning curves can differ significantly
from one institution to another.5 These studies have not in-
corporated specific aspects of learning related to the type of
mitral valve repair procedure performed. At the East Caro-
lina Heart Institute, more than 500 heart operations have
been performed using the da Vinci Surgical System (Intui-
tive Surgical Inc, Sunnyvale, Calif), and our prospective da-
tabase has provided a unique opportunity to perform
a statistical evaluation of high-volume institutional learning
during complex valve repairs.
MATERIALS AND METHODS
BetweenMay 2000 and September 2009, 500 patients underwent mitral

valve repair surgery using minimally invasive telemanipulative technology

(da Vinci Surgical System). A single-center retrospective review was con-

ducted using preoperative, intraoperative, and postoperative data that were

collected prospectively according to approved institutional review board

protocol and archived in the RoboticMitral Valve Repair or Society of Tho-

racic Surgeons’ database.

The objective of our analysis was to determine if the time required to

perform mitral valve repairs using telemanipulation technology decreases

with experience and how that decrease is influenced by patient and
*Learning percentage: the percentage decrease in operative time each time case num-

ber doubles. Example: If the learning percentage is 50% and case 1 takes 100 min-

utes to perform, case 2 will take 50 minutes, case 4 will take 25 minutes, case 8 will

take 12.5 minutes, case 16 will take 6.25 minutes, and so on until the asymptote is

reached.

yTotal robot time: starts when the da Vinci Surgical System connects to the patient

and ends when the da Vinci Surgical System disconnects from the patient.
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FIGURE 1. Learning curve example.

*Band implantation time: starts when band is in position and ends after last suture is

placed in annuloplasty band.
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procedure variables. We hypothesize that learning occurs according to

a logarithmic curve of the form,

Yx ¼ Kxn; (1.0)

where Y represents the total robot time required to perform a procedure, x

represents the sequential procedure number, K represents the time required

for the first procedure, and n represents a learning rate. More precisely, n is

calculated as

n ¼ logb=log2; (1.1)

where b is the learning percentage. With each doubling of case number,

there is a decrease in the total robot time to some percentage of the time

from the case number being doubled; this percentage is the learning per-

centage. This functional form creates a familiar learning curve, where pro-

cedure times decrease with cumulative output at a decreasing rate as

illustrated in Figure 1. Estimating the learning curve is facilitated by taking

the logarithm of the procedure number and the procedure time. This trans-

forms the nonlinear curve shown in Figure 1 into the linear curve shown in

Figure 2.

To determine our institutional learning percentage, we performed a lin-

ear regression analysis using the log of total robot time as the dependent

variable and the log of the procedure number as the independent variable.

The resultingmodel was not statistically significant, with an overallP value

greater than 33% and an R2 value less than 1%.12,13

We next considered the possibility that other factorsmay be affecting the

overall procedure time and obscuring any learning effect. By using archived

data, we collected 19 variables about the patient and the procedures per-

formed. Cases were differentiated on the basis of a classification of 5 differ-

ent procedures, including band (A), chordal (B), atrial fibrillation ablation

(C), leaflet resection (D), and tissue approximation (E) (complete descrip-

tion in ‘‘Terminology’’ section). The procedure type, annuloplasty band

size, band type, da Vinci model, presence of a training fellow, presence

of 2 surgeries in the same day, and use of clips alone in band implantation

were considered, as were patient characteristics such as body mass index,

age, and gender.

Statistical tests were used to determine if models were statistically

meaningful (global F-test) to test for correlation between independent vari-

ables (variance inflation factors), to exclude terms that did not contribute to

the prediction of total robot time (t tests), and to determine if the residuals

can be assumed to follow a normal distribution. The resulting regression

model (Table 1) contains the following 7 significant independent covariates:
The Journal of Thoracic and Card
� Log total robot time: the log (base 10) of total robot time in hours.

Total robot time is the amount of time the robot was used in the pro-

cedure. It begins when the robot connects to the patient and ends

when the robot disconnects from the patient. Total robot time varied

from 0.38 hours to 3.48 hours with an average of 1.49. Log (total ro-

bot time) varies from�0.424 to 0.542 with an average of 0.146.

� Fellow: represents the presence of a fellow at bedside. There were 15

different fellows present over the course of the procedures per-

formed. Data were coded such that 1 indicates presence of a training

fellow assisting at the bedside and 0 indicates no fellow present. A

fellow was present in 35% of the procedures.

� Clips: represents cases using nitinol U-clips (Coalescent Surgical,

Sunnyvale, Calif) exclusively in annuloplasty band implantation.

This occurred in 114 cases, whereas sutures alone were used 261

cases and both were used in 84 cases. Prior studies have shown a sig-

nificant reduction in annuloplasty band implantation time* with the

use of nitinol clips.14,15

� Band size: represents the size of the annuloplasty band used in the

mitral valve repair. For each case, the size of the band in millimeters

was listed in the regression. Band sizes ranged from 25 to 40 mm.

Our surgeon’s average band implantation rate was 1.04 � 0.31

mm/min (n ¼ 460). When band size (millimeters) was graphed

against the number of clips and sutures used per band, there was

a positive relationship (y ¼ 1.023þ21.5).

� Chordal: represents whether or not the mitral valve repair for that

case included a chordal (type B) procedure in addition to the band

implantation. If so, 1 unit was assigned for each type B procedure

performed during the case, and if not, 0 was assigned. Type B proce-

dures were performed in 42% of the cases.

� Ablation: represents whether or not the mitral valve repair for that

case included an atrial fibrillation ablation (type C) procedure in ad-

dition to band implantation. If so, 1 was assigned, and if not, 0 was

assigned. This procedure type was performed in approximately 19%

of the cases.

� Resection: represents whether or not the mitral valve repair for that

case included a leaflet resection (type D) procedure in addition to

band implantation. If so, 1 unit was assigned for each type D proce-

dure performed during the case, and if not, 0 was assigned. Type D

procedures were performed in 68% of the cases.
iovascular Surgery c Volume 142, Number 2 405



FIGURE 2. Learning curve example log/log scale.
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Our institutional learning percentage was calculated using the coeffi-

cient associated with the log of procedure number (log n) displayed in

the regression output from our final model (Table 1) to solve for b in

equation (1.1).16 Incremental times (Table 2) were then determined using

the coefficients from the other significant independent variables in our

regression output.

The effect of learning on total robot time was further studied by consid-

ering the effect of procedure complexity. To examine this, a value for pro-

cedure complexity (Figure 3) was created by summing the number of

procedures of each type (B–E) performed in the case, multiplied by its in-

cremental time. These values were then plotted to show the positive corre-

lation with case number.
TABLE 1. Regression analysis printout from Excel (Microsoft Corp, Redm

Regression statistics

R2 0.398

Adjusted R2 0.389

R 0.631

SD 0.124

ANOVA table

Source SS df

Regression 4.5688 7

Residual 6.9045 450

Total 11.4733 457

Regression output

Independent variables Coefficients SE T (df ¼ 450)

Intercept �0.1614 0.0573 �2.816
Clips �0.1148 0.0138 �8.301
Fellow present at bedside 0.0660 0.0149 4.433

Band size 0.0119 0.0016 7.341

Resections 0.0562 0.0096 5.863

Chordals 0.0437 0.0076 5.765

Ablations 0.0476 0.0152 3.138

Log n �0.0709 0.0168 �4.228

ANOVA, Analysis of variance; SE, standard of error; SD, standard deviation;MS,mean squ

F, f ratio; VIF, variance inflation factor; Dep. Var. log trt, the dependent variable is the log

406 The Journal of Thoracic and Cardiovascular Surg
Next, an additive model was used to create a predictive equation

(2.0) to estimate total robot time based on case number and influential

variables. Residuals and a standard deviation were calculated from pre-

dicted total robot times and total robot times, and these data were found

to follow a normal distribution. With this information, a 95% confi-

dence interval was determined for total robot times predicted by the

equation.
RESULTS
By using Excel software (Microsoft Corp, Redmond,

Wash) with statistical analysis add-in to perform regression
ond, Wash)

n 458

k 7

Dep. Var. log trt

MS F P value

0.6527 42.54 5.62E-46

0.0153

Confidence interval

P value 95% lower 95% upper VIF

.0051 �0.2741 �0.0488
1.22E-15 �0.1420 �0.0876 1.068

1.17E-05 0.0368 0.0953 1.501

1.00E-12 0.0087 0.0151 1.112

8.80E-09 0.0374 0.0750 1.097

1.52E-08 0.0288 0.0585 1.107

.0018 0.0178 0.0775 1.077

2.85E-05 �0.1039 �0.0380 1.562

1.218 mean VIF

ared; SS, sum of squares; df, degrees of freedom; k, number of independent variables;

of total robot time.
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TABLE 2. Coefficients and incremental times for independent

variables

Independent variable Coefficient

Incremental

time (h)

Resections 0.0562 1.138133

Atrial fibrillation ablations 0.0476 1.115937

Chordals 0.0437 1.105749

Clips �0.1148 0.767688

Fellow at bedside 0.0660 1.1642

Band size 0.0119 1.027713

Charland et al Evolving Technology/Basic Science
analysis, we reached a statistically significant model (Table 1)
containing 7 independent variables with a learning percentage
of 95% (P<.01). As shown in Figure 1, a learning percentage
between 85% and 95%will result in a substantial decrease in
procedure time over the course of 500 procedures.

Our model explains more than one third of the variability
in total robot time (R2 ¼ 0.40). The model assumes that
times for individual procedures follow a normal distribution
with a standard deviation of 0.125 log hours. Statistical the-
ory tells us that 95% of normally distributed outcomes fall
within 2 standard deviations of the mean; therefore, our
model can be used to make approximate predictions in total
robot time using the following equation (2.0)13:

Log ðTRTÞ ¼ ð0:0660 � FellowÞþð0:0119 � Band SizeÞ
þð0:0437 � Type BÞþð0:0476 � Type CÞ
þð0:0562 � Type DÞþð� 0:1148 � ClipÞ
þð� 0:0710 � Log ðnÞÞþð� 0:1614Þ (2.0)
FIGURE 3. Procedure compl

The Journal of Thoracic and Ca
The 7 significant variables in our model include the pres-
ence of a fellow, annuloplasty band size, log n, use of clips
alone in band implantation, inclusion of chordal procedure
(B), atrial fibrillation ablations (C), and leaflet resections
(D) (P< .01). Variance inflation factors in the regression
output (Table 1) are all less than 2, with the average being
1.28 (variance inflation factors>10, and in some textbooks
5 are considered problematic), indicating there are no sig-
nificant problems with multicollinearity in our model.13,16

Patient age, sex, and body mass index were not found to
be significant predictors in initial trial models (P>.05). Pro-
cedure factors such as da Vinci model, 2 cases in 1 day, a tis-
sue approximation procedure, and band type were not
significant. P values determined for the nonsignificant vari-
ables are listed in Table 3.
Our surgeon’s experience has shown that procedure com-

plexity increases with case number (y ¼ 0.0033þ1.417).
This is illustrated in Figure 3.
The number of robotic cases performed by the primary

surgeon in this study has increased relative to the number
of non-robotic cases over the last decade. In 2000, the sur-
geon performed 14 robotic mitral repairs compared with 52
non-robotic mitral valve repairs, whereas in 2009 therewere
90 robotic mitral valve repairs performed and 14 non-
robotic mitral valve repairs.
DISCUSSION
Organizational Learning
Literature on this topic states that different programs may

progress at different rates depending on whether they capital-
ize on their experience. Pisano and colleagues’5Management
exity versus case number.

rdiovascular Surgery c Volume 142, Number 2 407
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TABLE 3. Results of t test for nonsignificant variables

Independent variable tested not significant P value

Age .20

BMI .08

Gender .08

da Vinci model (Intuitive Surgical Inc, Sunnyvale, Calif) .08

Tissue approximations .30

Cosgrove-Edwards Classic Annuloplasty Ring

(Edwards Lifesciences LLC, Irvine, Calif)

.09

Carpentier-Edwards Physio Annuloplasty System Ring

(Edwards Lifesciences LLC)

.74

UNIRING, Universal Annuloplasty System

(Peters Surgical, Bobigny Cedex, France)

.74

ATS Simulus Flex-C Band

(ATS Medical Inc, Minneapolis, Minn)

.73

ATS Simulus Semi-Rigid Annuloplasty Ring

(ATS Medical Inc)

.67

ATS Simulus Flexible Annuloplasty Ring

(ATS Medical Inc)

.44

Performing 2 surgeries in 1 d .72

No. of sutures and clips .34

Robotic atriotomy .08

BMI, Body mass index.

Evolving Technology/Basic Science Charland et al
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Science study, Organizational Differences in Rates of Learn-
ing, suggests that ‘‘certain differencesmay be rooted in struc-
tural and organizational aspects of the adopters themselves
and may not be subject to change by the innovator,’’ and fur-
ther that ‘‘unless an organization puts into place mechanisms
for capturing knowledge and implementing learning, experi-
ence may not translate into competence.’’
Capitalizing on Experience
Our large case volume allows us a unique opportunity to

examine our experience and obtain sound observations that
should contribute to better technology implementation.17

Our learning percentage indicates that there is learning at
our institution with this technology. To understand the
learning process and capitalize on our experience, we
have tried to further examine the factors involved with
learning that affect total robot time. Specifically, we have
classified the types of procedures performed in each case
and determined an incremental time to perform them. We
have done this to obtain insight, which will assist us in har-
nessing the best qualities of this technology to achieve the
best possible patient care.
FIGURE 4. Total robot time versus case number.
Effect of Procedure Type on Total Robot Time
Each independent variable contributes a unique incre-

mental time to the base band implantation procedure
(Table 2). Incremental times for grouped procedure types
indicate that leaflet resections (D) are the most time-
consuming, followed by atrial fibrillation ablations (epicar-
dial alone, endocardial alone, and epicardial combined with
408 The Journal of Thoracic and Cardiovascular Surg
endocardial ablations were coded the same) (C) and chordal
procedures (B). This is not a direct measure of technical dif-
ficulty. Incremental times are derived from total robot times
of cases coded to have included different procedures over
500 cases. They are meant to offer an understanding of
how total robot time is affected by procedure type, and to
allow for its prediction. These procedure groupings do not
vary by large time intervals. However, when compared
with tissue approximations (E), the incremental times are
significant.

It may be necessary to perform multiple procedure types
during a mitral valve repair case to achieve the best repair
for the patient, whereas other cases will require less. This
variation has a notable effect on total robot times. From
the procedure complexity graph (Figure 3), one can see
that as case volume increases, the surgeon tends to perform
more complex repairs. This helps to explain why the plot of
actual total robot time versus case number (Figure 4) does
not show a dramatic and consistent decrease in total robot
time when we know that learning is occurring.

The effect of other independent variables on total robot
time also will vary from case to case. For example, there
may or may not be a fellow present, band size may be large
or small depending on the needs of the patient, and sutures
may be required in band implantation. This also explains
much of the variation in total robot time from case to case
and the lack of a consistent decrease in total robot time
with increasing case number. Although the presence of a fel-
low at bedside adds significant time to the procedure, the ed-
ucation value to the trainee and its impact on future patients
is certainly worthwhile.

Predictive Utility of the Model
Given that significant variables fluctuate widely from

case to case depending on patient needs, we have developed
an equation for predicting total robot time that takes this
into account.

The graph of predicted total robot times versus actual to-
tal robot times in Figure 5 illustrates the tight fit between the
ery c August 2011
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values derived from the predictive equation (2.0) and our
actual results.

The predictive equation can be used in many ways be-
cause it allows for other programs to benchmark our expe-
rience. It can be used by the primary surgeon to take control
of his/her team’s progress; to set goals; to guide training; to
improve efficiency, team work, coordination, and organiza-
tion; and to provide reassurance or motivation.
Applying the Equation
Being accurately aware of how operative times change

with different variables can help surgeons beginning with
the technology to approach cases with greater understand-
ing of the procedure time requirements. By having fairly
similar incremental times, these procedure types could be
interchanged, but the combination of significant procedures
to be performed by the trainee would ideally progress in
a stepwise fashion, as is feasibly possible through patient
selection and faculty mentor coordination.18,19 For
example, the data suggest it would be best for a surgeon
new to the technology to choose cases first requiring
tissue approximation or annuloplasty band alone. Next, it
would be logical to accept cases with annuloplasty along
with a chordal procedure or ablation. As a surgeon
progresses, and operative times are equal or less than that
predicted by our equation, the trainee can comfortably
add complexity, such as a case with a band, chordal, and
atrial fibrillation ablation � tissue approximation. When
operative times are not being met, the surgeon would seek
to define what is impairing the team from meeting its
goal, and guide them to make the necessary changes.

Operative times are merely one variable to consider in
training and technology implementation, however. These
data are not meant to supplant the oversight of experienced
surgeon mentors who can assess other variables involved
with measuring competency, such as with decision-
making skills when complications arise.
FIGURE 5. Predicted total robot time versus actual total robot time. TRT,

Total robot time.

The Journal of Thoracic and Ca
Applications in Surgical Training
There has been recent interest in surgical training

methods and evaluation techniques because surgeons in
this field must often adopt new technology to supplement
and advance their skills.5 With the recent incorporation of
the Joint Council on Thoracic Surgery Education and its cur-
rent initiative to develop and initiate innovative teaching
methods, many solutions have been offered.5 For example,
a high-fidelity cardiac surgical simulator is being used by in-
tegrated thoracic surgery residents at the initiation ‘‘boot
camp’’ of their residency each year.6,7 Various simulator
models are being used to train surgeons for beating heart
coronary artery surgery and other procedures.7-9

Recent literature has suggested the use of simulators in
competency-based testing and certification.10 Performance
on simulators has been evaluated with a comparison of
times from initial experience to later experience or through
the use of a 3-point psychometric grading scale.6,9,11

Multiple regression analysis was used in this study to
map out the learning curve for mitral valve repair surgery
using telemanipulative technology. This technique could
also be applied to other procedures using simulators to
mimic the operative environment, providing a metric to
evaluate progress and competency of trainees, and a means
to evaluate factors affecting their progress. Further, data
from this type of analysis could be used in the certification
process with competency-based testing.
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Data Quality
We encountered minor database quality issues in our pro-

cess. Data that were deemed unacceptable to a high stan-
dard in quality was left out of our analysis. Of the total
500 cases performed to completion using the da Vinci
model, we had reliable data on only 458 of the cases, be-
cause 7 cases were partially recorded, 4 cases did not use
the da Vinci model exclusively for the entire case, and 31
cases were not recorded. Records show that approximately
30 cases used the da Vinci model for atriotomy, whereas
presumably the rest were done by hand; however, its use
in these cases did not have a significant impact on total robot
time (P¼ .08). The conclusions of our analysis are believed
to reflect our true experience.
Study Limitations
Conclusions should be tempered by the fact that they are

based on analysis of a single institution’s experience. How-
ever, our sample size is substantial for the application of this
technology in cardiac surgery, and our results allow for
a valuable comparison.
CONCLUSIONS
Learning mitral valve surgery using telemanipulative

technology proceeds according to a logarithmic curve,
rdiovascular Surgery c Volume 142, Number 2 409
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with a learning percentage of 95%. Multiple regression
analysis allowed us to define 7 significant variables that af-
fect total robot time and offered us an awareness of how pro-
cedure complexity can affect total robot time.

Predictions of total robot time can be approximately esti-
mated with our equation, which can be used as a metric
whereby surgeons can manage and evaluate their team’s
progress in the implementation of this technology.4 In addi-
tion, hospital administrators may consider its use for capac-
ity planning, scheduling, and capital budgeting analysis.10
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