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Abstract—Workforce management is a critical component of 

call center operations.  Since labor costs are a major component 
of the total cost of operation efficient staff scheduling is critical.  
But because of uncertainty in arrival rates, efficient scheduling is 
very difficult.  While there are many models in the literature that 
address call center scheduling, the majority of these models 
ignore the issue of arrival rate uncertainty and focus only on the 
stochastic variability of interarrival times given a known arrival 
rate.  In this paper I summarize my research into the issue of 
arrival rate uncertainty and its impact on scheduling.  I review 
empirical data from outsourced call centers that demonstrates 
the level of uncertainty present in many applications, and 
propose scheduling and staffing models that consider arrival rate 
uncertainty.  
 

Index Terms—Call Centers, Stochastic Optimization, 
Uncertainty, Workforce Management 
 

I. INTRODUCTION 
all centers are a large and growing component of the U.S. 
and world economy.  In 1999 an estimated 1.5 million 

workers were employed in call centers in the US alone[1].  
Call center applications include telemarketing, customer 
service, help desk support, and emergency dispatch.  Large 
scale call centers are technically and managerially 
sophisticated operations and have been the subject of 
substantial academic research.   

   
Since labor costs often account for up to 60-70% of the cost 

of operating a call center [1], efficient staff scheduling is 
critical.  However, the uncertainty associated with key factors 
such as arrival rates or agent productivity make efficient 
scheduling very difficult.  This problem is especially acute for 
call centers subject to strict service level agreements (SLAs) 
that require the call center to meet some predefined 
performance metric.  

 
This paper provides a summary of my research into the 

impact of uncertainty on call center capacity management.  
For this project I investigate how uncertainty impacts capacity 
decisions when the call center is obligated to achieve an SLA, 
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but seeks to do so at a minimal cost.  In section II I summarize 
my empirical analysis of call center data.  In section III I 
discuss standard models commonly used for call center 
scheduling, and in section IV I present an alternative model.  
Section V summarizes a hedging strategy based on partial 
cross training of resources.  Section VI provides a summary 
and outlines ongoing research.   

II. ARRIVAL RATE UNCERTAINTY 

A. Weekly Variability 
Most call centers face non-stationary, seasonal arrival patterns 
and in many cases aggregate call volume is highly variable.  
An empirical analysis of call volume data is published in [2].  
For my research I analyzed call volumes supplied by a 
provider of outsourced IT support services.  This operation 
involves providing help desk support to large corporate and 
government entities globally.  While the scope of services 
varies from account to account, many accounts are 24 x 7 
support and virtually all accounts are subject to some form of 
Service Level Agreement (SLA).  There are multiple types of 
SLAs, but the most common specifies a minimum level of the 
Telephone Service Factor (TSF).  A TSF SLA specifies the 
proportion of calls that must be answered within a specified 
time.  For example, an 80/120 SLA specifies that 80% of calls 
must be answered within 120 seconds.  A very important point 
is that the service level applies to an extended period, typically 
a month.  The SLA does not define requirements for a day or 
an hour.  The desk is typically staffed so that at some time the 
service level is underachieved, sometimes overachieved, and 
is on target for the entire month.  The following table 
summarizes weekly aggregate call volume from 11 different 
companies. 
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TABLE I 
VARIABILITY OF WEEKLY CALL VOLUME 

Average 
Weekly 
Volume

Std. Dev. 
of Volume

Coefficient of 
Variation

Project 1 248.1 81.7 0.330
Project 2 291.9 92.7 0.318
Project 3 516.7 283.2 0.548
Project 4 560.7 175.0 0.312
Project 5 1,442.9 460.2 0.319
Project 6 1,545.0 504.1 0.326
Project 7 2,599.3 809.5 0.311
Project 8 3,336.9 986.7 0.296
Project 9 4,386.8 1,664.4 0.379
Project 10 7,566.9 3,493.9 0.462
Project 11 8,221.9 1,586.9 0.193  

This table shows that volume varies considerably from week 
to week.  It also shows a large variation from project to 
project, with coefficients of variation of weekly volume as 
low as .193 and as high as .548. 
 

B. Weekly Seasonality 
Call volumes exhibit a strong seasonality pattern over the 
course of a week.  In the following figure we see daily call 
volume for a typical project shown over a 3 month period.   
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Fig. 1.  Sample Daily Call Volume. This graph illustrates the day to day 
variability of call volume including large volume spikes. 
 
This graph shows strong “seasonal” variation over the course 
of a week.  Monday’s tend to be the highest volume days with 
volumes dropping off over the course of the week.  Volume 
on Saturdays is a small fraction of the weekday volume and 
this particular desk is closed on Sunday.  The graph also 
reveals significant stochastic variability.  Tuesdays are, for 
example, often higher volume than Wednesdays but this is not 
always the case.  During the weeks of 4/26 and 5/16 we see 
larger volumes on Wednesday than Tuesday.  We also see the 
issue of unanticipated spikes in demand, often referred to as 
significant events. This is an extremely common event in 
support desk operations.  A downed server, for example, will 
generate a large call volume.  While some contracts provide 
SLA relief in the case of significant events, in general the desk 
must meet the SLA even when significant events occur.  The 
large volume of calls during a significant event not only result 

in poor performance, but also create a large proportion of the 
total calls making it more difficult to achieve a specific 
percentage of “within SLA” calls.   
 
The following chart summarizes the problem of daily volume 
variability.  The average (M-F) daily call volume for each 
project is listed along with summary statistics for the daily 
Forecast vs. Actual (FVA) measure, the ratio actual call 
volume to forecasted call volume. 
 

TABLE II 
FORECASTED VS. ACTUAL CALL VOLUME 

 

 
 
The table reveals the challenge related to accurately 
forecasting volume.  Most projects systematically 
underestimate volume.  The standard deviation of the forecast 
error is large and the range of observed values substantial.  It 
is also worth noting that in general smaller (mid-market) 
projects are more difficult to forecast than larger projects. 

C. Intraday Variability 
In addition to day-of-week seasonality these call centers also 
experience very significant time-of-day seasonality.  The 
following figure shows the average call volume presented per 
½ hour period to a particular corporate help desk.   
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Fig. 2.  Sample Average Daily Arrival Pattern. This graph illustrates the daily 
seasonality of call volume. 
 
This particular desk operates 24x7 and we see that the volume 
during the overnight hours is quite low.  Volume ramps up 
sharply in the morning with a major surge of calls between 7 
and 11 AM.  Volume tends to dip down around the lunch 
break, but a second peak occurs in the afternoon; though the 

Forecast vs. Actual

Project
Avg. 

Vol/Day
Mean 
FVA

Std Dev 
of FVA

Max of 
FVA

Min of 
FVA

Project 1 55.2 126.6% 47.7% 334.2% 57.8%
Project 2 62.9 130.3% 40.7% 224.4% 56.5%
Project 3 100.8 104.7% 41.5% 268.1% 47.4%
Project 4 114.6 110.4% 48.1% 407.5% 37.5%
Project 5 284.5 91.0% 25.4% 256.5% 64.5%
Project 6 313.3 123.4% 24.3% 213.9% 12.9%
Project 7 539.1 105.3% 14.3% 152.0% 78.5%
Project 8 725.5 96.6% 10.9% 120.1% 51.5%
Project 9 873.8 143.4% 38.7% 279.4% 85.5%
Project 10 1,417.2 140.4% 26.7% 235.5% 88.2%
Project 11 1,714.9 111.1% 25.6% 187.7% 78.0%
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afternoon peak is typically lower volume than the morning 
peak.   
 
While this basic arrival pattern exists on most business days, 
there is significant stochastic variability in the call pattern 
from day to day.  The following graph shows call volume over 
an 8 week period for a particular project.  The inner region 
represents the minimum volume presented in each period, 
while the overall envelope is the maximum volume presented 
in each period.  The outer region then represents the 
variability over this eight week period. 
 

 
Fig. 3.  Range of call volume. This graph illustrates the degree to which 
volume varies from week to week. 
 
This graph shows that while there is significant variability in 
call volume, a strong seasonal pattern exists.   

D. Abandonment 
Abandonment rates in this environment also tend to be 
nonnegligible.  The following graph illustrates the daily 
abandonment rate, along with a 7 day moving average, for a 
relatively stable project over a 3 ½ year period. 

 
Fig. 4.  Abandonment Rate. This graph illustrates that abandonment is a 
significant and variable factor. 
 
The abandonment rate tends to be in 5% to 10% range and 
often spikes considerably higher.  Most other projects exhibit 
similar patterns although they tend to have higher average 
abandonment rates.  This shows that any model that ignores 
abandonment has the potential to introduce significant error.   

 

III. STANDARD SCHEDULING APPROACH 
While observed arrival rates are nonstationary and uncertain 
and abandonment is common, standard queuing models are 
based on steady state performance with known arrival rates 
and no abandonment.  A widely applied method is the 
Stationary Independent Period by Period (SIPP) approach  [3] 
that assumes a steady state Erlang C model in each 30 or 60 
minute period of the day. “Common practice uses the M/M/N 
(Erlang C) queuing model to estimate the stationary system 
performance of short – half hour or hour – interval.” [1] p.92.   
Furthermore, standard industry practice is to make staffing 
decisions based on a period by period (local) service level 
requirement; “each half hour interval’s forecasted λi and µi 
give rise to a target staffing level for the period.  ... 
determination of optimal set of schedules can then be 
described as the solution to an integer program” [1] p.93.   
 
Standard models also tend to ignore the uncertainty associated 
with arrival rates; an issue recognized in literature.  
“Surprisingly, however, there is little work devoted to an 
exploration of how [to accommodate uncertainty]” [1] and   
“What is needed for adequate call center staffing are models 
that contain both the deviations of the actual mean from the 
forecast as well as the variation inherent in the Poisson 
process...”  [4].    
  
As was implied above, common practice divides the 
scheduling process into two independent steps; server sizing 
and staff scheduling.  In the server sizing step, queuing 
models are used to determine the number of agents required to 
meet a certain performance metric.  While many models use 
the Erlang C model[5], some model utilize the Erlang A 
model which allows callers who are put on hold to abandon  
[6, 7].  While some server sizing models account for 
variability and/or uncertainty [8, 9] server sizing is typically 
done without regard to schedule constraints.  The staff 
scheduling step calculates the minimal cost schedule that 
satisfies the exogenously defined staffing requirements, 
typically via integer programming  [10-12].   Scheduling is 
then a two step process where each step is optimized locally.    

IV. AN INTEGRATED STOCHASTIC SCHEDULING MODEL  
The standard approach outlined above has three serious 
shortcomings; it ignores abandonment, it ignores arrival rate 
uncertainty, and it staffs to a period-by-period SLA.  I have 
developed a scheduling model that address each of these 
issues; the model integrates the server sizing and staff 
scheduling steps to achieve a global SLA while allowing for 
abandonment.  The model is formulated as stochastic mixed 
integer program.  The model utilizes a piecewise linear and 
stationary approximation of the service level curve in each 30 
minute period.   
 
To formulate the problem I denote the set of time periods as  
I , the set of feasible schedules as J , the set of random 
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outcomes of call volume as K , and the set of piecewise linear 
TSF line segments as H .   
 
Given the following definitions: 
cj: cost of schedule j 
aij: indicates if schedule j is staffed in time i 
g: global SLA goal 
mikh: slope of piecewise TSF approximation h in period i of 
scenario k 
bikh: intercept of piecewise TSF approximation h in period i of 
scenario k 
pk: probability of scenario k 
r:   per  point penalty cost of TSF shortfall 
nik: number of calls in period i of scenario k 
xj: number of resources assigned to schedule j 
yik: number of calls in period i of scenario k answered within 
service level 
Sk: TSF shortfall in scenario k 
 
A basic formulation of the model can be expressed as: 

min j j k k
j J k K

c x p rS
∈ ∈

+∑ ∑  

subject to 

ik ikh ij j ikh
j J

y m a x b
∈

≤ +∑  , ,i I k K h H∀ ∈ ∈ ∈  

( )ik k ik ik
i I i I

n S gn y
∈ ∈

≥ −∑ ∑  ,i I k K∀ ∈ ∈  

, ,j ik kx y S+ + +∈ ∈ ∈  , ,i I k K h H∀ ∈ ∈ ∈  

 
I refer to this model as the Stochastic Call Center Scheduling 
(SCCS) model.  In this formulation we generate a series of 
possible call arrival patterns and optimize over this sample, a 
standard approach for stochastic programming [13].  The 
scenarios are generated from a statistical model of arrivals fit 
to historical call volumes.  Although this approach introduces 
sampling error, standard methods existing for calculating 
statistical bounds on the expected outcome [14].   
 
For each scenario, and each 30 minute time period, we 
calculate a piece wise linear approximation of the service level 
curve generated from the Erlang A queuing model.  In each 
period we have h line segments, each of which is 
characterized by a slope ( ikhm ) and intercept ( ikhb ).  This 
piece wise linear model gives the service level that 
corresponds to the staffing level decision based on the call 
volume in that thirty minute period.   I assume a constant 
patience factor for all periods and all scenarios.   
 
The objective of the optimization program is to minimize the 
fixed cost of staffing plus the expected cost of not meeting the 
service level requirement.  Staffing costs are based on a 
standard labor rate and the penalty cost is calculated as a 
linear function of the percentage shortfall, with a cost of r 
dollars per point shortfall.   The first inequality calculates the 
number of calls answered within the service level requirement, 

and the second inequality calculates the associated TSF 
shortfall.  The details of the empirical analysis and the 
scheduling model are presented in [15]. 
 
 
The resulting MIP becomes quite large and is best solved 
using the L Shaped method, an adaptation of Bender’s 
decomposition algorithm [13].   
 
I have evaluated this model under a wide range of conditions. 
Stochastic programs always generate solutions whose 
expected cost of operation is no greater than models which 
only consider the expectation of random variables, and is 
typically much lower; the improvement in expected outcome 
is known as the Value of the Stochastic Solution [13].  In my 
testing against models based on several real world projects, I 
found that VSS ranged from 12% to 21%.  I also evaluated 
this model against the common practice of using Erlang C, 
period by period constraints and mean value arrival rates.  
 
I tested the two models against three arrival patterns with a 
variety of scheduling options that ranged from five day a week 
8 hour shifts only (Sched A) to a variety of full and part time 
scheduling options (Sched E) for a set of projects with an 80% 
service level (TSF) target.  The results are summarized in the 
following table 
 

TABLE III 
COMPARING TWO SCHEDULING MODELS 

 
Direct 
Labor

Expected 
Outcome

Average 
TSF

Direct 
Labor

Expected 
Outcome

Average 
TSF

Project J
Sched A 16,000 16,000 91.8% 11,280 11,660 81.1% 4,340 27.1%
Sched B 13,200 13,200 91.0% 10,800 11,239 80.4% 1,961 14.9%
Sched C 12,880 12880 90.4% 10,944 11,235 81.3% 1,645 12.8%
Sched D 12,500 12500 89.5% 10,844 11,103 81.5% 1,397 11.2%
Sched E 12,300 12300 89.2% 10,720 11,019 81.3% 1,281 10.4%

Project S  
Sched A 38,000 39,565 91.6% 30,960 35,305 83.2% 4,260 10.8%
Sched B 32,800 36,647 88.0% 30,320 34,728 83.7% 1,919 5.2%
Sched C 32,320 36,504 87.4% 30,384 34,733 83.6% 1,772 4.9%
Sched D 30,900 35,720 86.1% 30,092 34,585 83.5% 1,135 3.2%
Sched E 30,980 35,776 86.2% 30,096 34,595 83.5% 1,181 3.3%

Project O  
Sched A 13,600 13,984 85.7% 11,600 12,443 80.2% 1,542 11.0%
Sched B 12,400 12,914 83.4% 11,360 12,257 80.1% 656 5.1%
Sched C 12,160 12,704 83.0% 11,296 12,278 79.5% 426 3.4%
Sched D 11,980 12,572 82.4% 11,352 12,210 80.2% 362 2.9%
Sched E 11,880 12,504 82.1% 11,316 12,226 79.9% 278 2.2%

SCCS - Erlang A
Expected 
Savings

Locally Constrained Erlang C

 
 
In all cases the SCCS model provides a lower expected cost of 
operation than the (mean value) Local Erlang C (LEC) model.  
The improvement is due to both the recognition of variability, 
and the integration of the server sizing and staff scheduling 
steps.  In the case of full time shifts (Sched A) the two step 
process introduces significant excess capacity, driving the 
average global service level well above the 80% target.  In this 
case expected savings are at least 10% and as high as 27%.  
But even when staffing is very flexible (Sched E), the SCCS 
model still lowers costs by improved hedging against 
variability in arrival patterns.   
 
The fact that the LEC model performs better than the Erlang A 
mean-value model is quite interesting.  The LEC model 
assumes away abandonment, which leads to over staffing, and 
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uncertainty, which leads to under staffing.  To the extent that 
these factors cancel out the LEC model can provide 
reasonable estimates.  This suggests that introducing 
abandonment into staffing models, without also allowing for 
uncertainty, may not improve results.  Overall I find that the 
SCCS model is quite practical computationally, and leads to 
lower expected cost of operation.   

V. LOWERED COST THROUGH PARTIAL POOLING 
The stochastic scheduling model described above allows us to 
better hedge against uncertainty, but does not improve the 
overall operating characteristics of the queuing system.  
Further improvement is possible if we develop systems that 
are more robust to variations in arrival rates or forecasting 
errors.   
 
In the call centers I studied, agents require extensive training 
to learn the systems they must support; training that is project 
specific and quite expensive.  As such, agents are typically 
dedicated to a single project because management feels it is 
simply too expensive to train agents to support multiple 
projects.  My research focuses on a strategy whereby a 
relatively small portion of the workforce is cross trained.  
While base agents remain single project focused, a handful of 
super agents are trained to support multiple projects.  This is 
similar to a model developed in [16], except in that model all 
agents were trained to the same level and the design question 
was what is the appropriate number of skills to give each 
agent.  In that paper the authors found that most of the benefit 
accrued by giving the agents two skills, but did not address 
the cost associated with adding skills.  This model differs in 
that some agents have one skill while some have two, and 
those agents with two skills are more expensive.   
 
I also find that a little flexibility goes a long way, and most of 
the benefit of pooling comes from pooling the first few agents.  
Given that the model associates an incremental cost with cross 
training, and finds diminishing returns, an optimal level of 
cross training exists.  
 
The model assumes a simple queuing structure as follows 

1 3 2

1 2 Call Types

Feasible Routings

Pools of CSRs

 
 
Fig. 5.  Basic Queuing Model. The queuing model has two call types and three 
resource types. 
 
Base agents have priority routing and calls are routed to super 
agents only when all base agents are busy.  When a super 
comes free they take a call from the largest queue.   

 
My analysis uses discrete event simulation and a 
neighborhood search algorithm to find near optimal staffing 
for both steady state and nonstationary (project based) arrival 
patterns.  In the project oriented case we use the SCCS 
algorithm described above to generate a preliminary schedule.  
I then use a simulation based optimization search to refine the 
single project schedule.  To find the optimal pooling based 
schedule I start with the SCCS results and then implement a 
local search metaheuristic to seek out lower cost pooled 
schedules.  The search is based on a Variable Neighborhood 
Search methodology, an approach that searches a narrowly 
defined neighborhood thoroughly, then expands to a larger 
neighborhood if no improving solution can be found  [17].   
 
I investigated the pooling combinations of the three projects 
evaluated in the previous section, for each of the five possible 
scheduling options.  In this analysis I assume that super agents 
earn a 25% premium relative to base agents.   
 
The results of my analysis are summarized in the following 
table. 

TABLE IV 
IMPACT OF PARTIAL POOLING ON TOTAL COST OF SERVICE 

 

Pairing
Sched 

Set TSF 1 TSF2
% Agents 

Pooled TSF 1 TSF2
Expected 
Savings

% 
Savings

J-S A 78.3% 83.5% 13.0% 83.2% 83.4% 1,944 4.4%
B 78.1% 84.7% 15.3% 84.4% 83.6% 2,631 5.9%
C 78.9% 85.0% 16.1% 83.0% 84.0% 3,333 7.5%
D 79.4% 84.4% 17.0% 83.0% 84.3% 2,968 6.7%
E 78.9% 85.3% 18.7% 81.4% 83.4% 2,840 6.4%

J-O A 78.3% 79.9% 14.3% 80.8% 81.2% 668 2.7%
B 78.1% 78.5% 14.5% 81.7% 81.4% 1,060 4.3%
C 78.9% 78.3% 21.2% 81.8% 82.3% 1,102 4.5%
D 79.4% 79.7% 19.0% 80.7% 82.8% 848 3.4%
E 78.9% 79.1% 18.8% 80.8% 81.5% 1,056 4.3%

S-O A 83.5% 79.9% 10.1% 82.4% 80.4% 2,038 4.6%
B 84.7% 78.5% 13.7% 81.2% 80.6% 2,864 6.5%
C 85.0% 78.3% 15.4% 82.8% 80.3% 2,421 5.5%
D 84.4% 79.7% 14.5% 82.8% 79.8% 2,284 5.1%
E 85.3% 79.1% 13.7% 82.5% 80.7% 2,199 5.0%

Individual 
Optimization Pooled Optimization Comparison

 
 
The data indicates that the introduction of super agents lowers 
the total cost of operation, even if those super agents earn a 
25% premium.  I found that cross training only a relatively 
modest proportion of agents, 10%-21% results in an overall 
cost savings of 2.7% - 7.5%.  Furthermore, we see that the 
average service level for each project is shifted toward the 
target level of 80%.  The major benefit of this approach is the 
ability to dynamically reallocate capacity to the project that 
needs it the most.     
 
A graphical view of the pooled staffing plan is provided in the 
following figure.  The graph shows that the search algorithm 
finds that scheduling super agents during busy periods lowers 
overall operating costs.  During these busy periods super 
agents can be dynamically reallocated to the project with the 
largest queue.    
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Fig. 6.  Pooled Staffing Model. A group of super agents are available during 
peak times to dynamically serve the busiest project 

VI. CONCLUSION 
My research investigates the impact of arrival rate 

variability on call center operations.  Examining data from a 
number of corporate and government entities reveals that 
arrival rates exhibit significant variability. The simplifying 
assumptions of the standard Erlang C model are shown to at 
least partially cancel and lead to reasonable results, but the 
stochastic scheduling model always provides better results.  In 
some cases this difference is substantial.  I also examine a 
more complicated queuing system and show that partial cross 
training lowers costs even when cross training is expensive.   

 
My on-going research is focused on applying these 

principles to more complicated systems.  I am investigating 
relaxing the assumptions of the Erlang A model to allow for 
more realistic assumptions, particularly concerning talk time 
distributions.   I am also looking into more complex cross 
training configuration.  In particular I am interested in multi-
lingual call centers that may support 10 or more languages 
with many agents possessing two more language skills.   
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