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Abstract 
This dissertation addresses the issue of capacity management in a professional services 

context; specifically a call center based support operation with contractually committed 

Service Level Agreements (SLAs).  The focus of this research is on capacity planning in the 

face of uncertainty.  I investigate the impact of uncertainty on the capacity management 

decision and develop models that explicitly incorporate uncertainty in the planning process.  A 

short term scheduling model develops detailed staffing plans given variable and uncertain 

demand patterns.  A medium term hiring model seeks the optimal hiring level for the start up 

of a new project with learning curve effects.  A cross training model seeks to determine the 

best number of agents to cross train on multiple projects.  The analysis employs stochastic 

programming, discrete event simulation, and a simulation based optimization heuristic.   

 

This dissertation is very much an applied OR analysis.  The research focuses not on 

developing new theory or methodology, but on applying existing methods to a real problem.  

In the process I create several new and unique models that contribute to the literature.  The 

research is motivated by work I performed with an IT Support outsourcing company.   That 

company was kind enough to give me access to a great deal of data upon which to base my 

analysis.     

 

I find that incorporating uncertainty into the planning process yields solutions with better 

outcomes and also provides better insight into key management tradeoffs.  The short term 

scheduling model shows that hedging against arrival rate uncertainty lowers the total cost of 

operation by improving the probability of SLA attainment.  It also shows that increasing the 

flexibility of the staffing model, by scheduling even a few part time resources, can 

significantly lower costs.  I also find that increasing the probability of achieving the service 

level goal becomes increasingly expensive.  The medium term hiring model shows that 

learning curve issues during start-up have a significant impact on total costs.  The cross 

training model shows that adding even a moderate amount of flexibility into the workforce can 

significantly lower costs through the dynamic reallocation of capacity.   
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1 Introduction 

The professional services industry is a rapidly growing segment of both developed and 

developing economies.  For example, U.S. based multinationals such as IBM, HP and GE are 

increasingly reliant on professional services.    In 2004, IBM Global Services revenue grew 8 

percent to $46.2 billion, 48% of the company’s total (IBM 2004).   Also in 2004, the consulting 

firm Accenture grew revenue by 15% to 13.6 billion, and increased headcount to over 100,000 

people (Accenture 2004).  The global services company Capgemini lost 20% of its staff in 2004 

through attrition and layoffs yet grew its total headcount by 6.7% through new hires and 

outsourcing transactions.  In the same year that the firm hired over 9,000 people, they terminated 

over 2,300.  Developing nations such as India and China are also rapidly growing IT and 

Business Process Outsourcing operations.  In 2004 India based Infosys lost over 2,700 employees 

to attrition, yet grew its headcount 37%, hiring 11,597 new employees from an applicant base of 

over 13 million.  (Infosys 2005) 

 

For our purposes professional services includes business such as traditional management 

consulting, outsourced design, technical support, call center operations, IT implementation, and 

IT outsourcing (Dietrich and Harrison 2006).  The detailed analyses in this dissertation are based 

on a Business Process Outsourcing/Call Center operation, but they are easily extended to any 

service operation where load is uncertain and service levels are important.   

 

While many management practices from traditional industrial businesses are applicable, the 

professional services sector presents some unique challenges.  Unlike traditional manufacturing 

operations, the delivery capacity of a professional services organization is largely dependent on 

the quantity and skills of human resources available to the organization, either through direct 

employment, subcontracting, or through partnerships with other professional service firms.  The 

heavy reliance on human resources as the primary determinant of productive capacity implies that 

a key challenge for managers is the strategic and tactical planning of acquisition, training, and 

termination of resources  (Dietrich and Harrison 2006).   The literature generally refers to this as 

the Manpower Planning Problem.   
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Manpower planning models have been analyzed in the operations literature since the emergence 

of the field.  Dantzig first formulated the staff scheduling problem as a linear program in 1954 

(Dantzig 1954).   Holt et al. published their text on aggregate planning models in 1960 (Holt, 

Modigliani et al. 1960) and Bartholomew and Forbes published a text devoted to the application 

of stochastic modeling to manpower planning models in the 1970s  (Bartholomew and Forbes 

1979).   However, much of this work has evaluated manpower planning in the context of a 

manufacturing enterprise and much of the remaining research fails to address issues critical to 

large scale professional service operations.   Subtle yet important differences in the professional 

service environment call for modifications to these models.   

 

Manpower planning problem can be categorized using the following framework. 

 

 
Figure 1-1  Manpower Planning Framework 

In tactical planning the workforce is fixed and the challenge is to efficiently assign resources to 

satisfy demand.  Strategic manpower planning on the other hand addresses workforce 

management over a longer term planning horizon where the size and skills of the workforce is 

variable.  Over the strategic horizon an organization must plan for recruiting, hiring, and training 

of new resources to facilitate growth and compensate for unplanned turnover.  In the long term 
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horizon individuals progress through different skill or grade level changing their productivity as 

well as their cost.  In the strategic timeframe organizations may also need to separate workers 

either to lower costs or to reskill the organization.   

 

In this dissertation I develop three related models primarily focused on short and mid term 

planning:   

• Short Term Scheduling Model: The short term model addresses short term (weekly) 

scheduling of resources.  I address this problem in the context of a call center operation, 

building a model that generates a shift schedule that explicitly accounts for uncertainty in 

arrival rates.  This analysis shows that explicitly recognizing uncertainty in the load leads 

to verifiably superior solutions; that is solutions with a lower expected cost of operation.   

• Medium Term Hiring Model: The medium term model is designed to address a 3-4 

month planning horizon.  The model identifies hiring levels for a new outsourcing project 

given uncertain demand and learning curve effects.   The model characterizes the optimal 

level of spare capacity to hire under various conditions.      

• Cross Training Model: This model analyzes the impact of cross training in BPO/call 

center operations with uncertain arrival rates and attempts to find the optimal level of 

project cross training.  The analysis shows that in general a small level of cross-training 

provides substantial benefit.  In this model I develop a heuristic algorithm to find near-

optimal cross training levels given nonstationary and uncertain demand.   

 

In Section 2 of this dissertation I discuss detailed work with a provider of outsourced technical 

support services.  My work with this company provides the context and motivation for the models 

in this dissertation.  In Section 3 I review the relevant literature.  Sections 4-6 present the three 

models included in this dissertation.  Section 7 provides general conclusions.   
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2 Industry Context 

2.1 Overview 

My concept of professional services is an organization providing business-to-business services 

where the services are knowledge intensive and are delivered by highly skilled resources.   

Common examples of professional services include management consulting, IT outsourcing, legal 

services, or investment banking.  The models in this dissertation will be focused on a BPO/Call 

center operation.  This research is motivated in part by the author’s previous work experience in 

management consulting, as well as two recent projects conducted during the 2nd half of 2006.  

The projects address capacity management in two professional service organizations.  The first 

project examined short-medium term capacity management issues within IBM’s Business 

Consulting Services operation.  The second involved an analysis of tactical and strategic capacity 

management at a provider of outsourced customer support.  While the models are easily extended 

to general service applications, in this dissertation I will focus on call center operations.  This 

decision is based largely on the availability of detailed data and a specific problem context.   

2.2 Call Center Operations 

Call centers are a critical component of the worldwide services infrastructure and are often tightly 

linked with other large scale services.  Many outsourcing arrangements, for example, contain 

some level of call center support, often delivered from offshore locations.  A call center is a 

facility designed to support the delivery of some interactive service via telephone 

communications; typically an office space with multiple workstations manned by agents who 

place and receive calls (Gans, Koole et al. 2003).  Call centers are a large and growing 

component of the U.S. and world economy (Gans, Koole et al. 2003).  In 1999 an estimated 1.5 

million workers were employed in call centers in the US alone1 and call center operations 

represent a major portion of the offshore BPO market.   Large scale call centers are technically 

and managerially sophisticated operations and have been the subject of substantial academic 

research.  Call center applications include telemarketing, customer service, help desk support, and 

emergency dispatch.    

                                                      
1 This figure is somewhat dated but it is the most recent figure I could find in the academic literature.   
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Even a moderately sophisticated call center is equipped with advanced computer and 

telecommunications equipment.  An inbound call typically connects from the public service 

telephone network (PSTN) to the call center’s switch, the private branch exchange (PBX), over a 

number of owned or leased trunk lines.  Callers may initially connect to an Interactive Voice 

Response unit (IVR) where the caller can use her keypad to select options and potentially provide 

data input to call center system.  When callers need to speak to an agent, the call is handled by the 

Automated Call Distributor (ACD).  The ACD routes calls internal to the call center and is 

responsible for monitoring agent status, collecting data, managing on hold queues, and making 

potentially complex routing decisions.  For example, in call centers that employ skills based 

routing, a complex decision process is used to match callers and agents based on multiple criteria 

concerning both the callers and the agents.  In centers that perform outbound calling a Predictive 

Dialer is often used to perform anticipatory dialing.  In addition to the telephone system, a call 

center agent usually has a computer terminal connected into one or more enterprise applications; 

these are typically classified under the general category of Customer Relationship Management 

(CRM).   

   

A general architecture is depicted in the figure below: 

PSTN

Customers Trunk Lines
PBX

ACD

IVR
CTI Server

Dialer

Agents

CRM

Voice Network

Data Network  
Figure 2-1  Prototypical Call Center Technology Architecture 
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From a queuing perspective a general model of a call center is the Erlang A model, depicted 

schematically in the following figure. 

 
 Figure 2-2 Call Center Queuing Architecture 

In the Erlang A model calls arrive at a rate λ , with interarrival times that are independent and 

exponentially distributed.  If no agents are available calls are placed into an infinite capacity 

queue to await service on a First Come First Serve (FCFS) basis.  Calls have an exponentially 

distributed talk time with mean 1 µ .  Associated with each call is a patience time; if callers are 

forced to wait longer then their patience time, they abandon the queue (hang up.)  Patience time is 

exponentially distributed and average time to abandon is 1/θ  and the corresponding individual 

abandonment rate is θ  (Mandelbaum and Zeltyn 2004).  

 

Erlang A is more complicated and less widely applied then the Erlang C model2.  However, as I 

will show, abandonment is an important consideration in this environment and the use of the 

Erlang A model is warranted.   

 

                                                      
2 Erlang C is identical to the M/M/n queue.  The Erlang C name is widely used in call center applications.   
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2.3 Subject Firm 

My research in this area is motivated in part by my recent work with a medium sized 

(approximately $160 million/year public company) provider of technical support.  The company 

provides both tier 1 (help desk) and tier 2 (deskside3) support.  The bulk of their business, and the 

focus or my research, is on the inbound call center operation.  This operation involves providing 

help desk support to large corporate and government entities4.  While the scope of services varies 

from account to account, many accounts are 24 x 7 support and virtually all accounts are subject 

to some form of Service Level Agreement (SLA).  There are multiple types of SLAs, but the most 

common specifies a minimum level of the Telephone Service Factor (TSF).  A TSF SLA 

specifies the proportion of calls that must be answered within a specified time.  For example, an 

80/120 SLA specifies that 80% of calls must be answered within 120 seconds.  A very important 

point is that the service level applies to an extended period, typically a month.  The SLA does not 

define requirements for a day or an hour.  The desk is typically staffed so that at some time the 

service level is underachieved, sometimes overachieved, and is on target for the entire month.   

2.4 Arrival Rate Uncertainty 

2.4.1 Overview  

The key challenge involved with staffing this call center is a fixed SLA with a variable and 

uncertain arrival rate pattern.  Inbound call volume is highly variable with multiple sources of 

uncertainty.  In the following analysis I consider variability at multiple levels of aggregation; 

weekly, daily, and by half hour period.   

2.4.2 Weekly Arrivals 

In the short to medium term the major seasonality pattern occurs at the weekly level.   For the 

purpose of this analysis we ignore unusually slow periods, such as the week between Christmas 

and New Years, and examine the variability of call volume at the weekly level.  The following 

chart summarizes four months of call volume data for 11 US based projects.  I list the average 

                                                      
3 Deskside support involves physically dispatching technicians to the customer’s location to perform 
detailed troubleshooting or configuration. 
4 The company provides national or global support to multiple Fortune 100 companies.  They have multiple 
call centers in North America, Western Europe, and Eastern Europe.   
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weekly inbound call volume, the standard deviation of call volume, and the corresponding 

coefficient of variation.   

Average 
Weekly 
Volume

Std. Dev. 
of Volume

Coefficient of 
Variation

Project 1 248.1 81.7 0.330
Project 2 291.9 92.7 0.318
Project 3 516.7 283.2 0.548
Project 4 560.7 175.0 0.312
Project 5 1,442.9 460.2 0.319
Project 6 1,545.0 504.1 0.326
Project 7 2,599.3 809.5 0.311
Project 8 3,336.9 986.7 0.296
Project 9 4,386.8 1,664.4 0.379
Project 10 7,566.9 3,493.9 0.462
Project 11 8,221.9 1,586.9 0.193  

Table 2-1 Variability of Weekly Call Volume 

This table shows that volume varies considerably from week to week.  It also shows that the 

degree of variability varies considerably from project to project, with coefficients of variation as 

low as .193 and as high as .548.   

2.4.3 Daily Arrivals 

Call volumes exhibit a strong seasonality pattern over the course of a week.  In the following 

figure we see daily call volume for a typical project shown over a 3 month period.   

Calls Offered Daily
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 Figure 2-3 Sample Daily Call Volume 
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This graph shows strong “seasonal” variation over the course of a week.  Monday’s tend to be the 

highest volume days with volumes dropping off over the course of the week.  Volume on 

Saturdays is a small fraction of the weekday volume and this particular desk is closed on Sunday.  

The graph also reveals significant stochastic variability.  Tuesdays are, for example, often higher 

volume then Wednesdays but this is not always the case.  During the weeks of 4/26 and 5/16 we 

see larger volumes on Wednesday then Tuesday.  We also see the issue of unanticipated spikes in 

demand, often referred to as significant events. This is an extremely common event in support 

desk operations.  A downed server, for example, will generate a large call volume.  While some 

contracts provide SLA relief in the case of significant events, in general the desk must meet SLA 

even when significant events occur.  The large volume of calls during a significant event not only 

result in poor performance, but also create a large proportion of the total calls making it more 

difficult to achieve a specific percentage of “within SLA” calls.   

 

The following chart summarizes the problem of daily volume variability.  The average (M-F) 

daily call volume for each project is listed along with summary statistics for the daily Forecast vs. 

Actual measure5.   

 

 
Table 2-2 Forecast vs. Actual Call Volume 

                                                      
5 I define FVA as the ratio of actual calls presented to the forecasted calls presented.  Each project 
generates daily forecasts of volume.  These forecasts attempt to account for day of week effects, trends, and 
any special events such as holidays or changes in scope.  This table is based on 4 months of daily data and 
uses only data for Monday through Friday because many projects have very low weekend volume.  

Forecast vs. Actual

Project
Avg. 

Vol/Day
Mean 
FVA

Std Dev 
of FVA

Max of 
FVA

Min of 
FVA

Project 1 55.2 126.6% 47.7% 334.2% 57.8%
Project 2 62.9 130.3% 40.7% 224.4% 56.5%
Project 3 100.8 104.7% 41.5% 268.1% 47.4%
Project 4 114.6 110.4% 48.1% 407.5% 37.5%
Project 5 284.5 91.0% 25.4% 256.5% 64.5%
Project 6 313.3 123.4% 24.3% 213.9% 12.9%
Project 7 539.1 105.3% 14.3% 152.0% 78.5%
Project 8 725.5 96.6% 10.9% 120.1% 51.5%
Project 9 873.8 143.4% 38.7% 279.4% 85.5%
Project 10 1,417.2 140.4% 26.7% 235.5% 88.2%
Project 11 1,714.9 111.1% 25.6% 187.7% 78.0%
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The table reveals the challenge related to accurately forecasting volume.  Most projects 

systematically underestimate volume.  The standard deviation of the forecast error is large and the 

range of observed values is substantial.  It is also worth noting that in general smaller (mid-

market) projects are more difficult to forecast than larger projects6.   

2.4.4 Intraday Variability  

In addition to day-of-week seasonality these call centers also experience very significant time-of-

day seasonality.  The following figure shows the average call volume presented per ½ hour period 

to a particular corporate help desk.   
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Figure 2-4 Sample Average Daily Arrival Pattern 

This particular desk operates 24x7 and we see that the volume during the overnight hours is quite 

low.  Volume ramps up sharply in the morning with a major surge of calls between 7 and 11 AM.  

                                                      
6 Projects 9 and 11 represent 2 divisions of the same company, a company in the middle of a merger 
integration effort.  The disruptions related to the merger are a major contributor to the variability of this 
project.  Projects 7 and 8 represent two long term Fortune 500 level companies that are relatively stable; 
with a standard deviation of forecast error less then 15%.   
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Volume tends to dip down around the lunch break, but a second peak occurs in the afternoon; 

though the afternoon peak is typically lower volume then the morning peak.   

 

While this basic arrival pattern exists on most business days, there is significant stochastic 

variability in the call pattern from day to day.  The following graph shows call volume over an 8 

week period for a particular project.  The inner region represents the minimum volume presented 

in each period, while the overall envelope is the maximum volume presented in each period.  The 

outer region then represents the variability over this eight week period. 

 

 
Figure 2-5  Range of Call Volume 

This graph shows that while there is significant variability in call volume, a strong pattern exists.   

2.4.5 A Statistical Model of Call Arrivals 

In numerical analysis of stochastic systems we have three options to represent variability (Law 

2007). 

- Empirical (trace) data 
- Empirical distribution 
- Theoretical distribution 

The preferred approach is to find a theoretical distribution that provides a reasonable fit to 

empirical data and to sample from that distribution (Law 2007).   In this section I develop a 
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relatively simple model of call arrivals and show that this model provides a reasonable fit to the 

observed data.  The selected model is a two stage, hierarchal model of arrivals.  This type of 

model is commonly employed in call center operations  (Gans, Koole et al. 2003).  In the first 

level we model daily call volume.  In the second level we model the distribution of daily calls 

across 30 minute time periods.   

2.4.5.1 Daily Call Volume 

The goal of the top level model is to develop a statistical distribution for daily call volume.  Daily 

call volume can vary for multiple reasons; including changes in the scope of support, holidays, 

annual seasonality, and stochastic variability.  Since our concern is with stochastic variability, I 

ignore structural and long range seasonality issues and focus on day to day stochastic variability.   

 

The assumption is that daily calls are generated by a stationary process with day of week and 

holiday effects.  Mathematically I assume a model with the following form 

 ˆ M M T T R R F F SA SA SU SU H Hy y b d b d b d b d b d b d b d ε= + + + + + + + +  (2.1) 

ŷ represents the call volume predicted on any given day.  y  is the overall average call volume.  

We have dummy variables ( M SUd d− ) for day of week effects (I arbitrarily select Wednesday as 

the baseline day).  Each dummy represents the average change in daily volume relative to 

Wednesday, i.e Md represents the average difference in calls between a Wednesday and a 

Monday.  Hd  is a similar dummy variable for holiday effects.  I fit a model using ordinary least 

squares to approximately 6 months of data and obtained the following results.   

 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  727.24 17.14887 42.41 <.0001
Mon  141.12421 24.69112 5.72 <.0001
Tue  69.88 24.25217 2.88 0.0045
Thu  -45.32 24.25217 -1.87 0.0634
Fri  -109.5453 24.29783 -4.51 <.0001
Sat  -669.84 24.25217 -27.62 <.0001
Sun  -651.1874 24.06047 -27.06 <.0001
Holiday  -610.3674 37.22337 -16.40 <.0001

 
Source Nparm DF Sum of Squares F Ratio Prob > F 
Mon 1 1 240177.6 32.6679 <.0001 
Tue 1 1 61040.2 8.3024 0.0045 
Thu 1 1 25673.8 3.4920 0.0634 
Fri 1 1 149438.9 20.3260 <.0001 



 

   

 13 

 

 

Source Nparm DF Sum of Squares F Ratio Prob > F 
Sat 1 1 5608570.3 762.8532 <.0001 
Sun 1 1 5385360.5 732.4932 <.0001 
Holiday 1 1 1976798.6 268.8755 <.0001 
 
RSquare 0.936968
RSquare Adj 0.934357
Root Mean Square Error 85.74437
Mean of Response 525.0113
Observations (or Sum Wgts) 177

Table 2-3 Regression Model Results 

This model provides an excellent overall fit to the data with a very high R2 and adjusted R2 value.  

Each dummy variable, other then Thursday, is significant at the .01 level, with Thursday being 

significant at the .06 level.  This supports the notion of strong day of week seasonality effects7.   

 

Based on this regression an initial model for this call arrival process is as follows: 

 ˆ 727 141 69 45 109 670 651 610M T R F SA SUy d d d d d d ε= + + − − − − − +  (2.2) 

with a standard deviation of 85.74σ = .  I now need to test the underlying assumptions of the 

linear regression model; specifically I wish to confirm that the residuals are independent and 

normally distributed.   

2.4.5.1.1 Autoregressive analysis 

An assumption of the linear regression model is independence of the residuals, but it is reasonable 

to assume that the arrival data may exhibit an autoregressive dependence.  To test for this effect, I 

performed a time series analysis on the residuals from the basic regression model.  The classic 

reference for time series analysis is (Box, Jenkins et al. 1994); Chapter 6 of this text outline a 

procedure for fitting time series models.   

 

                                                      
7 Formally we reject the null hypothesis that day of week effects are zero.   
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The following chart shows the Autocorrelation and Partial Autocorrelation plots for the residuals. 
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Figure 2-6 Autocorrelation and Partial Correlation Plots 

The graph shows generally low levels of correlation with lagged observations.  There is a slight 

positive correlation with a 2 day lag.  I speculate that this lag is related to call backs on previously 

unresolved problems.  A standard diagnostic test for autocorrelation is the Durbin-Watson test 

(Kutner, Nachtsheim et al. 2005).  From the original regression analysis the Durbin-Watson 

statistic is 1.68, which allows us to conclude that autocorrelation is not significant.   

 

Because the autocorrelation effect is quite small, adds significant complexity to the model, and is 

of limited value8, we choose to ignore it and to continue with a non-autoregressive model in 

future analysis.   

                                                      
8 In most of our analysis staffing decisions must be made at least a week in advance.  A small adjustment to 
the forecast two days into the future is of limited practical value.   
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2.4.5.1.2 Residual Distribution 

Another important assumption of the linear regression model is constant variance of the residual 

term.  The following figure plots the residuals by day of week.   
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Figure 2-7 Residuals by Day of the Week 

This figure clearly shows that that the residual variance is not independent of the day of the week.  

Saturdays, for example, have a much lower average volume and a much lower variance then 

Mondays.  This implies that the assumptions of the standard linear regression model are not 

satisfied.  This should be obvious from the regression output where the standard deviation of 

volume (85) is greater then the average volume (58) on Saturdays.  This implies that negative 

calls can occur with positive probability, which is clearly not the case.   

 

This analysis shows that the standard linear regression model is not valid, but we have determined 

the following: 

• Day of week effects are statistically significant for each day of the week. 

• Day of week effects explain a significant proportion of the variability in call volume. 

• After considering day of week effects, the autoregressive effects are minimal and can be 

ignored. 
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• The variance in call volume is dependent on the day of week.   

 

There are several remedial measures which can be utilized to address the variance issue, such as 

data transformation or weighted least squares  (Kutner, Nachtsheim et al. 2005).  However, our 

data suggests a straightforward approach.  We assume that volume on each day is an independent 

random draw from a normal distribution with a mean and standard deviation specific to that day 

of the week.  Since we have show autoregressive effects are minimal the assumption of 

independence is justified.  Since each day’s volume is generated by an independent process the 

variance of volume on each day can be unique.   

2.4.5.2 Intraday Arrivals 

Having developed a model of daily call volumes, we must now develop a model of how these 

calls arrive over the course of the day.  It is clear from Figure 2-5 that the arrival rate varies 

considerably over the course of the day and we can not assume a constant arrival rate.  A 

common approach in practice is to assume a fixed shape of the demand pattern that simply shifts 

vertically with volume.  Mathematically this implies that the call volume in each is a fixed 

proportion of the daily volume.  However the graph in Figure 2-6 shows that per period volume is 

more volatile than this assumption would indicate.  In the following figure I show the average 

proportion of daily call volume in each 30 minute period, along with the coefficient of variation 

of that proportion.   
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Figure 2-8 Per period Variation in Call Volume 

This graph clearly shows that the call volume proportion in each period is not fixed.  While the 

CV is roughly flat across the busy period of the day, it is in the range of .2 -.3 indicating 

considerable stochastic variability.  During slower periods volumes are very low and highly 

volatile.   

 

While the data clearly refutes the fixed proportion assumption, we may hypothesize that the call 

volume in any period t, is a proportion of total daily volume pt, where pt is a random variable.  My 

analysis shows that during the busy hours (6 AM to 5 PM) the proportion of call volume 

presented in any ½ period has an approximately normal distribution with a coefficient of variation 

of approximately .2.   
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The following chart illustrates the distribution of call proportion in the period between 8:00 and 

8:30AM for one particular project 

 
Figure 2-9 Arrival Proportion Normal Plot 

The left panel shows a histogram of the proportion of daily volume received in this period for 

each observation.  The right panel of the graph is a normal quantile plot of the same data.  The 

histogram and quantile plot show that normal distribution is a reasonable approximation to the 

distribution of call proportion in this time frame9. Further analysis shows similar results for busy 

periods during the workday.  Call volume during off peak hours is generally independent of total 

daily volumes.  During evening hours the volume of calls presented is approximately normally 

distributed with no significant day of week effects.  In the overnight hours calls are a rare event 

(many periods have no calls at all.)    

 

We can reasonably assume a model where the call proportion of daily volume is normally 

distributed during busy hours.  During slow hours this assumption finds less support in the data.  

However, practical considerations show that this assumption will introduce little error in our 

model.  Recall that our primary motivation is to develop a model of call volume that can be used 

for scheduling purposes.  Standard operating procedures require that a minimum of two agents 

                                                      
9 An alternative distribution is the Beta distribution which unlike the normal distribution has a finite 
support.  Call proportion can obviously not be negative and an infinite support distribution such as the 
normal can generate negative volumes with positive probability.  Given the mean and and sd. of the 
proportion during high volume hrs. this is a low probability event.  My analysis indicates that the normal 
distribution approximation is reasonable for high volume periods.   
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are staffed in all periods, which implies abundant capacity in the slow periods.  In addition, 

service level agreements are based on answering a specified proportion of calls within a specified 

time.  Since the total proportion of calls received in the slow periods is very low, small errors in 

volume during these periods will have limited impact on the aggregate service level attainment.   

 

Based on these considerations we will utilize a statistical model that assumes that the proportion 

of total daily call volume presented in any half hour period is a normally distributed random 

variable.  We will estimate the parameters of this random variable by calculating the proportion 

of volume received in each period across all the weekdays in our data set.  I then calculate the 

average and standard deviation of this sample.   

2.4.5.3 Simulating Call Arrival Patterns  

This simplified model developed above presents a reasonable approximation of a stochastic 

process that generates call arrival patterns.  An algorithm for generating a week of simulated calls 

is provided in the following figure 

For d = 1 to 7 
 Read DAd,DSd     ‘ Read daily average and sd 
 DVd = RndNorm(DAd,DSd)  ‘ Generate random volumes 
Next 
For d = 1 to 7     ‘ Gen initial proportions 
 For t = 1 to 48 
  Read TAt,TSt    ‘ Read period average and sd 
  TPt = min[RndNorm(TAt,TSt),0] ‘ Calc initial proportion 
  SPd = SPd + TPt    ‘ Sum up proportions  
 Next 
Next 
For d = 1 to 7     ‘ Normalize proportions 
 For t = 1 to 48 
  TVdt = TPt*DVd/SPd   ‘ Calculate period volume 
  LAMdt = 2* TVdt    ‘ Calculate arrival rate 
 Next 
Next 

Figure 2-10 Simulated Call Generation Algorithm 

This algorithm has 3 loops. In the first loop we calculate daily call volumes by generating random 

normal variates with the daily mean and standard deviation.  In the second loop we calculate the 

preliminary proportion of daily volume realized in each 30 minute time period.  The third loop 

normalizes the proportion and calculates the average realized volume in each period and the 

associated arrival rate.   
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2.5 Abandonment 

An important consideration in call center operations is abandonment, the proportion of callers 

who decide to hang up prior to being serviced.  The abandonment rate is a key parameter tracked 

in most call centers.  In this context the firm makes a distinction between negative abandonment 

and positive abandonment.  Positive abandonment is the proportion of callers who hang up 

without waiting on hold for an extended period of time.  The rationale is that when a known 

problem is identified a recorded message is usually played to all new calls stating the problem 

and the expected resolution time.  Callers who hear this message and hang up are assumed to 

have been serviced as they learned that their problem is known and learned of the expected 

completion time.  Positive abandonment is therefore not considered a problem.  Formally, 

positive abandonment is usually calculated as the number of callers who abandon with a wait 

time of 30 seconds or less.    

 

Negative abandonment on the other hand occurs when a caller chooses to hold through this initial 

period, but ultimately hangs up before they are serviced.  Abandonment rates tend to vary widely 

and are correlated to wait time.  When queues build up wait time increases and callers are more 

likely to abandon10.  Abandonment rate therefore tend to be the highest when volumes are high 

and capacity tight.   

 

                                                      
10 Abandon calls count against the service level, in that an abandon call was not serviced but counts as a 
received call.  In this sense one minus the abandonment rate is an upper limit on the service level.   
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The following graph illustrates the daily abandonment rate for a particular project over a three 

month period. 

Negative Abandonment Rate
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Figure 2-11 Abandonment Rate - Stable Project 

The abandonment rate is seen to vary considerably and spike up on busy days.  The overall 

abandonment rate for this project is typically in the range of 4%-6%, rarely below 2% and as high 

as 15%.  The particular project shown here is a relatively stable project with relatively low 

abandonment.   

 

The abandonment rate for a more volatile project is show in the following figure: 

Negative Abandonment Rate
Project S
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Figure 2-12 Abandonment Rate - Unstable Project 



 

   

 22 

 

 

This particular problem encountered serious service quality problems in early May as changes in 

scope caused call volume to increase faster than capacity.  Average waiting time increased to over 

20 minutes and significant number of callers decided to abandon.  Abandonment rates peaked at 

over 50% for several days, and even after capacity adjustment were made abandonment rates 

remained in the 20%-30% range.   

 

Over this time period the average abandonment rate for the 11 projects listed in Table 2-2 varied 

between 2.5% and 22%.  Overall this analysis shows that abandonment is an important 

consideration that needs to be considered in any planning model.  

2.6 New Project Launch 

One of the key challenges in this business model is the new project launch process.  A significant 

problem is determining the appropriate number of agents to hire and train.  Because of the 

substantial (project specific) training investment required for new hires, management is reluctant 

to hire extra workers.  Standard operating procedures call for hiring to the projected steady state 

level based on expected call volumes11.  As in the case of the short term scheduling problem the 

decision is complicated by uncertainty.  Attrition levels are again uncertain, as is demand.  The 

level of demand uncertainty is very high prior to the go live event because accurate counts of 

current call volumes are often extremely difficult to obtain.  Business process changes involved 

with the transition, such as call center consolidation, changes in hours of operation, or changes in 

the type of support provided, often make previous data of limited value, even if known.  Another 

major complicating factor is the evolving level of productivity due to learning curve effects.  Talk 

times tend to decline during a launch as agents become more familiar with the environment and 

the project knowledge base becomes better populated.  Variability in talk time is subject to 

institutional learning curve effects, individual learning curve effects, and stochastic variability.  A 

final complicating factor is the lead time required to add new capacity.  Recruiting new hires can 

take time, but the biggest factor is training time.  Since agents must provide detailed technical 

support they require extensive training before they can be deployed on the help desk.  Training 

times are project dependent and vary from two weeks to three months.   

 

                                                      
11 Accounting issues are also important as projects are generally expected to be profitable from launch.  
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The following graph shows the average talk time over the first 3 months of a major launch that 

occurred in 2005.   

Daily Average Talk Time
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 Figure 2-13 Talk Time Evolution during Startup 

This graph reveals a general decline in talk time (increase in productivity) during the first several 

weeks of the launch, followed by a leveling off and a slight increase in the third month.  The 

increase in talk time in January is due, at least in part, to the addition of new hires made to replace 

resigning workers12.  This particular project involved a phased deployment where large groups of 

agents were added at various time through the extended launch period.  If we plot the average talk 

time over a longer period, we can clearly see the impact of new agents and the learning curve 

effect. 

                                                      
12 Six new hires were made in December for a project with a total headcount at that time of about 35.  
These individuals began taking calls in early January.  I don’t have individual talk time data for this project.   
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Daily Average Talk Time
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Figure 2-14 Talk Time Shocks 

The start up problem has is illustrated by a recent launch of the company’s single largest 

customer.  Based on the scope of this launch the decision was made to conduct a phased launch 

effort, adding new users every few weeks over an extended period.  Unfortunately this created 

multiple forecasting challenges.  As the following graph shows, the inability to ramp up capacity 

along with demand led to extremely poor quality of service over an extended period of time.    

 
 Figure 2-15  Service Levels During rollout 
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The challenge of forecasting the new demand with each subsequent roll out, coupled with 

learning curve issues as new agents were added with each rollout, created acute mismatches in 

capacity and demand.  The service level target for this project was 80%, but as the graphic shows 

actual service levels were well below this target for extended periods with several periods of 

extremely poor performance13.   

2.6.1 A Statistical Model of Learning Curve Effects 

To develop a statistical model of learning curve effects I collected individual agent scorecards 

from a sample project.  These scorecards are prepared for each front line worker each month and 

assess the worker on a number of key operating metrics including talk time, wrap time, first tier 

closure rate, inside call volume, and monitoring scores14.  The data set included scorecards for 

2004 through November 2006.  The data was pulled from the individual scorecards and arranged 

by month of service.  I included only agents where I had at least 3 months of contiguous data.  

The resulting data set had measure for 53 agents with length of service ranging from 3 months to 

19 months.   

 

As a proxy for agent productivity I examined talk time, first tier closure rate, and inside call 

volume.  My hypothesis is that as agents learn they will resolve more problems, in less time, with 

less help from other agents.   

 

                                                      
13 The problems associated with this launch have provided the motivation for the company to rethink its 
launch process.    
14 Talk time is the average time the agent spends on the phone per call, while wrap time is the post call time 
spent processing data from the call.  First tier closure rate is the proportion of calls resolved directly by the 
agents, as opposed to escalation to a tier 2 agent.  Inside call volume are calls placed by the agent to other 
agents seeking help to resolve difficult problems.  Monitoring score are the scores given by QA personnel 
who anonymously monitor a portion of calls and grade agents against a broad list of subjective 
performance measures.     
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The following graph shows the reported monthly average talk time for each agent as a function of 

their month of service.   

Monthly Average Per Call Talk Time - Project J
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 Figure 2-16 Monthly Average Talk Time 

Each point on this graph represents an individual agent wmployed for a month.  The data reveals 

a general decline in average talk time over the first several months of service as expected.  Talk 

time declines from an average of 12.7 mins in the first month, to 8.3 mins in the 6th month.  The 

standard deviation of talk time ranges between 3.0 and 2.5 over this period.  However, when I 

examined first tier closure rate and inside call volume the picture became a little more 

complicated.  
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The following graph shows that First Tier Closure rate decreases over the first few months of 

service.   

Monthly Average First Tier Closure Rate-- Project J
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 Figure 2-17 Monthly Average First Tier Closure Rate 

This unexpected result is partially explained by the Inside Call Volume statistic. Shown in the 

following graph: 

Monthly Average Inside Call Rate - Project J 
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 Figure 2-18 Monthly Average Inside Call Rate 

During the first few months when agent experience is low they draw upon more experienced 

agents to help them solve a large portion of their calls and because of this they are able to close a 
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relatively high percentage of calls without escalation.15  So as agents progress they are able to 

resolve calls faster with less outside support.  As a first preliminary measure of productivity we 

use the talk time measure as a surrogate of productivity.   

 

I first compare the average talk time for all agents in their nth month of service to the average of 

the n-1th month of service.  Using a standard T-test I find the reduction is statistically significant 

at the .1 level through the first 5 months of service.  Average talk time continues to decline 

through the first 11 months of service, but the month to month changes are statistically significant 

only at the .5 level.  If we evaluate the 2 month improvement the improvement is significant at 

the .01 level through the 6th month.   

 

This analysis shows us that average talk time for more experienced agents is lower than talk time 

for less experienced agents; but does not give us conclusive evidence as to why talk time 

decreases.  Two explanations are possible; first agents learn and become more productive and 

second slower agents are removed from the system.  To verify that individual agents become 

more productive I examine the one month difference for individual agents.   

 

The data is summarized in the following graph 

Month to Month Reduction in Average Talk Time
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 Figure 2-19 Monthly Reduction in Talk Time 

                                                      
15 Management policy prevents agents on this project from escalating tickets without concurrence of 
another more experienced agents until they earn their escalation rights, typically sometime in the 2nd or 3rd 
month of service.    
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The graph shows positive reductions (improvements) in average talk time through the first 5 

months.  The improvement in month 6 is not statistically significant.   

 

All of this data suggests that a standard learning curve model is appropriate.  Given the data I 

have, I developed a learning curve model based on months of service rather than cumulative call 

volume.  I fit a model of the form 

 ( )0 1 , 1n
tT T e nα−= + ≥  (2.3) 

where tT is the average talk time in period t, 0T is the average talk time for an experienced agent 

(6 months +), n is the month of service, and α is the learning curve rate parameter.  I fit a curve 

to the total average talk time measure16 and calculated an α value of 0.4605.   

 

The curve gives a reasonably good fit as the following graph illustrates: 
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 Figure 2-20 Learning Curve Model Fit 

I was able to collect similar data for a second project and performed a similar analysis.  I obtained 

slightly different, but similar results.  On this project the improvement is statistically significant at 

                                                      
16 I fit the curve using Excel’s solver to find the value at minimizes the sum of squared errors.   
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the .2 level only through the 4th month of service, indicating a somewhat faster learning process.  

The corresponding alpha value for this project is .703.   

 

The learning curve model expressed in (2.3) is quite flexible and can be used to represent a wide 

range of learning curve effects as the following graph illustrates. 
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 Figure 2-21 Family of Learning Curves 

The curve is valid for any ( )0,α ∈ ∞ .  For large values of α the curve is relatively flat; new 

agents perform nearly as well as experienced agents and any gap is quickly closed.  As the value 

of α decreases, the curve becomes steeper and the learning effect is more pronounced.  The 

limitation of this functional form is that α must be strictly greater then zero and the initial effort 

can be no more then twice the long run effort.  This limitation is easily overcome by adding a 2nd 

scaling parameter to (2.3), but that is not necessary to fit our data.   

2.6.1.1 Relative Productivity 

In Figure 2-19 we show the impact of learning on talk time.  An alternative way to think of 

learning is the impact on relative productivity or capacity.  As learning occurs agents become 

more productive and able to handle more calls and increase their effective capacity.  Based on 

equation (2.3) average talk time will settle in at the value of 0T .  If we equate a relative 
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productivity level of one with a talk time of 0T then we can define the relative productivity index 

ρ as the ratio of the average talk time of the inexperience agent with that of the experience agent 

( )0 / tT T  or 

 1
1t ne αρ −=

+
 (2.4) 

The relative productivity will evolve as shown in the following graph 

Productivity Curves for Various levels of α
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Figure 2-22 Relative Productivity Curves 

This graph shows that with an α value of .8 a new agent can handle approximately 68% as many 

calls as a fully experienced agent, based simply on talk time.  A more complete analysis would 

take a broader measure of agent productivity then just talk time.  Based on the inside call volume 

statistic shown in Figure 2-16 , new agents place a high burden on experienced agents by asking 

them questions.  While we have a measure of the number of inside calls made we have no data on 

the duration of calls.  Qualitatively, the data indicates that the burden placed on experienced 

agents decreases with time and we can conclude that the productivity curves of Figure 2-20 

understate the productivity improvement associated with learning.   



 

   

 32 

 

 

2.7 Turnover Issues 

As is often the case in call center environments, turnover in this company is a significant issue.  

The following graph shows the month by month annualized turnover rate over an approximately 

28 month period.   
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 Figure 2-23 Annualized Attrition Rates by Month 

We see that turnover varies significantly from month to month, with the 9 month moving average 

in the range of 25-35% per year.  A widely used model for employee attrition estimates the 

attrition probability as a function of length of service.  (See for example (Bartholomew and 

Forbes 1979)).   

 

I collected detailed termination data on the 1,400 terminations (voluntary and involuntary) that 

occurred between January 2001, and May 2006.  I used this data to estimate a hazard rate 

function for the probability of quitting.   
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The data was fit to a Weibull distribution with shape parameter equal to .918 and scale parameter 

equal to .0309.   The hazard rate function derived from that distribution is shown in the following 

graph: 
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 Figure 2-24 Attrition Hazard Rate 

The analysis reveals a decreasing failure rate function; that is the probability of quitting declines 

with length of service17. This is consistent with summary data that shows that over this period 

approximately 15% of new hires quit within the first three month of employment.  We termed this 

the washout rate.  The observations that are relevant for the analysis in this dissertation are the 

following.  First, attrition rates of 3.0%-3.5% per month are realistic, and second the probability 

of quitting declines with length of service.  These observations, and parameter values, will 

become important when we analyze new project start ups.  The high attrition rate, especially 

among new hires, implies that we must consider attrition when staff planning for a new project.18 

                                                      
17 A Weibull distribution will have a decreasing failure rate if the shape parameter a is less then 1 and an 
increasing failure rate if the shape parameter is greater then 1.  If the shape parameter is equal to 1 the 
Weibull is equal to the exponential distribution and the failure rate is constant.   
18 Interestingly, the company currently does not factor attrition levels into new project start ups.  Hiring is 
currently capped at the number of agents specified in the long run cost model for the project.   
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2.8 Capacity Management Practices 

The primary organizational structures at this firm are the account and the outsourcing project.  

For the most part each account/project is managed as a stand alone operation with its own 

management structure and its own profit and loss statement.  Based on this decentralized 

management structure each project team has wide latitude in terms of how it performs capacity 

management functions.   

 

While the firm owns a sophisticated Work Force Management (WFM) tool that can perform 

complex scheduling tasks, the tool is used by very few project teams.  Most teams perform 

scheduling tasks in a semi-automated fashion utilizing Excel spreadsheets.  Managers collect 

historical call volumes from the ACD and use that data to develop a call volume forecast; 

typically for each 30 minute period over the course of a week.  Most managers use the average 

per period over a six to eight week period, and then manually adjust that schedule based on 

holidays or other known changes in scope.  The forecast is used to drive overall staffing 

requirements.  Several managers use Erlang C calculators, simple applications that calculate the 

staffing level required to achieve a specified service level in each time period, to create a 

candidate staffing profile.  However, because of the large peak in volume during the 8-12 AM 

time period, most managers do not staff to this level.  Instead they under staff during the morning 

peak, and overstaff during the afternoon period.  The objective is to achieve a service level below 

target in the morning, above target in the afternoon and on target overall.  Balancing over and 

under staffing is done heuristically, based on experience and intuition.  Staffing plans also 

account for other constraints, such as the general requirement to always have at least two agents 

staffed during any period.   

 

While most managers perform these tasks using spreadsheets, a small number use the automated 

WFM application.  The general process here is the same but the tool provides automated support.  

The tool collects ACD statistics which the manager can manually adjust.  A menu of feasible 

schedules and other side constraints can be established and an automated schedule generated.  

Manual adjustment of the schedule can be performed after optimization.  The tool’s 

documentation is quite vague about the nature of the scheduling algorithm.  The scheduling 

algorithm does provide a slider control that allows the planner to select between 1 - Minimize 



 

   

 35 

 

 

spikes in service level, and 2 - Maximize overall (weekly) Service Level.    The tool can account 

for abandonment either by allowing the user to enter an abandonment rate forecast or a patience 

factor19.   

 

For the most part agents are scheduled to full time schedules (40 hours per week) that remain 

constant from week to week.  Some projects have implemented flex scheduling; whereby an 

agent’s scheduled hours may be different every day.  This practice has been controversial and is 

believed by some to lead to increased attrition rates.   

 

The WFM tool is widely used in planning new project launches.  Forecasts of daily arrival rates 

are collected from whatever sources are available and allocated to 30 minute time periods by 

applying a standard seasonality model, based on other projects.  The WFM staffing model is run 

from this point estimate of per period arrivals to calculate the number of agents required to 

achieve the targeted service level.  The estimated number of agents required are then recruited, 

with no allowance made for learning and or turnover.  All agents are hired to a specific project 

requisition in a hire to order process.   

2.9 Model Projects 

Throughout this dissertation we will analyze decision models developed in the context of multiple 

model projects.  These model projects are based on real projects currently in operation.  I selected 

these projects so that I could analyze the behavior of the models under various realistic operating 

conditions.  Each project has unique characteristics that create operational challenges.  Taken 

together this set of projects provides a broad test bed upon which to evaluate the models.   

The projects I review are summarized as follows: 

• Project J: an IT help desk for a large US based corporation.   

• Project S: an IT help desk that supports store operations of a large US based retail chain. 

• Project O: an IT help desk that supports corporate and store based operations for a 

medium sized retail chain.   

                                                      
19 It is not clear if the patience is a average figure from some distribution or a deterministic point estimate.  
Online documentation asks the user to enter the Patience - This represents the length of time a caller will 
wait before hanging up, which seems to imply a point estimate.  Knowledge of the technical details of the 
scheduling algorithm even by those who actively use the tool is very limited.   
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2.9.1 Project J 

Project J provides Help Desk and desk side support for approximately 30,000 users in 13 

locations across the United States.  The project has approximately 98 dedicated staff members, of 

which approximately 45 are dedicated to help desk support.  The help desk receives 

approximately 16,000 calls per month.  The project is subject to an 80/60 TSF SLA, as well as a 

75% first tier closure rate SLA.  Talk time on this project averages 12 minutes.  Daily call volume 

for this project is relatively stable as the following graph illustrates: 

Calls Offered Daily - Project J
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 Figure 2-25  Project J Daily Arrivals 

Since this project primarily supports corporate users weekend call volume tends to be quite low. 

A typical weekend day has 40-60 calls, while on weekdays call volume is in typically in the range 

of 500-800 calls, although volumes can rise higher on busy days.  This project exhibits a typical 

weekly seasonality pattern, with volumes generally declining during the working week.   
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The intraday pattern also follows a standard corporate project pattern; an early morning peak, 

followed by a lunch lull and a second smaller afternoon peak.  The following graph illustrates.   
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 Figure 2-26  Project J Average Intraday Arrivals 

2.9.2 Project S 

Project S provides support for a large retail chain that is undergoing significant disruption in 

operations due to a merger.  Volume tends to be very high and unpredictable.  The project 

supports approximately 350,000 end users at 3,400 stores.  The project generates between 40,000 

and 45,000 calls a month.  Approximately 125 staff members are dedicated to this project.  The 

following graph illustrates daily volume during a period that includes the final roll out in a phased 

roll out process.   
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 Figure 2-27  Project S Daily Arrivals 
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We see that call volume tends to be more volatile.  We can also see that because stores are open 7 

days a week weekend volumes tend to be much higher then on a corporate project.  The intraday 

seasonality pattern is also different for this project as the following graphic illustrates.   
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 Figure 2-28  Project S Average Intraday Arrivals 

The double-hump pattern of the corporate project is much less pronounced and the evening trail 

off of call volume is much more gradual.  This project is subject to an 80/120 TSF SLA.  Talk 

time on this project averages 13.5 minutes.     

2.9.3 Project O 

Project O provides support to a medium sized retail chain.  The project supports approximately 

10,000 users at 1,070 retail locations plus the corporate office.  The project generates about 

15,000 calls per month and has approximately 40 dedicated staff members.   

 

As the following graph illustrates, the project is considerably smaller than project S and overall it 

is less volatile, though it subject to very large spikes.  The day to day pattern is similar to Project 

S.   
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 Figure 2-29  Project O Daily Arrivals 

The daily pattern has much less seasonality then other projects.  The morning and afternoon peaks 

present in other projects is very limited on this project.   

Avg. Call Volume (M-F) -Project O
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 Figure 2-30 Project O Average Intraday Arrivals 

2.9.4 Statistical Models of Model Projects 

Statistical models were developed for each of these projects using the approach outlined in 

section 2.4.5.  For each project I eliminated holidays from the data set and identified shock days.  

The day of week effect was then calculated by estimating the mean and standard deviation of 

arrivals on each “normal” day.  I then estimated the proportion of calls received in each 30 minute 
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period along with the associated standard deviation.  Finally I estimated the probability, mean and 

standard deviation of shocks.  A summary of the data for each of these model projects is shown in 

the following table: 

 Project J Project S Project O 

Support Base Corporate Retail Corp/Retail

Hours of Operation 24x7 24x7 24x7

SLA 80/60 80/120 80/120

Average Weekly Volume 3,825 10,600 3,000

Talk Time 12 13.5 14

Shock Probability 0 3.0% 1.3%

Mean Shock Volume 0 792 267

Shock Standard Deviation 0 72 20

Table 2-4 Model Project Summary 

While these estimates are based on several months of data, a more accurate model fitting would 

require a larger data set.  Estimating shock parameters in particular was challenging given the 

length of this data set.  My intent is not to develop specific forecasting models for these projects; 

rather it is to develop representative and realistic models of projects that can be used to validate 

the decision models, and to generate insight into the operating characteristics of different classes 

of projects.   

2.9.5 Summary 

The analysis of this company’s operations provides the motivation, and the data, to support the 

development of several capacity management models.   The data demonstrates the significant 

variability in load and illustrates the capacity management challenge.  The model projects 

selected also demonstrate the relative scope of operations inherent in support desk operations.     

2.10 Summary of Research Problem and Objectives 

In this section I presented an empirical analysis of data associated with an IT support outsourcing 

company.  The purpose of this review is to highlight some of the key operational challenges 

associated with this type of operation, to provide representative data for future analysis, and to 

motivate a set of optimization problems.  While this data has been collected from a single 
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company, it in fact represents operational data from a number of different companies and 

government agencies around the world and is therefore quite general.    

 

Important observations we can make from this analysis include the following: 

• Arrival rates are highly variable. 

• Arrival rates exhibit day of week and time of day seasonality. 

• Forecasting arrivals is very difficult and prone to substantial error. 

• Hiring and training costs for support agents is costly. 

• Attrition rates are high. 

• Learning curve effects are significant and vary from project to project. 

  

From this data we identify several research questions of theoretical and practical value.  These 

questions include the following: 

• How should we hedge against uncertainty when scheduling call center agents? 

• What impact do uncertainty and variability have on optimal staffing levels? 

• How can we create operating systems more robust to uncertainty and variability? 

 

I address these questions by developing three specific models for call center capacity 

management. 

• Short Term Scheduling Model: a model that accounts for variability and uncertainty 

when scheduling agents.   

• Medium Term Hiring Model: a model that considers uncertainty, variability, and 

learning effects when setting initial hiring levels for a new outsourcing project. 

• Cross Training Model: a model that examines how cross training can be used to create 

lower cost systems that are more robust to uncertainty.   

 

In the next section we review the existing academic literature relevant to these problems.  In 

sections 4 – 6 we develop and analyze each of these models.  In section 7 we summarize major 

conclusions and discuss directions for future research.   
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3 Literature Review 

3.1 Introduction 

In this section I review and summarize some of the key literature relevant to this dissertation.  I 

review literature in the following areas: 

• Manpower Planning: literature related to manpower capacity planning.  I review tactical 

and strategic models, wastage analysis, and models of manpower planning systems in 

practice. 

• Call Centers:  literature specifically addressing call center operations. 

• Stochastic Optimization: literature that addresses methodological issues related to 

optimization under uncertainty.    

• Design of Statistical Experiments: literature that addresses methodological issues 

related to the design, execution, and analysis of statistical experiments.   

3.2 Manpower Planning  

3.2.1 Overview 

Manpower planning became a very popular topic in the early years of Operations Research.  

Many research papers and multiple texts (Holt, Modigliani et al. 1960; Charnes, Cooper et al. 

1978; Bartholomew and Forbes 1979) addressed aspects of the manpower planning problem.  As 

shown in Figure 1-1 of the introduction, it is useful to separate the manpower planning problem 

based on the length of the planning horizon.   

 

In tactical planning, workforce capacity is considered fixed and the objective is to develop 

efficient schedules that balance firm and individual goals and constraints.  Short term planning 

involves determining time phased resource requirements, while rostering involves assigning 

individuals to specific schedules.  In strategic planning, workforce capacity is a decision variable.  

In medium term planning we seek to make near term capacity adjustments through new hiring 

and termination.  Long term planning involves shaping the workforce over an extended period of 

time and considers issues such as career progression and skill shifting.  In the following sections 

we review the literature on tactical and strategic manpower planning.  We also review the 
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practice-oriented literature, papers that consider how manpower planning models have been 

applied in real world industrial or governmental organizations.   

3.2.2 Tactical Manpower Planning 

The tactical planning problem deals with the assignment of a specific number of resources to 

detailed schedules. This problem has been analyzed in the literature extensively, dating back to 

the set covering problem originally modeled by Dantzig in 1954 (Dantzig 1954).  Dantzig’s 

model was outlined in a short ‘letter to the editor’ and formulated tactical scheduling as a linear 

program.  His model assumes the work day can be divided into a number of discrete periods, say 

15 or 30 minute buckets, and that the required number of resources for each time period can be 

specified.  Dantzig’s model also assumed that a number of standard work patterns or shifts could 

be defined, specifying the starting and ending period of work, along with any breaks.  

Mathematically the Dantzig model can be expressed as  

 
0

Minimize
n

j
j

x
=

∑  (3.1) 

Subject to 

 
0

, 0
n

tj j t j
t

a x b x
=

≥ ≥∑  (3.2) 

Where bt represents the number of workers required in period t and the decision variable xt 

denotes the number of workers assigned to shift j.  The coefficient atj is equal to one if shift j 

works in period t and is zero otherwise.  In this simple form all shifts are equally costly and the 

objective is to minimize the total number shifts scheduled.  A simple extension adds a cost 

coefficient jc to the shift which facilitates shifts of different length, or shifts with differential 

wage rates.  Dantzig’s model requires one decision variable for each shift corresponding to the 

number of workers assigned, and one constraint for each time period.   

 

This model seems quite straight forward on the surface, but is in fact rather powerful, and 

unfortunately can become rather complex computationally.  There are three features of this model 

that can make it computationally difficult.  First, is the practical requirement for all decision 
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variables to be integer valued20.  Second is the issue of continuous scheduling; that is 24 hour 

operation with no down time.  Finally and perhaps most significantly, is the issue of explicitly 

scheduled breaks.   

 

Consider a more significant problem addressed in Henderson and Berry (1976).  They evaluate a 

phone company operator scheduling problem.  Operators are scheduled for 8 hour shifts, with a 

variable length lunch break and 15 minute rest break explicitly scheduled.  The model addresses 

only the peak demand hours of 6:00 AM to 12 midnight.  Because of the requirement to schedule 

a 15 minute break that planning horizon is divided into 72 fifteen minute periods.  Staffing 

requirements are defined exogenously and vary over time as in the following example: 

Sample Demand Profile

0

1

2

3

4

5

6

7

8

9

10

6:00 AM 9:00 AM 12:00 PM 3:00 PM 6:00 PM 9:00 PM 12:00 AM 
Figure 3-1 Sample Agent Requirements 

Given the various options for starting times and the possible combinations of break times, the 

model includes 7,120 different decision variables.  The model also includes 72 constraints to 

account for the demand in each period.   

 

The requirement to explicitly model breaks is costly.  Without breaks there are at most 72 

different full time shifts, one for each discrete time period.  So fully 98% of the decision variables 

are a direct result of the explicit break scheduling problem.  It is worth noting that the Henderson 

and Berry model simplifies the problem to avoid the continuous (24 hr) staffing problem. Their 

model schedules only the peak hours of 6:00 AM to midnight which allows them to treat each day 

                                                      
20 Dantzig’s original model was solved by hand as an LP.  He suggested rounding non-integer solutions, 
while rounding is a viable approach for scheduling a toll booth; it is not practical for a call center with 
hundreds, or thousands of potential shift patterns.   
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as a separate scheduling problem.  Without this simplification the number of schedule periods 

would increase by a multiplicative factor equal to the number of days in the planning horizon.   

 

The staff scheduling problem is a special case of the set covering problem in which the objective 

is to minimize the weighted sum of set coverings, with the weights being the cost of each shift.  

The Staff Scheduling problem is known to be NP Complete unless it possesses the cyclic 1’s 

property (Garey and Johnson 1979); that is unless each shift is continuous with no breaks.  NP 

Completeness implies the lack of a polynomial time solution algorithm.21  Practically this means 

staff scheduling problems that include explicit breaks are inherently unscalable. The majority of 

the research related to staff scheduling is related either directly or indirectly, to this scalability 

problem. 

3.2.2.1 Continuous Shifts 

A number of papers analyze staff scheduling problems that do not explicitly schedule breaks.  

Without this requirement the problem is no longer NP Complete and a number of polynomial 

time approaches are available.  Segal shows that without breaks the problem can be modeled as a 

network flow problem (Segal 1974).  Baker examines the problem of scheduling full time nurses 

to meet a deterministic staffing requirement in a series of papers.  The first model (Baker 1974a) 

considers only full time workers and attempts to find an optimal allocation of days off during a 

weekly (7 day) cyclical schedule where each employee is scheduled for two consecutive days off.  

Another paper extends this model to allow for the added flexibility of scheduling part-time 

employees along with full time employees (Baker 1974b).  A third model (Baker and Magazine 

1977) again considers only full time employees, but evaluates a number of different day off 

policies.  This series of papers shows that efficient algorithms can be developed for specific 

cases, obviating the need to solve integer programs.  The nurse scheduling problem is further 

analyzed in another set of papers by Warner et al.  The model in (Warner and Prawda 1972) also 

avoids the explicit break problem, but introduces other complications that also make the problem 

computationally difficult.  An important feature of this model is the ability to substitute one class 

of nurse for another with some proportional efficiency.  For example, an LPN may be schedule in 

                                                      
21 It has not been proven that no polynomial time algorithm exists for NP Complete problems, but it is 
widely believed to be true.  If a polynomial time algorithm were to exist for the staff scheduling problem it 
must be true that a polynomial time algorithm exists for all NP Complete problems.   
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place of an RN, but provides only 70% of the RN’s productivity.  (Warner 1976) builds on the 

nurse scheduling problem and addresses the issue of rostering, the assignment of specific 

individuals to shifts.  A detailed and up to date review of the nurse rostering problem is provided 

in (Burke, De Causmaecker et al. 2004) 

3.2.2.2 Fixed Break Scheduling 

The introduction of explicit break time into the scheduling problem adds considerable 

computational complexity, making the problem intractable for reasonably sized problems.  

Researchers have addressed this problem in several ways; through problem simplification, 

heuristic methods, and alternative algorithms.  The Henderson and Berry model (Henderson and 

Berry 1976) applies two type of heuristics.  The first heuristic reduces the number of shift types, 

scheduling against only a reduced set of schedules referred to as the working subset.  The second 

approximation is the scheduling algorithm; the authors use 3 different scheduling heuristics.   

 

An alternate stream of research attacks the problem using an implicit scheduling approach. 

Implicit scheduling models generally use a two-phased approach, generating an overall schedule 

in the first phase, and then placing breaks in the second phase.  Implicit scheduling approaches 

are addressed in (Bechtold and Jacobs 1990), (Thompson 1995) and (Aykin 1996).  (Thompson 

1995) includes a summary of related papers and then develops a Doubly-Implicit Shift 

Scheduling Model (DISSM).  (Aykin 1996) Several other papers addresses related problems  

(Brusco and Johns 1996; Brusco and Jacobs 1998; Brusco and Jacobs 2000).    

 

A succinct overview of a two-stage approach to scheduling in a call center environment is 

provided in section 12.7 of (Pinedo 2005).  This model is motivated by a call center application 

where resource requirements are defined exogenously and breaks must be scheduled.   
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Pinedo summarizes his approach in the following figure 

Select solid tours Place breaks Compute Fits

Modify Target Demand Enough?

STOP

 
Figure 3-2 Iterative Scheduling Approach 

The Select Solid Tours step uses a math programming approach to fit schedules without break 

considerations to Target Demand.  Target Demand is the overall requirements inflated to be 

somewhat higher than actual demand to account for loses due to breaks.  The break placement 

step uses heuristics to schedule breaks into the solid tours.  The compare fitness step calculates a 

fitness function with the following form 

 
1 1

( ) ( )
H H

t t
e t e tψ ψ− − + +

= =

ℑ = +∑ ∑  (3.3) 

In this calculation the difference between the required staffing level and the scheduled staffing 

level is denoted ( )e t ; ( )e t+ is the overstaffing level and ψ + is the overstaffing penalty.  The 

algorithm seeks to minimize the total cost measure 

 C j j
j

c x= ℑ + ∑  (3.4) 

An overall fit measure is defined as the smoothness 

 2

1
( )

H

t
L e t

=

= ∑  (3.5) 

which is calculated as the sum of squared deviations from requirements.   

 

(Cezik and L'Ecuyer 2007) solve a global service level problem using simulation and integer 

programming.  They use simulation to estimate service level attainment and integer programming 

to generate the schedule.  The IP model generates cuts via sub-gradient estimation calculated via 
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simulation. The model solves the sample average problem and therefore ignores arrival rate 

uncertainty, but it does allow for multiple skills.  This model is a an extension of the model 

presented in (Atlason, Epelman et al. 2004).  In a related paper (Avramidis, Chan et al. 2007) use 

a local search algorithm to solve the same problem.  A related model is presented in (Avramidis, 

Gendreau et al. 2007). 

3.2.3 Strategic Manpower Planning 

The strategic capacity planning literature is in general divided into two complementary 

approaches.  In one approach the evolution of the workforce is modeled as a stochastic process 

that evolves over time  (Bartholomew and Forbes 1979; Bartholomew 1982).  This approach 

explicitly models the stochastic nature of hiring, turnover, skills acquisition and demand.   An 

alternate approach is based on an optimization paradigm in which the objective is to make a set of 

control decisions over time that optimize some measure of system performance, such as total cost, 

deviation from staffing plan, or expected profit  (Holt, Modigliani et al. 1960).  More recent work 

has attempted to integrate uncertainty and optimization, which is the focus of my research.   

3.2.3.1 Workforce Capacity as a Stochastic Processes 

Stochastic models of manpower systems focus on the uncertainty inherent in the system.  

Bartholomew provides a general review of the application of stochastic modeling to social 

systems in (Bartholomew 1982), and a more specific application of these principals to the 

manpower planning problem in (Bartholomew and Forbes 1979).  A basic model incorporates a 

number of discrete manpower grades.  The state of the system is then defined as the number of 

employees currently in each grade.  If we make the standard Markov assumptions then the system 

can be modeled as a Discrete Time Markov Chain  (DTMC).   

 

Many papers have built on this simple Markov model to analyze manpower systems, introducing 

various control objectives into the process.  Grinold develops a stochastic model motivated by the 

demand for naval aviators (Grinold 1976).  The environment evolves as a Markov process and the 

demand for aviators therefore has a definable probability distribution.   The control objective is 

then to find the optimal accession policy that governs new entrants into the system, and the 

continuation policy that governs movement through the system.  A useful feature of the model is 

the ability to distinguish between gross headcount and qualified headcount and an important 
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implication of this model is that changes in capacity are not instantaneous but rather are driven by 

the delays required to train new recruits.  This issue is further addressed in (Anderson 2001).  In 

this model demand is driven by a continuous nonstationary seasonal process meant to 

approximate a business cycle.  Τhe model explicitly assumes employees progress at differential 

rates, unlike the deterministic rates in Grinold.  The objective trades off the discounted cost of 

meeting demand requirements with a penalty term for abrupt changes in the employee stock.  

Based on this objective Anderson uses a dynamic programming approach to define optimal 

control policies. A similar model that focuses on cohort analysis is developed in  (Gaimon and 

Thompson 1984).  The Gaimon and Thompson model postulates that the effectiveness of an 

individual can be defined exogenously as a function of organizational age and grade.  

Effectiveness may be defined to increase throughout the individual’s career, or it may be 

specified to peak at some organizational age and begin to decline in an environment with rapid 

technological change.   

 

A number of other papers examine the strategic staffing problem using a stochastic setting. (Gans 

and Zhou 2002) develop a model with learning curve and stochastic turnover issues. (Gaimon 

1997) examines manpower planning in the context of knowledge intensive IT workers.  (Bordoloi 

and Matsuo 2001) also examine a knowledge intensive work environment with stochastic 

turnover.  

3.2.3.2 Strategic Manpower Planning as an Optimization Problem 

An alternative approach to manpower planning is based on optimization theory.  The theoretical 

foundations of the optimization approach to manpower were developed in Holt et al. (Holt, 

Modigliani et al. 1960)  Holt evaluates manpower as a component of the productive capacity of a 

manufacturing enterprise, evaluating staffing decisions in an aggregate planning context.  Holt 

develops a quadratic cost model that includes both the costs of maintaining a workforce and the 

cost of changing the workforce.  Holt’s quadratic cost model is converted to a linear cost model in 

(Hanssmann and Hess 1960) and solved via linear programming.  The Holt model is also 

extended in (Ebert 1976) with the inclusion of time varying productivity. Ebert uses the quadratic 

cost model directly from Holt, but allows productivity to vary over time as learning takes place.  

Ebert solves this non-linear program using a search heuristic.  An alternative formulation that also 
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includes learning curve effects is presented in (Harrison and Ketz 1989).  This model is non-

linear but is solved via successive linear programming.     

 

The two approaches to manpower planning outlined above emphasize different aspects of the 

system and as such have different applications.  The stochastic models are generally high level 

abstractions useful for identifying system phenomenon or developing general policies.  The 

optimization models on the other hand are often crafted to identify specific management actions 

but tend to ignore the variability in the system.  Variable parameters are typically modeled with 

their expected values yielding what is known as the mean value problem   which may result in 

solutions that are far from optimal (Birge and Louveaux 1997).  Modeling variability in 

optimization problems is likely to yield solutions that are superior to the deterministic 

counterparts, but solutions to these stochastic programs are difficult to find.   

3.2.4 Wastage Analysis 

“Of all the flows in a manpower system, wastage is the most fundamental for manpower 

planning”, so states (Bartholomew and Forbes 1979).  In this context wastage refers to the total 

loss of individuals from the manpower system regardless of the reason.  Wastage has two basic 

components, voluntary attrition or turnover (quitting) and involuntary terminations (firing.)  In 

either case headcount, and capacity, is removed from the system.   

 

Call centers are notoriously difficult work environments and high turnover rates are common.  A 

number of papers in the Management and Organization/Human Resources literature address the 

work environment and turnover problem in general, and several address call center specific 

issues.  (Witt, Andrews et al. 2004) examine issues of emotional exhaustion in a survey of 92 call 

center agents.    Specifically they examine the relationship between exhaustion and performance.  

(Singh, Gollsby et al. 1994) survey 377 agents and find burnout levels among customer service 

agents are high relative to other high stress occupations.  (Singh 2000) examines how burnout 

affects productivity and quality.  (Cordes and Dougherty 1993) review the literature on job 

burnout.  (Holman 2002) surveys 577 call center agents to assess several measures of employee 

well being.  (Cotton and Tuttle 1986) perform a meta-analysis of the papers available at the time 

that examined turnover across industries.  (Abelson and Baysinger 1984) develop a conceptual 

model of turnover and argue that the optimal level of turnover balances retention and turnover 
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costs.  Their argument is that some positive level of turnover is desirable, but they provide no 

hard data as to what level is optimal.22  

 

My focus in this dissertation is not to analyze the causes of turnover, or to address the issue of 

reducing turnover, my concern here is simply to develop models of turnover that are useful for 

planning purposes23.   

 

Basic models of wastage are developed in (Bartholomew and Forbes 1979).  A common objective 

is to develop models that describe turnover patterns and facilitate forecasting of future wastage 

rates.  These models typically include some independent variables that segregate the employee 

pool to homogeneous groups. The independent variables could include age, job level, gender, or 

length of service.  A common choice is to separate the workforce based on date of hire into 

cohorts; employee groups with roughly the same hire date (Bartholomew and Forbes 1979).   

 

(Bartholomew 1971) describes the propensity to leave as a function of length of service via the 

force of separation function ( )xφ  defined as  

 
individual leaves with length of service in

Pr ( )
( , ) given he survives to x

x x
x x x

φ δ
δ

 
= + 

 (3.6) 

This is mathematically equivalent to the survivor function ( )G x  which is probability that an 

individual survives (remains employed) for a time x.  Its complement ( )F x is the distribution of 

the completed length of service, which in a continuous representation may have a density 

function ( )f x .  In a continuous mode, equation (3.6) is equivalent to the hazard rate (aka  the 

failure rate) function defined as follows (Ross 2003).   

 ( )( )
1 ( )

f tr t
F t

=
−

 (3.7) 

 

The three alternative representations (density function, survivor function, hazard function) are all 

mathematically equivalent; given one the other two can be derived.   

                                                      
22 Presumably the 30%+ level observed is above optimal.   
23 In my work with this company we developed several strategies for reducing turnover, but that work is 
outside the scope of this dissertation.   
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While an empirical representation of the survivor data may be sufficient in some situations, a 

common objective is to fit some theoretical distribution to the data.  An important consideration 

in selecting a distribution is the shape of the failure rate function.  With an increasing failure rate 

the propensity to quit increases with length of service.   With a decreasing failure rate the 

propensity to quit declines with length of service.   A constant failure rate implies the probability 

of quitting is independent of length of service.  Most empirical analysis of turnover suggest a 

decreasing failure rate (Bartholomew and Forbes 1979).   

 

Many statistical distributions have been proposed to model wastage rates.  (Bartholomew and 

Forbes 1979) discuss the exponential model which has a constant failure rate.  While the constant 

failure rate simplifies analysis, it is not always a good fit to observed data.  (Bartholomew and 

Forbes 1979) also present a mixed exponential model, along with the lognormal model.  The 

lognormal model is attractive because it can match a commonly observed pattern where the mode 

of the distribution is separate from, but near the origin, and the distribution has a long tail. They 

argue that the lognormal model is a good empirical fit to many length-of-service data sets, but 

that the theoretical arguments as to why the distribution should be lognormal are weak.  Though 

not discussed in the text, the lognormal distribution has a failure rate curve that may be 

decreasing, but may be increasing for a period and then decreasing.     

 

Another distribution commonly applied in reliability analysis is the Weibull distribution, which is 

perhaps the most widely used distribution for lifetime analysis (Lawless 2003).  The Weibull 

distribution has two parameters, β and λ24.  The density function of the Weibull distribution is 

 ( ) 1 ( )( ) 0tf t t e t
ββ λλβ λ − −= >  (3.8) 

The corresponding hazard rate function 

 ( ) 1( )h t t βλβ λ −
=  (3.9) 

The Weibull distribution provides a flexible model for reliability since with a β greater than one 

the failure rate is increasing, with β less than one the failure rate is decreasing, and when β equals 

                                                      
24 The literature presents the Weibull distribution in a variety of forms and notations; I adopt the form 
presented in Lawless (2003) p. 18.    Many authors write the density with a scale parameter α =λ-1. 



 

   

 53 

 

 

one the failure rate is constant.  Note that when β equals one, the Weibull distribution simplifies 

to the exponential distribution.   

3.2.4.1 Model Fitting 

Various methods exist for fitting historical data.  While the cohort approach is appealing, we have 

the difficulty associated with censoring; the fact that we do not have survival times for those 

employees who have not yet quit.  To avoid this problem some authors rely instead on cross 

sectional or census data.  Both methods are used to fit non-parametric models in (Forbes 1971).  

An application of the census method is presented in (Price 1978) where a non-parametric survivor 

function is estimated from data supplied by a large Canadian organization.   Our focus will be on 

the estimation of parametric models from (censored) cohort data.   

 

The key issue associated with fitting a distribution to survivor is the issue of data censoring; 

specifically right censoring of the data.  Suppose we have resource data that provides hire dates 

for all employees hired over some period of time, along with the associated termination date for 

those employees that have separated.  For each separating employee we have a lifetime 

observation.  But for those still employed we have only a lower bound on lifetime; we know they 

have survived to their current length of service but don’t know how much longer they will 

survive.    

 

A standard approach for dealing with censored data is presented in (Lawless 2003) whereby we 

fit an empirical distribution to the survivor data, adjusted for censoring, then fit a distribution to 

the empirical model to develop a parameterized model. If no censoring exists in a sample of size 

n, then the empirical survivor can be calculated as  

   Number of observations tˆ( ) 0S t t
n

≥
= ≥  (3.10) 

This is simply a step function that decreases by d/n at each observed lifetime, where d is the 

number of observations at a given lifetime.   

 

Now consider the case where we have censored observations.  The Kaplan-Meier estimate (KM) 

(aka the Product-Limit estimate) calculates the empirical survivor function as follows: 
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ˆ( )
j

j j

j t t j

n d
S t

n<

−
= ∏  (3.11) 

where jd is the number of failures observed to time jt , and jn is the number of individuals at risk 

at time t, i.e. the number of samples uncensored and alive at time t .  Equation (3.11) is a 

nonparametric, maximum likelihood estimate (MLE) of the survivor function, and again is a 

decreasing step function.  This plot is easily generated from many statistical analysis packages, an 

example is shown below. 
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Figure 3-3 Sample Empirical Survivor Function 

A distribution, such as the Weibull, can then be fit to the data using a Maximum Likelihood 

(MLE) estimation processes, either with or without explanatory covariates.  (Lawless 2003) 

provides an overview of model generation and inference.   
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3.2.5 Manpower Planning in Practice 

There are a number of papers in the literature describing the implementation of manpower 

planning systems in practice.  Many of these papers are focused on the tactical scheduling 

problem.  (Schindler and Semmel 1993) describes an application used to schedule airline station 

agents.  (Mason, Ryan et al. 1998) addresses a related problem, scheduling customs officials at 

the Aukland, New Zealand airport.  (Gaballa and Pearce 1979) study telephone agent scheduling 

at Quantas. (Andrews and Parsons 1993) develop a model that determines the required number of 

agents to schedule at a call center based on an optimization of staffing and customer service costs.  

(Saltzman and Mehrotra 2001) also examine the issue of call center staffing.  (Yu, Pachon et al. 

2004) describe a system developed for Continental Airlines that includes an interesting mix of 

short and long term planning decisions.   

 

There are several other papers in the literature that address the strategic manpower planning in 

practice, primarily in the context of the United State military.   A long rang planning system for 

the U.S. Army is described in 2 papers, (Holz and Wroth 1980) and (Gass, Collins et al. 1988).  

(Bres, Burns et al. 1980)  describe a model was developed for the U.S Navy in the 1970s.  

(Shrimpton and Newman 2005) describe a model used to designate career fields for officers in the 

US Army.  (Krass, Pinar et al. 1994) develop a model for allocating personnel to combat units for 

the US Navy.  (Morey and McCann 1980) analyzes the issue of resource allocation toward 

recruiting.     
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3.2.6 Manpower Planning Summary 

A summary of the research related to strategic manpower planning is provided in the following 

table. 
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Planning Approach                   
 Stochastic Modeling X X X X X X X X X          
 Optimization         X X  X X X X X X X 
Foundation                   
 Theory X X X X X X X X X X  X X      
 Practice              X X X X X 
Resource Indexing                   
 Skill X X    X  X      X X X  X 
 Grade X X   X          X  X  
 Length of Service X X X  X          X   X 
 Geography              X     
 Trained    X               
Transitions                   
 Hiring X X X X X X X X X X  X  X X  X X 
 Voluntary Attrition X X X X X X X X  X  X   X  X X 
 Layoffs X X  X X  X   X  X       
 Skill Redeployment              X X    
 Promotions X X       X      X    
Demand                   
 External-deterministic      X    X    X X X X X 
 External-variable            X X      
 Stochastic-stationary     X  X  X          
 Stochastic-nonstationary    X               
 Markov Process   X                
Miscellaneous                   
 Recruitment Source                  X 

 Training       X             

 Learning Curve            X X      

 Forecasting  X        X       X  
Table 3-1 Strategic Manpower Planning Summary 
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A summary of the research related to tactical manpower planning is provided in the following 

table.   
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Optimization Approach                  
 Linear Programming  X     X      X  X    
 Integer Programming    X X  X X X X X     X  
 Optimal X  X X X  X X   X  X     
 Nonlinear programming    X              
 Simulation                X X 
 Heuristic  X       X X  X  X X X X 
Foundation                  
 Theory X X X X X X X X X X X X X X    
 Practice               X X X 
Considerations                  
 No breaks X  X X        X X     
 Explicit breaks  X                
 Implicit Breaks     X X X  X X X   X    

   Table 3-2 Tactical Manpower Planning Summary 

Many of the practice papers dealing with strategic manpower planning deal with military sources.  

The military is an interesting special case with several unique properties.  For the most part all 

new personnel enter the system at the entry level and promotions come from within.  Attrition or 

reenlistment rates are critical variables in the model, although they occur with more regularity (at 

the end of fixed enlistment periods) then in the commercial sector.  In some cases, such as the 

Army’s COMLIP system, the military can set fixed recruiting levels through the compulsory 

draft.  But perhaps the most significant difference between the military and the professional 

services environment is the manner in which manpower requirements are defined.  In the military 

context manpower levels are established and fixed external to the system by legislation.  The 

planning objective is to meet the externally defined goal.  In the professional services 

environment demand occurs randomly in response to market fluctuations.  
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3.3 Call Center Operations 

3.3.1 Overview 

There is a relatively large body of literature that addresses call center operations, directly or 

indirectly.  (Gans, Koole et al. 2003) provides a detailed tutorial on call center operations and 

extensive survey of the academic literature.  A more recent but unpublished literature review is 

provided in (Aksin, Armony et al. 2007).  The Gans et al. paper provides a general framework for 

call center research that categorizes research into the following categories: 

• Queuing performance models  
• Queuing control models  
• Human resource issues 
• Service quality and customer/agent behavior 
• Statistical analysis of call centers 

 

(Gans, Koole et al. 2003) documents a series of industry standard performance measures used to 

evaluate call center performance.  We summarize the key measures here: 

• Telephone Service Factor (TSF): also called the “service level”, TSF is the fraction of 
calls presented which are eventually serviced and for which the delay is below a specified 
level.  For example, a call center may report the TSF as the percent of callers on hold less 
then 30 seconds.   

• Average Speed of Answer (ASA): this is the average time calls spend on hold, waiting 
for an agent.   

• Abandonment Rate: callers that are put on hold and hang up while in queue are said to 
have abandoned the system.   The proportion of all calls that abandoned is known as the 
abandonment % and is a key metric in most call centers.   

The paper also outlines a set of call center regimes, three basic categories that describe the 

staffing/customer service objectives of the call center.   

• Quality Driven Regime: customer waiting costs are assumed to dominate the cost of 
capacity and the objective is to serve the majority of customers without delay.  Staffing 
levels are increased linearly with offered load.  Average utilization in this regime is 
typically low, on the order of 65-75% and average customer wait time is also low.   

• Efficiency Driven Regime: staffing costs are assumed to dominate the cost of customer 
delay and the operational objective in this regime is to maximize the efficiency of the 
operation.   

• Quality Efficiency Driven (QED): an operational environment that attempts to strike 
some balance between efficiency and customer service is the QED regime.  Unlike the 
quality regime where the fraction of delayed customer is near zero, or the efficiency 
regime where the fraction delayed is near one, the QED regime balances costs and 
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attempts to achieve some steady delay proportion between 0 and 1.  QED operations are 
facilitated by economies of scale, because call center staffing is subject to square root 
staffing it is possible to achieve high levels of utilization and low probability of wait if 
the scale of the call center is large.   

A number of papers in the literature utilize this framework to categorize their research.   

3.3.2 Queuing Models 

A substantial amount of research addresses basic queuing models of call centers.  Three basic 

queuing models are examined in the literature, the Erlang C, Erlang B, and Erlang A models.  We 

review these models and the relevant literature briefly.   

3.3.2.1 Erlang C Model  

The Erlang C model is identical to the M/M/N queue and is widely used in workforce 

management (WFM) systems (Gans, Koole et al. 2003; Mandelbaum and Zeltyn 2004).  The 

Erlang C model assumes a Poisson arrival process with constant rate λ , independent and 

exponentially distributed service times with mean 1/ µ , and a pool of n homogeneous 

(statistically identical) agents.  The system is assumed to have an infinite number of trunk lines 

and an infinite capacity queue so no callers are ever blocked.  Furthermore, the model assumes 

that all callers who enter the queue are eventually served so the model allows for no 

abandonment.  This model yields relatively straightforward formulas for key performance 

measures. 

 

Following the notation and terminology in (Gans, Koole et al. 2003) I define the offered load as  

[ ]i i i i iR E Sλ µ λ≡ =  (3.12)  

and the traffic intensity (aka utilization) as  

( )i i i iN R Nρ λ µ≡ =  (3.13) 

 

Given the no abandonment and steady state assumptions of the Erlang C model, the traffic 

intensity must be strictly less than one for system stability.   
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The steady state probability that all N agents are busy is then given by 

 
1 1

0 0

1( , ) 1
! ! ! 1

m m mN N
i i i

i
m m i

R R RC N R
m m N R N

− −

= =

     
− +      −     

∑ ∑�  (3.14) 

This is identical to the fraction of customers that must wait to be served 

 { }0 ( , )iP Wait C N R> =  (3.15) 

The “Poisson Arrivals See Time Averages” (PASTA) principle developed in (Wolff 1982; Wolff 

1989) implies that the conditional delay in queue has an exponential distribution with mean 

( ) 1
i iNµ λ −
− .  The service level metric can then be expressed as 

 
{ } { } { }

( )1

1 0 | 0

1 ( , ) i iN T
i

TSF P Wait T P Wait P Wait T Wait

C N R e µ ρ− −

≤ = − > ⋅ > >

= − ⋅

�
 (3.16) 

The speed to answer metric is also easily defined as 

 
[ ] { } [ ]0 | 0

1 1 1( , )
1i

i i

ASA E Wait P Wait E Wait T Wait

C N R
N µ ρ

= > ⋅ > >

    = ⋅ ⋅ ⋅     −     

�
 (3.17) 

An important paper that analyzes the Erlang C model in the context of the QED regime is (Halfin 

and Whitt 1981).  This paper develops the well known square root staffing principle that sets the 

number of agents to be  

 N R Rβ= +  (3.18) 

where β  is a non-negative quantity that specifies the service grade.  The importance of the 

Halfin-Whitt approximation is the notion that for a fixed quality of service, staffing requirements 

increase with the square root of offered load.  This simple principle highlights the inherent 

economies of scale in call center staffing.   
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3.3.2.2 Erlang B 

Erlang B is a loss model, a model that assumes that the number of available trunk lines is exactly 

equal to the number of agents.  In this model callers are either serviced immediately, or blocked 

from the queue (they face a busy signal).  Erlang B, also known as the Erlang Loss Formula, is 

often used to calculate the number of trunk lines required in order to achieve a desired blocking 

probability.  The Erlang Loss Formula is presented  in (Hall 1991) as  

 

1

/ !(lost customer)
/ !

m

m
i

i

r mP
r i

=

=

∑
 (3.19) 

Although originally derived by Erlang under the assumption of exponential service time, equation 

(3.19) was later shown to apply to any talk time distribution.   

 

Given that telecommunication costs are relatively low, most call center staffing models will 

assume sufficient trunk capacity so that no calls are blocked and the loss function is not used.  

The Erlang Loss function is sometimes used in other types of queuing models where blocking is 

important, for example trauma centers.  See (Cachon and Terwiesch 2006) for some examples.   

3.3.2.3 Erlang A 

The relative simplicity of the Erlang C is a directly result of the rather strong assumption of zero 

abandonment.  As we showed in section two, abandonment rates in support oriented call centers 

are non-trivial and ignoring abandonment can introduce significant error into the model.  Staffing 

models that ignore abandonment will tend to overstaff the call center for a targeted level of 

system performance.   

 

The Erlang A model allows callers who enter the queue to abandon the queue if their wait 

exceeds their patience.  Specifically, the model assumes that each caller has an exponentially 

distributed patience with a mean of 1/θ .  A caller presented with a wait time in excess of their 

patience hangs up rather then waiting in queue.   
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Several papers address the Erlang A model. (Gans, Koole et al. 2003) discuss the model briefly, 

while a more complete overview of the model is provided in (Mandelbaum and Zeltyn 2004)25.  

The issue of parameter estimation and sensitivity is addressed in (Whitt 2006a).  A thorough 

comparison of the Erlang A and Erlang C models is provided in (Garnett, Mandelbaum et al. 

2002).  This paper develops steady state staffing heuristics for each staffing regime that are 

analogous to the Halfin-Whitt square root staffing heuristic for the Erlang C model.  This paper 

also presents diffusion approximations for key performance metrics in the Erlang A model.   

 

Formulas for the Erlang A are significantly more complicated then those for the Erlang C model.  

Steady state probabilities for the distribution of the number of callers in the system were provided 

in Palm’s paper and are reproduced in an appendix to (Mandelbaum and Zeltyn 2004).  (An 

abbreviated exposition is provided in section 5.5 of (Riordan 1962).) 

 

The steady state distribution for the Erlang-A model is given by 

1

! , 0
!

( / ) , 1

n N j
i

j j n
i i

n
j n

k

N j N
j R

j N
N k

π

π
λ θπ

µ
θ

−

−

−

=


⋅ ≤ ≤




= 
 ⋅ ≥ +  +  

 
∏

 (3.20) 

where 
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π
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=
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1( , ) ,   0, 0
y

x t

o

x y t e dt x yγ − − > ≥∫�  (3.23) 

                                                      
25 The model was originally introduced by Palm in a paper written in 1946 and published in Swedish.  The 
paper is based on pioneering work done by Agner Krarup Erlang  at the Copenhagen Telephone Exchange.   
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is the incomplete Gamma function.  The expression 1,nE represents the blocking probability from 

the Erlang B model.   

1,
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/ !
/ !

m
i
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ij

R NE
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=

=
∑

 (3.24) 

 

The probability a caller has to wait is given by 

{ }
1,

1,

,
0

1 , 1

n

n

NA E
P Wait

NA E

µ λ
θ θ
µ λ

θ θ

 
 
 > =

  + −    

 (3.25) 

The expected wait time for a queued customer is  

[ ] 1 1 1| 0 1
,

E W W
NA µ λθ ρρ
θ θ

 
 
 > = + −

  
    

 (3.26) 

 

Numerical evaluation of these expressions is difficult.  Useful approximations based on diffusion 

limits are developed in (Garnett, Mandelbaum et al. 2002).  I summarize these calculations 

below.   

 

Let ( )xφ  represent the standard normal density function and ( )xΦ  the cumulative distribution.  

 
2 / 21( )

2
xx eφ

π
−=  (3.27) 

 ( ) ( )
x

x y dyφ
−∞

Φ = ∫  (3.28) 

The hazard rate function is then defined as  

 ( ) ( )( )
1 ( ) ( )

x xh x
x x

φ φ
= =

− Φ Φ −
 (3.29) 
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Now define the following 2 expressions 

 
1

( )( , ) 1
( )

h xyw x y
yh x

−
 −

= + 
 

 (3.30) 

 ( )( , )
1 ( )

xx y
x y

φ
Ψ =

− Φ +
 (3.31) 

Also define the service grade β  as  

 i

i

N R
R

β −
=  (3.32) 

The (Garnett, Mandelbaum et al. 2002) paper goes on to show how approximations for key 

performance metrics can be derived from these functions.  In particular we have the following 

expressions. 

 

The probability a caller must wait is: 

 { } ( )0 ,P W w β µ θ> ≈ −  (3.33) 

The probability that the wait is greater then T is: 

 { }
( )

( )
,

,
t

h
P W T w e

N t
θ

β µ θµβ
θ β µ θ µθ

− 
> ≈ − ⋅ ⋅   Ψ   (3.34) 

The probability of abandonment is: 

 { }
( )

( )( )
1 ,

h
P Ab w

h N

β µ θ µβ
θβ µ θ θ µ

    ≈ − ⋅ −   +    
 (3.35) 

From these expressions we can write a formula for our key metric the Telephone Service Factor 

(TSF).  TSF is defined in practice as the proportion of all incoming calls that are serviced within 

T seconds.   

{ } { }( ) { }| 1TSF P Wait T Sr P Ab E Wait T≤ = − ⋅ >�  (3.36) 

While these expressions are rather complicated, they are relatively straightforward to code and 

are used in numerical calculations developed in this dissertation.   
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3.3.2.4 Server Sizing Models 

A number of call center papers address what I call the server sizing problem; finding the 

minimum number of servers (agents) required to meet a defined service objective given specified 

arrival and service characteristics.  Note that these models typically ignore all shift constraints 

and implicitly assume a two stage process where a set covering approach is used in the second 

stage to satisfy the server requirements defined in the first stage.     

 

The (Halfin and Whitt 1981) paper develops server sizing heuristics for the Erlang C model based 

on the square root staffing principle.  Other papers that build on this analysis and develop staffing 

models for inbound centers are (Borst, Mandelbaum et al. 2004) and (Jennings and Mandelbaum 

1996). A more general queuing model without abandonment is examined in  (Whitt 1989).  

Server sizing when abandonment is allowed is addressed in (Garnett, Mandelbaum et al. 2002).  

(Whitt 2006a) examines the sensitivity of the Erlang A model to parameter misspecification.  

(Whitt 2006b) addresses server sizing when arrival and absenteeism rates are uncertain. (Koole 

and van der Sluis 2003) attempt to develop a staffing model that optimizes a global objective, i.e. 

an average performance metric over a longer time period.     

3.3.2.5 Nonstationary Models 

Basic queuing models are built on the assumption of long term steady state behavior with 

stationary arrival and service processes. As shown in section two, this is often not the case in 

practice.  In (Robbins, Medeiros et al. 2006) we use simulation to show that arrival rate 

uncertainty can cause significant deviation from targeted call center performance metrics.  The 

issue with modeling time varying arrival rates is the system will never achieve steady state.  We 

seek conditions and models that are reasonable approximations and the system can then be said to 

be in quasi-steady state (Hall 1991).  There are several relatively simple approximations that can 

be considered with time varying arrival rates (Jennings, Mandelbaum et al. 1996).   

• Simple Stationary Approximation (SSA) – uses the stationary model with the long-run 

average arrival rate.   

• Pointwise Stationary Approximation (PSA) - uses the stationary model with 

instantaneous arrival rate t.   
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• Stationary Independent Period by Period (SIPP) – applies the stationary model to discrete 

planning periods, often 15 or 30 minute segments of the day.   

The SSA model is a very simple approximation that is useful when arrival rates vary rapidly 

relative to service time, but is nearly constant over the long run, (i.e. stochastic variability around 

a steady state level.)   

 

3.3.2.5.1 PSA 

The PSA model is useful in models with arrival rates that vary slowly as compared to service 

levels but can be expressed (or approximated) as a function of time, for example a sinusoidal 

varying arrival rate.   The PSA model calculates a stationary approximation at each point in time 

and integrates to calculate the average.  A single server example is presented in section 6.3 of 

(Hall 1991), a more detailed analysis is presented in (Green and Kolesar 1991).  In this paper the 

authors assume that arrival rates vary periodically and therefore the system will develop a 

periodic steady state behavior. Consider the average queue length qL given by  

 
0
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q n
n s

L n s p t dt
T

∞

=

 
= − 

 
∑∫  (3.37) 

where s is the number of servers.   

Now define the pointwise stationary approximation as 

 
0

1 ( ( ))
T

q qL L t dt
T

λ∞ = ∫  (3.38) 

where ( ( ))qL tλ is the queue length in a stationary M/M/s queue with arrival rate ( )tλ .  The 

authors assume an arrival rate that can be expressed as  

 ( )( ) cos 2 / 24t A tλ λ π= +  (3.39) 

They solve these equations numerically and further restrict themselves to the case where traffic 

intensity is less then 1 and show that under these conditions the PSA is an upper bound on the 

actual performance.   

 

(Green and Kolesar 1997) also examines a variant of the PSA model that the authors call the 

Lagged PSA model.  The lagged PSA is motivated by the fact that the actual peak congestion will 

occur at a point later then predicted by the PSA.  By considering only the current traffic when 
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calculating congestion, the model ignores the fact that a time delay exists between the point of 

peak traffic and peak congestion.  In this paper the authors develop a method for estimating the 

delay in the peak, and recalculating congestion at the adjusted peak.   

 

3.3.2.5.2 SIPP 

The PSA and lagged PSA methods create accurate estimations of nonstationary system 

performance, given the assumptions of no abandonment, utilization less than one, and sinusoidal 

arrival rates.  Insight gleaned from these models can be then used to foster intuition and generate 

heuristics for planning purposes.  However, in practice a more commonly implemented approach 

is the Stationary Independent Period by Period (SIPP) approach.  In this approach the day is 

divided into buckets; often 15 or 30 minute periods, and an average arrival rate is calculated for 

each period.  Staffing plans are then based on the assumption that steady state is achieved in each 

of those periods, typically using an Erlang model26.   

 

The accuracy of this method is analyzed in (Green, Kolesar et al. 2001).  In this paper the authors 

again assume a model of sinusoidal varying arrival rates with no abandonment.  The authors 

perform detailed numerical analysis and show that SIPP can lead to poor approximations in cases 

where the relative amplitude of the sine wave is large, planning periods are long, service rates are 

low, or the system is large.   

 

The authors propose several variants of the SIPP method to reduce errors. 

• SIPP Max: implements SIPP using the maximum arrival rate for the period, rather then 

the average.  SIPP Max is more conservative then SIPP and clearly leads to higher 

proposed staffing levels.   

• SIPP Mix: implements average arrival rate for periods where arrival rate is increasing and 

the Max for periods where it is decreasing.   

 

The paper also analyzes each of these approaches with a Lag option, applying a lagged estimate 

similar to that developed in their previous paper, creating the Lag Avg, Lag Max, and Lag Mix 

                                                      
26 Erlang C models are often used in practice, in spite of the no abandonment assumption of that model.   
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methods. No approach is found to be superior in all circumstances and some general heuristic are 

developed.   

 

The Lagged SIPP approach is further analyzed in (Green, Kolesar et al. 2003).  This paper 

maintains the assumption of a sinusoidal varying arrival rate as in (3.39) but now assumes that the 

call center operates on less then a 24 hour clock; therefore it starts and ends empty.  The paper 

shows that modifications to the SIPP approach consistently achieve the service level target with 

only modest increases in staffing.   

 

3.3.2.5.3 Other Approaches to Time Varying Arrivals 

Several other papers propose variations or combinations of these models.  (Feldman, 

Mandelbaum et al. 2005) evaluate the applicability of PSA under conditions of predictable 

variability and stochastic variability, but do not address the issue of uncertainty.  They develop a 

Simulation-Based Iterative Staffing Algorithm (ISA).  (Whitt 2006b) considers both arrival rate 

uncertainty and staff absenteeism to address the server sizing problem.  (Jennings, Mandelbaum 

et al. 1996) looks for a compromise between the PSA and ISA model based on infinite server 

approximations.  This paper examines the sinusoidal case as well as start up case, volume 

ramping up from zero at the start of business.   

 

Time varying arrivals are examined in a more general case in a working paper (Green, Kolesar et 

al. 2005).  The model in this paper allows for more general arrival patterns and allows for 

abandonment, but again this model only addresses the staffing requirements (server sizing) 

decision.  The scheduling decision is solved separately, presumably by solving an integer 

program as specified in Dantzig’s model.   

3.3.2.6 Skills Based Routing 

In many models agents are assumed to be equally skilled and statistically identical, but in some 

cases this assumption can not be made.  Consider a case where the call center must support 

multiple languages.  Typically not all agents are able to speak each of the supported languages, 

but many agents may speak multiple languages.  The problem of routing calls to the appropriately 

skilled agents is often referred to as skills based routing.  A high level review of skills based 

routing literature is provided in section 5.1 of (Gans, Koole et al. 2003).  The problem is 
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examined in more detail in (Koole and Pot 2005).  (Gans and Zhou 2007) examine a series of 

routing schemes for call center outsourcing.   

 

A relevant paper that examines staffing under a skills based routing concept is (Wallace and 

Whitt 2005).  (I’ll refer to this paper as W&W)  In the W&W model there are 6 call types and 

every agent is trained to handle a fixed number of those types.  The authors use a simulation 

based optimization model to find the ideal cross training level.  The paper’s key insight is that a 

low level of cross training provides “most” of the benefit.  Specifically, they find that training 

every agent in 2 skills provides the bulk of the benefit, while additional training has a relatively 

low payoff.  W&W show that adding a second skill gives most of the value, but they don’t 

analyze the cost associated with cross training.  Additionally, W&W examine cross training only 

in steady state, where arrival rates and staff levels are fixed.  At a detailed level the W&W model 

ignores abandonment, an important consideration in our situation.   

3.3.2.7 Empirical Analysis 

In addition to the large body of theoretical/analytic models addressing call centers, I know of two 

papers that explicitly analyze the statistical data generated in a call center.  (Mandelbaum A., 

Sakov A.  et al. 2001) and (Brown, Gans et al. 2002; Brown, Gans et al. 2005) are papers that 

provide a statistical analysis of the same set of call center data gathered from a bank’s call 

center27.  Among other things they find is that call time has a lognormal distribution.  In contrast, 

most analytical work makes the simplifying assumption that talk time is exponential.   The 

analysis also examines abandonment rate.  The authors find that that hazard rate for abandonment 

(the time phased probability for abandoning) is bi-modal.   A large peak occurs a few seconds 

after the caller realizes they must wait, while a second peak occurs 60 seconds later after a please 

wait message is played.  The analysis shows that in the tail the hazard rate become approximately 

constant, supporting the concept of exponential patience for those willing to wait at least a 

moderate time.   

 

                                                      
27 The earlier Brown, Gans, et.al. paper is a working paper significantly more detailed then the final version 
published in JASA.   
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(Avramidis, Deslauriers et al. 2004) develop a series of stochastic models to generate simulated 

call volumes based on empirical analysis of call center data.  They develop a set of models that 

factor in the correlation structure of intraday arrivals.   

 

3.3.2.8 Practice Papers 

In addition, a few papers have been written on the call center operations in practice.  A series of 

papers discuss call center operations at L. L. Bean.  (Andrews and Parsons 1989; Quinn, Andrews 

et al. 1991; Andrews and Parsons 1993; Andrews and Cunningham 1995).  The authors discuss 

issues related to forecasting, resource allocation and scheduling.  The theme that runs through 

these papers is the challenge related to determining the appropriate number of agents to staff 

given the trade off of operational costs and customer service.  A practice paper that highlights the 

use of simulation in call center planning is (Saltzman and Mehrotra 2001).  In this paper the 

authors document the use of a call center simulation model to help a software company determine 

approximate staff level requirements for a new service offering.   

3.4 Stochastic Optimization 

3.4.1 Overview 

Math programs which explicitly incorporate variability in parameter values are known as 

stochastic programs.  The notion of stochastic programming was first introduced in the 1950s 

(Beale 1955; Dantzig 1955).  Although the concept of stochastic programming has been in the 

literature for over 60 years, the application of stochastic programming has been relatively rare.  

This is due in large part to the computational challenges associated with stochastic programming.   

 

At the most basic level stochastic programs come in two varieties, chance constrained programs 

and recourse programs. Chance constrained programs implement a confidence level type 

constraint; for example specifying a positive inventory position with 95% confidence.  Recourse 

programs on the other hand recognize two types of decisions; decisions that occur before 

uncertainty is revealed – stage one decisions, and decisions that occur after uncertainty has been 

revealed – recourse decisions.  In this review we restrict our analysis to recourse problems.  A 

comprehensive review of chance constrained programs is provided in (Prekopa 1995). 
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3.4.2 Two Stage Stochastic Recourse Problems 

Recourse problems have been widely analyzed in the literature.  A brief tutorial type introduction 

is provided in (Higle 2005).  Several excellent texts are also available that outline the structure 

and solution approaches for stochastic programming.  (Kall and Wallace 1994) is an excellent 

introduction that includes a survey of various solution techniques and algorithms.  (Birge and 

Louveaux 1997) is a thorough review of linear and non-linear stochastic programming, while 

(Kall and Mayer 2005) focuses strictly on stochastic linear programs.   

 

Adopting the notation from (Birge and Louveaux 1997), the general stochastic linear 

programming problem can be expressed as 

min min ( ) ( )T TEξ ω ω +  c x q y  (3.40)   

. .s t A =x b  (3.41)  
( ) ( ) ( )T Wω ω ω+ =x y h  (3.42)  

0, ( ) 0ω≥ ≥x y  (3.43)  
 

The objective of the stochastic linear program (3.40) is to minimize the cost of the stage one 

decision, plus the expected cost of the stage two decisions.  The optimization is constrained by a 

set of constraints (3.41) that depend only on the deterministic stage one variables, and a set of 

constraints (3.42) that depend on the recourse decisions ( ( )y ω ) and may have random 

components.  The stochastic program is typically solved relative to a finite set of scenarios, 

sample draws of the random vector ξ .  If the number of sample outcomes is denoted as K , then 

we can write the stochastic program in extensive form as  

1
min

K
T T

k k k
k

c x p q y
=

+ ∑  (3.44) 

. .s t Ax b=  (3.45) 

, 1,...,k k kT x Wy h k K+ = =  (3.46) 

0, 0, 1,...,kx y k K≥ ≥ =  (3.47) 
  

The extensive form program (3.44) - (3.47) is the deterministic equivalent of (3.40) - (3.43) with 

a finite set of outcomes, and as such can be written as a large linear program.  The program can 
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then be solved using the standard simplex algorithm for linear programs.  However, as the 

number of realizations increases the size of the program can be quite large and difficult to solve.   

 

The L-Shaped decomposition algorithm is a commonly used method for solving large scale 

stochastic programs.  The algorithm is discussed in detail in (Birge and Louveaux 1997) as well 

as (Kall 1976; Kall and Wallace 1994; Kall and Mayer 2005).  The L-Shaped method is a 

variation of the Dantzig-Wolfe or Bender’s decomposition methods.  (For details on these 

approaches see (Lasdon 2002)).   In the L-Shaped method a sub problem is solved for each 

scenario, where a scenario is a sample realization of the problem’s random vector.  Using the dual 

variables from the solution of the subproblems a piece wise linear approximation of the recourse 

function can be generated.  The L-Shaped algorithm proceeds iteratively, adding cuts in each 

major iteration.  The standard L-Shaped method adds one cut per iteration, while the Multicut L-

Shaped method adds one cut per scenario in each iteration (Birge and Louveaux 1997).  

 

An alternative approach is the Stochastic Decomposition (SD) method.  Whereas the L-Shaped 

approach begins with a fixed set of scenarios, SD uses a variable number of scenarios.  The SD 

algorithm adds new scenarios; creating new cuts and updating existing cuts until some stopping 

criteria is reached.  The SD approach is described in detail in (Higle and Sen 1996).   

3.4.3 The Benefit of Stochastic Programming 

Although they are difficult to solve, stochastic programs create models that are more realistic 

representations of the phenomenon under study.  (Rarely do we know the precise value of 

important parameters such as demand.)  In addition, the solution to the stochastic program is in 

generally quantitatively superior to the alternative mean valued solution; the solution to the LP 

when variable parameters are represented by their means.    

 

The notion of the stochastic program was first developed in the mid 1950s (Beale 1955; Dantzig 

1955).  These papers develop some important properties of stochastic programs that are useful for 

proving results related to the value of information.  I restate several properties here without 

proofs.  To simplify notation I define  

                          ( , ) min[ ( ) ( ) | ( ) ( ) ( ), ( ) 0]Tz x c x q y T Wy h yξ ω ω ω ω ω ω= + + = ≥  (3.48) 

I then restate the stochastic program as follows: 
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 ( , )Min z x ξ  (3.49) 

 . .s t A =x b  (3.50) 

 0≥x  (3.51) 

 

The first result is that [ ( , )]E z x ω is a convex function of x. The second result states that for a 

given x, z  is a convex function ofω .   

 

A summary of the research on the value of information is stochastic programming is provided in 

(Birge and Louveaux 1997).  Early work on the topic is developed in (Madansky 1960)28.  

Mandansky describes the stochastic recourse problem as the here and now problem, indicating 

the problem that must be solved before uncertainty can be resolved.  He contrasts that to the wait 

and see problem, the problem that would result if we were somehow able to wait for uncertainty 

to be resolved before making our stage one decision.   The here and now/recourse problem (RP) 

can be stated mathematically as follows: 

 min ( , )
x

RP E z x= ξ ξ  (3.52) 

The problem is to find the set of decisions that minimizes the expectation of objective function 

(3.48).  Alternatively, the wait and see problem is expressed as 

 min ( , )
x

WS E z x =  ξ ξ  (3.53) 

 The wait and see solution is the expectation, taken over all realizations ofξ , of the optimal 

decision x  for each realization ofξ .  In other words, the average outcome if we were able to 

observe ω  before making the stage one decisions.   

 

As we discussed previously, the recourse problem (3.52) is often difficult to solve so a natural 

approximation is found by replacing the random vectorξ , by its expectation ξ  

 min ( , )
x

EV z x ξ=  (3.54) 

                                                      
28 I will attempt to trace out the development of the subject across multiple papers, but for consistency will 
rely primarily on the notational conventions from Birge and Louveaux (1997).   
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We call the solution to this problem the mean value solution, and denote it as ( )x ξ .  I have 

argued that this approximation may not always provide a good answer to the underlying 

stochastic problem.  To quantify this argument I introduce a quantity that measures result of using 

the mean value solution.  We denote the expected result of using the EV solution as   

 ( ( ), )EEV E z x ξ ξ =    (3.55) 

The EEV represents the expected result of applying the mean value solution in stage one, then 

allowing the decision maker to make optimal recourse decisions after uncertainty has been 

revealed.  As such it represents the average payoff that would occur if decisions are based on the 

solution of (3.54).   

 

Mandansky shows that since z is a continuous, convex function, a straightforward application of 

Jensen’s inequality gives the following inequality29  

 EEV RP WS EV≥ ≥ ≥  (3.56) 

Equation (3.56) provides the foundation for much of what follows so it is worth a close 

examination.  Assume a decision maker is faced with some stochastic optimization problem 

which he solves using the (standard) approach of replacing random variables with their 

expectation.  He solves the problem and estimates a minimal cost objective of EV.  We say that 

that the mean value solution is biased, in that it is less then (or equal to) the expected outcome 

that would occur from implementing that decision. The Mean Value Bias is defined as  

 MVB EEV EV= −  (3.57) 

In other words the expected outcome of applying this solution is at least as great as the mean 

value problem predicts but may be larger.  We see that solving the recourse problem is no more 

biased than the mean value problem.  In other words the solution found by solving the problem 

can be in the worst case as biased as the mean value problem, but no more so.  On the other hand 

it may be less biased.   

 

The solution WS represents an important benchmark as it tells us the objective value we would 

expect if we could resolve uncertainty before making our decision.  Equation (3.56) tells us this 

value is bounded between the solutions to the recourse and mean value 
                                                      
29 This is equation (8) in Birge (1982) stated using his notation.  The original statement is in Mandansky as 
an unnumbered theorem, using expectation notation.    
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problems RP WS EV≥ ≥ .  The expected value problem gives us an estimate at least as low, and 

perhaps lower, then what we could achieve even if we can perfectly predict the random outcome.  

The recourse problem on the other hand is no better then what we can achieve with knowledge of 

the random outcome.  In this sense the recourse problem is a more conservative estimate, and 

likely a more realistic estimate.   

 

We now consider the concept of the Expected Value of Perfect Information (EVPI).  The notion 

of EVPI in stochastic programs is developed in (Avriel and Williams 1970).  EVPI tells us how 

much better our decision making would be if we had perfect insight into the outcome of the 

uncertainty in our decision making problem, or in Madansky’s terminology the improvement we 

could receive if somehow we could make the wait and see decision instead of the here and now 

decision.   We can therefore define EVPI, again using the notation from (Birge and Louveaux 

1997) as 

 EVPI RP WS= −  (3.58) 

Avriel and Williams develop bounds on EVPI in stochastic programs.  Their theorem 1 provides a 

lower bound  

 0EVPI ≥  (3.59) 

and follows directly from the definition and from (3.56).  The result is quite intuitive, we do 

worse (in expected terms) if we have perfect knowledge of how uncertainty will be resolved.  An 

upper bound is also easily calculated as: 

 EVPI EV RP≤ −  (3.60) 

The upper bound tells us that the difference between the expected value problem and recourse 

problem is an upper bound on the value we can achieve from perfect information about the 

problem’s uncertainty.  Avriel and Williams develop a more general form of (3.60) that can be 

calculated for any realization of ξ , but prove that the choice of ξ provides the tightest bound.  

They also apply these bounds to a more general class of stochastic programs that include 

quadratic recourse functions.  A tighter set of bounds are developed in (Huang, Vertinsky et al. 

1977). 

 

The notion of EVPI information concerns that value that accrues to a decision maker if 

uncertainty can be resolved prior to decision making.  A related concept is the value that accrues 
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to the decision maker by explicitly recognizing parameter uncertainty when making a decision.  

In our context this relates to the value of using the more complicated stochastic program.   

 

3.4.3.1 Value of the Stochastic Solution 

The concept of quantifying the value of using a stochastic programming formulation, as opposed 

to a mean value formulation, was first developed (Birge 1982) and later addressed in (Birge and 

Louveaux 1997).   

 

Birge (1982) introduces the key concept used to measure the benefit of using stochastic 

programming, the Value of the Stochastic Solution (VSS) which he defined as  

 VSS EEV RP= −  (3.61) 

The VSS is a simple measure of the improvement in the expected objective that arises from using 

a recourse formulation.  Recall that the term EEV is the expected result of using the mean value 

solution while RP  is the expected outcome of using a stochastic formulation.  A simple lower 

bound on VSS is easily derived from (3.56) 

 0VSS ≥  (3.62) 

This simple result is quite important; it tells us we can not do any worse by explicitly considering 

variability when developing our solution.  However, since we know the cost of computing the 

stochastic solution is high, we want to know when we can do better, and by how much.   

 

Birge presents a straightforward upper bound that applies to both VSS and EVPI for stochastic 

programs with fixed recourse and fixed objective coefficients 

 EVPI EEV EV≤ −  (3.63) 

 VSS EEV EV≤ −  (3.64) 

The right hand side of these equations represents the bias of the mean value solution; that is the 

degree to which the mean value solution overstates the actual expectation of the outcome.  

Equation (3.63) tells us that this bias is an upper limit on how much better we can do with perfect 

information, while equation (3.64) tells us this bias is also a limit on how much better we can do 

using a stochastic formulation.  If the mean value solution is unbiased ( EEV EV= ), then we 

receive no benefit from perfect information or from stochastic programming.  This will occur for 
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example, if the optimal solution to the problem is independent of the model’s uncertainty.  For 

example, if the distribution of crop yields in the farmer’s problem is such that the same allocation 

is optimal for all realizations of yield, then the farmer receives no value from perfect information 

and similarly no value from stochastic programming.   The clear implication is that when 

considering stochastic programming, we can restrict ourselves to considering the variability of 

parameters whose realization has a material effect on the decision vector.    

 

While EVPI and VSS have the same upper and lower bounds, it is important to note that they are 

not equivalent.   In general we would expect that EVPI will be greater than VSS , this is not 

always the case.  Birge (1982) presents an illustration of a problem where perfect information has 

nonzero value, but the value of the stochastic solution is zero30.  This result is not surprising, it 

tells us that there are problems where knowing the true outcome of uncertainty is valuable, but 

explicit modeling of the variability does not help us.  The more surprising result is a similar 

example that shows 0EVPI =  while 0VSS > .  The particular example is a case where the 

problem has multiple optimal solutions.  The argument being that the linear program solver may 

return a solution that is optimal for the mean value problem, but sub-optimal to the recourse 

problem.  The alternative solution is optimal for both the mean value and recourse problem.  

Since we find the right optimum in the recourse problem, but not the mean value problem, the 

VSS is positive.  However, knowing the outcome with certainty yields the same answer as the 

recourse program so the value of prefect information is zero.  Birge makes that the claim that 

“because linear programs often include multiple optimal solutions, this type of solution is far 

from exceptional.31”   

 

                                                      
30 The same example is present in Birge (1982) Appendix A and Birge and Louveaux (1997) pp. 142-144  
31 Birge and Louveaux (1997) p. 143 
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The following diagram summarizes the relationship between the various quantities we have 

discussed.

 
Figure 3-1 

 

The expected value solution (EV) yields the best predicted result, while the actual expected value 

of implementing the expected value solution (EEV) is the worst result.  The difference between 

these two quantities is the bias of the mean value solution.  The recourse problem (RP) provides 

the best expected result that can actually implemented.  The improvement from the using the 

recourse formulation relative to the expected outcome of the expected value solution is the Value 

of the Stochastic Solution (VSS).  The additional benefit that can be achieved by resolving 

uncertainty prior to decision making is the Expected Value of Perfect Information (EVPI), the 

difference between RP and the Wait and See solution (WSS).   

 

This graphic illustrates what I’ll call the paradox of the mean value problem; the mean value 

problem gives the best objective value, but yields the worst expected result.  We are faced with 

making a recommendation to implement a decision model that yields a worse objective value, but 

a better expected result.  This occurs because the objective of the recourse problem is an expected 

outcome; the objective of the mean value problem is not.   

3.4.4 Monte Carlo Methods 

For most problems it is not practical to solve the stochastic optimization problem against the 

complete set of possible realizations of the random vector and the problem is typically solved for 
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some sample of possible outcomes.  Since we are solving against a sample of possible outcomes, 

the calculated optimal solution is a statistical estimate of the true solution, subject to statistical 

sampling error.  A growing body of literature addresses the statistical properties of sampled 

stochastic programs under the general category of Monte Carlo Methods.  An overview of Monte 

Carlo methods is provided in (Birge and Louveaux 1997) Chapter 10.  Monte Carlo methods for 

stochastic programming borrow many concepts from the simulation literature and the interface 

between these two methodologies is discussed in (Pflug 1996).      

 

An important consideration in Monte Carlo methods is the distinction between the true problem 

and the sampled problem.  The true problem can be written as32: 

* min ( , )
X

z E f ξ
∈

 =  
�

x
x  (3.65) 

* arg min ( , )
X

E f ξ
∈

 ∈  
�

x
x x  (3.66) 

 

We seek to find the decision vector *x , and the corresponding objective value *z  that minimize 

the expected value of the objective function ( , )f ξ�x , where the expectation is taken over the 

support of the random vector ξ� .  The actual problem we solve is the sample path approximation 

problem, an optimization over a finite set of samples iξ� . The sample path approximation problem 

can then be written as:   

*

1

1min ( , )
n

i
n X i

z f
n

ξ
∈

=

= ∑ �
x

x  (3.67) 

*

1

1arg min ( , )
n

i
n

X i

f
n

ξ
∈ =

∈ ∑ �
x

x x  (3.68) 

   

An important issue in stochastic programming is the statistical convergence of the sample path 

solution solution *
nz  to the true solution *z .  We are interested in how close our approximate 

solution is to the true solution.  Conversely, we may be interested in determining how many 

samples (scenarios) are required in order to achieve a desired level of confidence.  An important 

                                                      
32 The exact notation varies from paper to paper.  Here I adopt a notation used in Mak, Morton, and Wood 
(1999).    
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paper on this topic is (Dupacova and Wets 1988).  This paper establishes the basic convergence 

properties of the sampled stochastic program proving that the sample path solution converges to 

the true solution as the sample size goes to infinity.  Other papers on this topic include (Shapiro 

1991; King and Rockafeller 1993).   

 

While the sampled problem converges to the true solution, it generates a biased estimated of the 

true solution for finite samples.  (Mak, Morton et al. 1999) show that the expected outcome of the 

sampled problem is optimistically biased and that the bias is decreasing in the number of samples.  

The convergence properties of the solution vector x  are discussed in the most detail in (Shapiro 

and Homem-de-Mello 2000).  The paper shows that in the case of a two stage linear stochastic 

program with a discrete distribution, the optimal solution to the approximating problem will be 

exactly equal to the solution of the true problem for a large enough N.  They also show that the 

rate of convergence is exponential in the number of samples.  An empirical assessment of 

sampling bias is provided in (Freimer, Thomas et al. 2006; Linderoth, Shapiro et al. 2006). 

 

A method for developing a confidence interval on the sampled problem is developed in (Mak, 

Morton et al. 1999).  The solution to any sampled problem provides a point estimate on the lower 

bound of a stochastic minimization problem.  Assume we choose to solve the approximation 

several times to improve our estimate.  Let 1,....,i inξ ξ� � , 1,...,i n= A be a set of nA different batches 

of scenarios, each of which has n observations.   

 

Define 

*

1

1min ( , )
n

i ij
n X i

z f
n

ξ
∈

=

 
=  

 
∑ �

x
x  (3.69) 

 

to be the objective value found by solving the sample path approximation problem against the ith 

batch of sample scenarios.   

 

We can then define our estimate lower bound as  

*

1

1( )
n

i
n

i

L n z
n =

= ∑
A

A
A

 (3.70) 
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The lower bound is set as the average over the nA different batches of scenarios solved.   

 

To calculate an upper bound, assume we have a candidate solution x̂ .  This solution might be the 

result of solving the mean value problem, or it could be the lower bound found by solving the 

sample approximation problem.  We can therefore calculate an upper bound by finding the 

expected cost of implementing the solution x̂ .   

1

1 ˆ( ) ( , )
n

i

i

U n f
n

ξ
=

= ∑ x  (3.71) 

 

The solution to the reference problem provides an unbiased estimate of the expected cost of 

implementing the stage one decision x̂ .   

 

We can then define an approximate (1 2 )α−  confidence interval on the optimality gap as  

0, ( ) ( )u uU n L n ε ε
+  − + +   A A� �  (3.72) 

where ( , )uε ε A� � are standard errors estimated for the upper and lower bounds.   

 

These results suggest a general procedure for estimating a set of bounds on the optimal solution to 

a stochastic optimization problem.     

1) Determine the number of batches ( )nA to be solved and the 

number of scenarios ( )n to be used in each batch. 

2) Solve each of the ( )nA problems to optimality using any 
algorithm 

3) Calculate a point estimate for the lower bound using (3.70) 
(average objective value) 

4) Calculate the sample variance of lower bound.  Use this 
statistic to estimate the standard error on the lower bound 
εA . 

5) Calculate a candidate solution 1 *
1

ˆ n i
ni

n−
=∑ A

Ax = x where *i
nx are the 

solutions to the individual batch problems.   
6) Generate a set of un  scenarios to be used for the upper 

bound estimate.  Note that it often the case that the 
number of scenario used for the upper bound is much larger 
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then the number of scenarios used in the lower bound 
calculation.  

7) Calculate an estimate on the upper bound by solving the 
reference problem with the stage 1 decision fixed at x̂ .  
Note that this solution finds the optimal recourse for each 
scenario given x̂  and takes the average.  Since the master 
problem is not optimized we need only solve the subprogram 

un times which can be done relatively fast.   
8) The optimal solution to the reference problem is the 

expected cost of implementing x̂ and is our point estimate 
for the upper bound.   

9) Calculate the sample variance of the upper bound and use 
that to calculate the standard error.   

10) Calculate a point estimate of the optimality gap 

( ) ( )uU n L n
+

 − A .   

11) Calculate a confidence interval on the optimality gap using 
(3.72).   

Figure 3-4 Stochastic Bounding Procedure 

This bounding technique forms the basis for a solution approach known as Sample Average 

Approximation which is developed in (Kleywegt, Shapiro et al. 2001).  The basic idea of SAA, is 

that instead of solving the problem with a large set of samples we solve the problem multiple 

times with smaller samples and examine the statistical properties of the resulting solutions.  This 

procedure is analogous to the multiple runs concept in discrete simulation.   

 

The approach is a loose framework that does not specify specific solution algorithms, but rather a 

general iterative approach.  I present a slightly simplified version of the algorithm presented in 

Kleywegt’s section 3.5 

1) Choose an initial sample size N and 'N , a tolerance level 
ε , and a number of batches M  

2) For each batch 1,...m M= perform the following 

a) Generate a sample of size N and solve the SAA problem 
with objective value ˆM

Nv and ε optimal solution ˆM
Nx  

b) Estimate the optimality gap and the variance of the gap 
estimator 

c) If the optimality gap and the variance of the gap 
estimator are sufficiently small go to step 4. 

3) If the optimality gap or the variance of the estimate is 
too high increase the sample size and go to step 1 
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4) Choose the best solution x̂ among all candidate solutions 
using a screening and selection process.  Stop 

Figure 3-5 General Sample Average Approximation Procedure 

3.4.5 Multistage Stochastic Programs 

3.4.5.1 Overview and Formulation 

Unlike two stage models, the multistage models allows for a series of decisions evolving over 

some arbitrary (usually finite) time horizon.  A general formulation of the multi stage model is as 

follows: 

 

2
1 1 2 2 2min min ( ) ( ) ... min ( ) ( )H

H H Hz c x E c x E c xω ω ω ω  = + + +   ξ ξ
 (3.73) 

1 1 1. .s t W x h=   (3.74) 
1 1 2 2 2 2    ( ) ( ) ( )T x W x hω ω ω+ =   (3.75) 

                      #  
1 1 2 2 2    ( ) ( ) ( )H H HT x W x hω ω ω− − + =   (3.76) 

1    0, ( ) 0, 2,...,t tx x t Hω≥ ≥ =   (3.77) 

3.4.5.2 Scenario Modeling and Nonanticipativity 

A general overview of scenario trees for multistage stochastic programs is given in (Dupačová, 

Consigli et al. 2000).  In a multistage stochastic program we the decisions made at each stage, 

1, 2,...,t T=  are based on the observed realizations of the random variables made in all 

proceeding stages, { }1
1 2 1, ,...T

Tω ω ω ω−
−= .  A common way to represent these realizations is via 

a scenario tree; an oriented graph that begins with a single root node at level 0, and branches into 

a series of nodes at level 1, each node corresponding to a possible realization of ω in period one. 

The tree continues to branch up to the nodes at level T .  Each node in the tree has a single 

predecessor and a finite number of descendants corresponding to the possible realization of the 

random vector at that stage.   If the scenario tree is constructed such that the number of 

descendants is identical for each non-leaf node, then the tree is said to be balanced.   
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An example of an unbalance tree is shown in the following figure  

S9

S10

S11

S12

B12

B25

B26

S1

S2

S3

S4

B11

B21

B22

S5

S6

S7

S8

B12

B23

B24

 

Figure 3-6 Multistage Scenario Tree 

In this example we have three stages, with three realizations at the first stage, and two realizations 

in the subsequent stages, yielding a total of 12 scenarios.   

 

An important consideration is multistage stochastic programs in nonanticipativity.  An overview 

of the nonanticipativity problem is presented in (Higle 2005).  Simply stated nonanticipitavity 

requires that decisions are based only on information available at the current stage of the decision 

process. (Decisions may not anticipate future outcome of the random vector.)  The formulation 

(3.73) -(3.77) did not explicitly define nonanticipitavity constraints, these constraints were 

implicit; i.e. the assumption was made that nonanticipitativity is enforced by the definition of the 

scenarios.   

 

Consider the scenario tree in Figure 3-3.  Each leaf node in the scenario tree is associated with a 

single scenario, while earlier nodes include multiple scenarios.  We refer to all the collection of 

scenarios that pass through a particular node as a bundle.  In Figure 3-3 the bundles are indicated 
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by squares.  Consider the bundle labeled 11B  which includes scenarios one through four.  

Nonanticipativity requires that the decision made at bundle 11B is the same for all scenarios that 

pass through that bundle.   

 

In general let N define the set of all nodes, and let ( )B n  be the set of be the set of scenarios for 

each n N∈ .  Formally, nonanticipativity requires that for each node there exists an nx such that  

 ( ) 0 ( )n nx x B nω ω− = ∀ ∈  (3.78) 

Or in words, at intermediate nodes all decision variables must take the same value for each 

scenario that passes through that node.  The multistage stochastic program is often written with 

implicit nonanticipativity constraints, as in (3.73) - (3.77), but nonanticipativity becomes an 

important consideration when trying to formulate and solve problem instances.   

3.4.5.3 Scenario Growth and Generation 

A significant problem in multistage stochastic programming is the rapid growth in the size of the 

scenario tree.  For a problem with T stages, with tR  realizations at each node in stage, the total 

number of scenarios is  

 
1

T

t
t

N R
=

= ∏  (3.79) 

In a balanced tree with R realizations per stage, the number of scenarios is  

 TN R=  (3.80) 

The number of scenarios in a multistage problem can easily grow quite large if either the number 

of stages or the number of realizations becomes large.  Since the size of a stochastic linear 

program grows non-linearly with the number of scenarios, a great deal of attention has been 

placed on efficient scenario modeling.   

 

Techniques for efficient scenario generation are provided in (Dupačová, Consigli et al. 2000; 

Hoyland and Wallace 2001; Pflug 2001).  An approach for selecting a subset of scenarios is 

presented in (Dupačová, Gröwe-Kuska et al. 2003).  A method based on Importance Sampling is 

presented in (Dantzig and Infanger 1993).  Importance Sampling is based on the idea that that 

certain values of the random vector have more impact on the parameter being estimated than 
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others. If the sampling approach is modified so that these "important" values sampled more 

frequently, then the estimator variance can be reduced  (Wikipedia 2007).  

 

A post optimality approach, in which the problem is solved for an initial set of scenarios, and then 

test for sensitivity to out of sample scenarios is presented in (Dupačová 1995).  This method 

supports the development of bounds on the optimal solution of the problem.   

3.4.5.4 Solution Algorithms  

Solving multistage problems is much more difficult than two stage problems. (Higle 2005) 

provides a brief summary, and a few algorithms are reviewed in (Birge and Louveaux 1997).  

Most methods are based on some form of decomposition.  Nested Decomposition (Birge 1985) 

and MSLip (Gassman 1990) decompose the problem by decision stage.   An alternative strategy 

decomposes the problem by scenario.  The Progressive Hedging algorithm (Rockafellar and Wets 

1991) relaxes the nonanticipativity constraints and applies a Lagrangian relaxation based 

algorithm.  (Higle and Sen 2006) review the duality properties of multistage problems and (Higle, 

Rayco et al. 2004) applies the stochastic decomposition method to the dual of the multistage 

problem where the variables correspond to multipliers associated with the nonanticipativity 

constraints of the primal problem. 

3.4.6 Simulation Based Optimization 

An alternative approach to stochastic optimization involves the use of discrete event simulation.  

Overviews of simulation based optimization is presented in Chapter 12 of (Law 2007) and in (Fu 

2002).  Simulation Based Optimization (SBO) has the same goal as stochastic programming, 

finding the decision vector that optimizes some performance measure of a stochastic system.  

However SBO uses a very different approach. 

 

At the most general level an optimization algorithm has two basic components; generating 

candidate solutions, and evaluating candidate solutions.  In stochastic programming we assumed 

the candidate solution could be evaluated via some closed form, typically linear, objective 

function.  In a decomposition algorithm that linear function is evaluated multiple times, once for 

each scenario and the expected outcome is a weighted combination of those outcomes.  To find 
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the next candidate solution in a stochastic program we perform a simplex pivot if solving the 

extensive form, or by solving the updated master program in a decomposition approach.   

 

In SBO the solution evaluation step is performed by executing a discrete event simulation (DES) 

model.  Using DES allows us to evaluate a very general model of our stochastic system.  We 

may, for example, drop the simplifying assumptions in a queuing model that allowed us to 

generate analytical expression for system behavior.  The literature on DES is vast; popular texts 

include (Law and Kelton 2000; Banks 2005; Law 2007).  In an SBO the bulk of the 

computational effort is spent on the evaluation step, but from an algorithm design perspective the 

challenge is developing a method to find the next candidate solution.  Because we do not have an 

analytical model of the objective function, mechanisms that use that function in a deterministic 

environment (gradient search) are difficult to implement in a stochastic setting.  Some methods 

such as Response Surface Methodology attempt to estimate a model of the objective function and 

use that in the search process.   

 

More common are mechanisms that treat the objective function (simulation model) as a black box 

and simply search the feasible space for better solutions.  These search methods often employ 

randomization in the search process.   There are a wide range of search methodologies available 

that are generally classified in the general category of metaheuristics (Fu 2002; Law 2007).  Meta 

heuristics are “solution methods that orchestrate an interaction between local improvement 

procedures and higher level strategies to create a process capable of escaping from local optima 

and performing a robust search of a solution space” (Glover and Kochenberger 2003).   

Comprehensive reviews of various metaheuristics are provided in (Glover and Kochenberger 

2003; Burke and Kendall 2005).  Metaheuristics have been widely applied in deterministic 

combinatorial optimization problems (Nemhauser and Wolsey 1988; Papadimitriou and Steiglitz 

1998; Wolsey 1998).  An introductory review of their application to SBO is provided in (Fu 

2002).  Search methodologies include genetic algorithms (Reeves 2003; Sastry, Goldberg et al. 

2005), Tabu search (Gendreau and Potvin 2005), and simulated annealing (Henderson, Jacobson 

et al. 2003; Aarts, Korst et al. 2005).   

 

Most metaheuristics implement some form of a neighborhood based search.  Given a candidate 

solution x , the neighborhood ( )N x is a set of feasible points that are close in some sense to x .  
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Formally, for an optimization problem with feasible set X , a neighborhood is a mapping 

: 2XN X →  (Papadimitriou and Steiglitz 1998).  In a continuous problem where nX = \ a 

natural neighborhood is the set of all points within some fixed Euclidean distance of x .  

 

In combinatorial problems the choice of neighborhood is typically problem dependent.  A 

standard example is the Traveling Salesman problem for which we can define the 2-change 

neighborhood as any tour that can be formed from the current tour by replacing 2 edges.  The 

choice of neighborhood is an important consideration when designing a local search algorithm.  A 

smaller neighborhood can be more thoroughly searched, but makes escaping a local optimum 

more difficult.   

 

A metaheuristic that attempts to address this is the Variable Neighborhood Search (Hansen and 

Mladenovic 2001; Hansen and Mladenovic 2005).  In a Variable Neighborhood Search (VNS) we 

define not one, but multiple neighborhoods.  In many implementations of VNS, neighborhoods 

are nested, such that 

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X⊂ ⊂ ⊂ ∀ ∈  (3.81) 

The search algorithm begins by searching the closest neighborhood, iterating x each time an 

improving solution is found.  When a neighborhood search fails to find an improving solution the 

search is expanded to the next largest neighborhood and the search continues.  Each time an 

improving solution is found, the search returns to the smallest neighborhood.  VNS has the 

advantage that the neighborhood is kept small as long as improvements are available, but it 

becomes large when a local optimum is established, providing the opportunity to search outside 

the current valley.   

 

VNS is a very general framework into which virtually any search approach can be incorporated.  

Simulated Annealing, for example, can be easily incorporated into VNS by allowing non-

improving changes to be accepted with some time varying probability.    
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3.5 Design of Statistical Experiments 

3.5.1 Overview 

Throughout this paper I perform a number of computational experiments and I attempt to use 

efficient formal experimental designs throughout the analysis.  An overview of experimental 

design is found in many general statistical texts such as (Kutner, Nachtsheim et al. 2005).  A 

more thorough analysis of experimental design issues is presented in Box, Hunter and Hunter, 

often referred to as BH2. (Box, Hunter et al. 1978).   BH2 provides a thorough analysis of full and 

factorial designs and an introduction to response surface methods.  A more detailed discussion of 

Response Surface Methods (RSM) is provided in (Box and Draper 1987).  The application of 

Experimental Design to computer experiments creates a number of interesting challenges.  A 

detailed analysis is provided in (Santner, Williams et al. 2003).   The application of full and 

fractional factorial designs to discrete event simulation models is provided in (Law 2007). 

3.5.2 Full and Fractional Factorial Designs 

In a statistical experiment we control a set of factors, and measure the impact on one or more 

responses.  The experimental design specifies a number of distinct factor settings referred to as 

design points.  In an experiment subject to statistical error we often conduct multiple replications 

of the experiment at each design point.   

 

A popular approach for designing numerical experiments is the factorial design  (Box, Hunter et 

al. 2005; Law 2007).  In a standard application of the factorial design each factor is set to one of 

two levels; a high value (+) and a low value (-).  In the DOE literature factors are typically coded 

to a standardized form.  For example, suppose we are interested in some variable iξ over the 

interval [ ],L Hξ ξ .  We can define the coded variable ix as  

 
( ) / 2

i l
i

H L

x ξ ξ
ξ ξ

−
=

−
 (3.82) 

With this coding the low value corresponds to -1 and the high value corresponds to +1  (Box and 

Draper 1987).   

 

In a full factorial design a design point is specified at every 2k possible combination of the 

experimental factors taken only at their low and high values.  The design table for the experiment 
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is often expressed using standardized values of + and – for each factor, so a full factorial design 

in four factors has eight design points and can be represented by the following design matrix 

DP Factor 1 Factor 2 Factor 3 Response
1 - - - R1
2 + - - R2
3 - + - R3
4 + + - R4
5 - - + R5
6 + - + R6
7 - + + R7
8 + + + R8  

Table 3-3 Three Factor Full Factorial Design of Experiments 

For illustration purposes the entries in the design matrix are typically presented as a + or -, 

representing the values ± 1.   

 

In the full factorial design the factors are orthogonal (totally uncorrelated) and it is quite easy to 

fit a linear model to the k factors, the k-1 first level interactions, and all higher level interactions.  

(A model with k factors has a total of k-1 interaction terms each with k-1 terms.)  The problem 

with the full factorial design is that the number of design points becomes quite large as the 

number of factors increases.   

 

An alternative is the Fractional Factorial Design.  This design maintains an orthogonal design 

with a smaller number of design points by sacrificing the independent estimation of higher level 

interaction terms.  Higher level interactions are said to be confounded with single factor 

responses.  Since in many linear models high level interactions are negligible little precision is 

lost. For example a full factorial design in 8 factors requires 256 separate design points, while a 

fractional ( 8 42 − ) design requires only 16 design points.  This particular fractional design can 

estimate main (single factor) effects and first level interactions, but no higher level interactions.   

 

The ability to discriminate between effects is determined by the resolution of the design.  The 

higher the resolution of the design the more finely we can discriminate between different types of 
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effects.  Standard notation specifies resolution with roman numerals based on the definitions in 

the following table33: 

 

Resolution Definition 

III No main effect is confounded with any other main effect, but main effects are 

confounded with two-way interactions and some two-way interactions may be 

confounded with each other. 

IV No main effect is confounded with any other main effect or with any two-way 

interactions, but two way interactions are aliased with each other.   

V No main effect or two-way interaction is confounded with any other main 

effect or two-way interaction.  

Table 3-4 Definitions for Fractional Factorial Resolutions 

The general notation for a fractional design is 2k p− , where k is the original number of factors and 

2k p− is the total number of design points, or runs, required in the experiment.  The first k factors 

of the design are generated using a standard full factorial design in all k factors.  The remaining 

k p− factors are created by multiplying selected entries in the design matrix (equal to ± 1) to 

obtain the new columns.  The values assigned to these columns are derived based on the defining 

relationship of the design.  For example, a 4 1
IV2 −  design has a defining relationship equal to 4 = ± 

123, meaning that the fourth columns is found by multiplying the ± 1 values of columns 1,2 and 3 

together.  This results in the following experimental design 

 

DP Factor 1 Factor 2 Factor 3 Factor 4 Response
1 - - - + R1
2 + - - - R2
3 - + - - R3
4 + + - + R4
5 - - + - R5
6 + - + + R6
7 - + + + R7
8 + + + - R8  

Table 3-5 Three Factor Fractional Factorial Design of Experiments 

                                                      
33 This information is presented in one form or another in most Design of Experiment texts.  I’ve used the 
notation from Law (2007).  See section 12.3 and tables 12.11 and 12.12 on page 638.   
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Higher level designs can be generated based on careful selection of the defining relationships.  

The defining relationships used to generate a number of fractional designs for various levels of 

resolution and design points is presented in Table 3-6, adapted from Law (2007).   

 

An important point to note is that although the k p−  columns in a properly designed fractional 

design are linear combinations of the first k columns, the design remains orthogonal.  This means 

that the input factors are perfectly uncorrelated.  Again the orthogonality of the independent 

variables totally eliminates any issue of multicollineartiy when fitting a regression model.  

Practically speaking, this means that the values of the regression coefficients found by fitting a 

least squares model are unaffected by the choice of which factors are included in the model.   

 

Factors (k) 

Runs 3 4 5 6 7 8 9 

4 3 1
III2 −  

3 = ± 12 

      

8  4 1
IV2 −  

4 = ± 123 

5 2
III2 −  

4 = ± 12 
5 = ± 13 

6 3
III2 −  

4 = ± 12 
5 = ± 13 
6 = ± 23 

7 4
III2 −  

4 = ± 12 
6 = ± 13 
6 = ± 23 
7 = ± 123 

  

16   5 1
V2 −  

4 = ± 1234 

6 2
IV2 −  

5 = ± 123 
6 = ± 234 

7 3
IV2 −  

5 = ± 123 
6 = ± 234 
7 = ± 134 

8 4
IV2 −  

5 = ± 123 
6 = ± 234 
7 = ± 134 
8 = ± 124 

9 5
IV2 −  

5 = ± 123 
6 = ± 234 
7 = ± 134 
8 = ± 124 
8 = ± 1234 

32     7 2
IV2 −  

6 = ± 1234 
7 = ± 1245 

8 3
IV2 −  

6 = ± 123 
7 = ± 124 
8 = ± 2345 

9 4
IV2 −  

6 = ± 2345 
7 = ± 1345 
8 = ± 1245 
9 = ± 1235 

64      8 2
V2 −  

7 = ± 1234 
8 = ± 1256 

9 3
IV2 −  

7 = ± 1234 
8 = ± 1356 
9 = ± 3456 

Table 3-6 Defining Relationships for Common Fractional Designs 
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3.5.3 Space Filling Designs 

Since the standard factorial designs use only 2 levels per factor, only linear models can be 

estimated.  In the factorial model all design points are on the boundary of the experimental region 

and the implicit assumption is that any response variable behaves linearly within the design 

region. An alternative experimental design approach that still attempts to economize on the 

number of design points, but allows for multiple levels of each factor are so called space-filling 

designs (Santner, Williams et al. 2003).  While the factorial design evaluated point on the 

boundary of the design space, space filling designs evaluate points on the interior of the design 

space thus allowing nonlinear models to be fit.  In general space filling designs seek in some 

sense to place design points evenly throughout the design space.   

 

A popular space filling design is the Latin Hypercube design (Santner, Williams et al. 2003). In 

general the Latin Hypercube approach divides the experimental region into a number of fixed 

hypercubes and then selects design points randomly from each hypercube.  Another space filling 

approach is known as the Uniform Design (Fang, Lin et al. 2000; Fang and Lin 2003; Santner, 

Williams et al. 2003).  While the Latin Hypercube (LH) approach has deterministic and random 

components, the uniform design (UD) approach is purely deterministic34.  A UD places the design 

points in a manner that minimizes the discrepancy between the empirical distribution of the 

sample points and a uniform density function, where the discrepancy is some measure of the 

departure from perfect uniform spacing.   

 

The problem of selecting the uniform design can be stated as follows.  For a given set of s 

parameters, and the corresponding s-dimensional space, find the set of n points 

{ }*
1,...,

s
n nP x x= ⊂ \ such that the discrepancy measure ( )nD P is minimized.   To define the 

discrepancy measure we first define the empirical distribution of nP  as 

 { }
1

1( )
n

n i
i

F I
n =

= ≤∑x x x  (3.83) 

                                                      
34 Although selection of the uniform design points is deterministic, the UD is in general not unique in that 
multiple designs may exist with the same discrepancy measure.   
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Where { }I ⋅ is the indicator function and the inequality is with respect to the componentwise 

order of s\ . From this function we define a class of discrepancy measures, the pL discrepancy 

measures. 

 
1

( ) ( ) ( )
s

p p

p n nD P F x F x dx = −  ∫\  (3.84) 

Different value of p create different discrepancy measures.  A common choice is to select 

p equal to ∞ , the resulting L∞ discrepancy (also referred to as the star discrepancy or simple the 

discrepancy) is then 

 ( ) sup ( ) ( )
n

n nD P F x F x
∈

= −
\x

 (3.85) 

A problem with the Uniform Design is that the selection of *
nP is itself a difficult problem.  (Fang 

and Lin 2003) provides an overview of design generation techniques.  For low dimension - low 

replication problems, tables are available, see for example (Wang, Lin et al. 1995).  For 

moderately large designs, tables can be generated interactively from the uniform design website35.  

Larger designs can be generated using the Uniform Design software application  (Fang and Du 

1998).   

 

Figure 3-6 shows examples of the UDs generated in 2\ for sample sizes of 100 and 200 using the 

Uniform Design software.  

                                                      
35 The Uniform Design website (http://www.math.hkbu.edu.hk/UniformDesign/ ) is associated with Hong 
Kong Baptist University.   
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Figure 3-7 Example of Two Dimensional Uniform Designs 

We see that the design places points throughout the region in a pattern that is space filling and 

lacks any obvious pattern36.  For a given vector dimension and sample size the Uniform Design 

creates a deterministic approximation of the n-dimensional uniform density37.  Transformation to 

other densities is straight forward, see for example (Wang, Lin et al. 1995).   

3.5.4 Applications 

Our use of experimental design is two fold.  First, we wish to analyze the model’s response to 

changes in deterministic parameters.  We therefore utilize formal experimental designs to develop 

an efficient sensitivity analysis.  Secondly, we are interested in adopting experimental design 

techniques to create efficient representations of the random parameters in our experiments.  A 

straightforward mechanism for representing the vector of random parameters is through random 

sampling via simulation.  Techniques for generating sample paths via simulation are widely 

discussed in the simulation literature (Johnson 1987; Law and Kelton 2000).  Random samples 

are easy to generate and have the desirable property that the discrete approximation error tends to 

zero as sample size goes becomes large (Dupacova and Wets 1988).  However, the cost of solving 

                                                      
36 Issues related to observable patterns in uniform designs is discussed in Santer and Willaims et. al (2003) 
p. 147-148.  The UD software eliminates these issues by  only considering design matrices of rank d, a 
restriction not required by the definition of UD.   
37 The current version of the software generates designs with up to 30 factors and 600 observations.   
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the stochastic program increases non-linearly with sample size so the random sample approach 

may not be very efficient.   

 

One alternative is to approximate the probability density function with a small sample discrete 

mass function.  For example, a method based on Gaussian Quadrature may be used to generate a 

3 point approximation that preserves the mean and variance of the density function (Miller and 

Rice 1983).  Alternatively, some researchers have implemented quasi-random techniques such as 

Latin Hypercube Sampling to create efficient samples.  (McKay, Beckman et al. 1979) use 

experimental designs in the evaluation of a continuous simulation experiment. (Simpson, Lin et 

al. 2001) investigates LH and UD designs in the evaluation of two engineering simulations.  

Several authors have extended this concept to use space filling experimental designs to create 

efficient scenario sets for stochastic programs.  Linderoth et al. perform a detailed empirical test 

of several stochastic programs using random and LH samples (Linderoth, Shapiro et al. 2006).  

(Freimer, Thomas et al. 2006) compare random samples with Latin Hypercube samples, and 

antithetical variates in the context of stochastic programs.  (Mo, Harrison et al. 2006) utilize UD 

in a stochastic facility location model.  

3.5.5 Summary 

In the review above I summarize the literature in the key fields related to this dissertation.  The 

dissertation that follows will pull together these fields and apply them to the call center capacity 

management problem.  I have presented several conference papers that include portions of the 

work presented in this dissertation or are based on the work in this dissertation.  In (Robbins, 

Medeiros et al. 2006) we use simulation to show that arrival rate uncertainty can cause significant 

deviation from targeted call center performance metrics.  That paper describes a call center 

simulation model that is adapted for use in this dissertation.  (Robbins and Harrison 2006) is a 

stochastic hiring model that is adapted in Chapter 6 of this dissertation.  (Robbins, Medeiros et al. 

2007) summarizes a portion of Chapter 7 and has been submitted to the 2007 Winter Simulation 

conference.   A high level summary of Chapters 2, 5 and 7 is presented in (Robbins 2007) which 

has been submitted to the 2007 IEEE/INFORMS International Conference on Service Operations 

and Logistics, and Informatics.   
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4 The Short Term Scheduling Model 

4.1 Introduction 

The objective of the short term scheduling model is to determine optimal schedules given 

uncertainty about arrival patterns.  The model develops a week long schedule designed to achieve 

an aggregate Telephone Service Factor (TSF) based service level agreement (SLA) by assigning a 

financial penalty based on the probability of failing to achieve the SLA target. It is formulated 

and solved as a stochastic program, and is optimized over a series of simulated weekly arrival 

patterns.  While the explicit objective of this model is to develop a specific schedule for a given 

situation, a secondary objective is to study the impact that uncertainty has on the scheduling 

process.  Since most scheduling models ignore arrival rate uncertainty, we seek to understand 

how uncertainty impacts the optimal schedule and its associated cost.   

 

In Section 4.2 I develop a formulation of the model and discuss the solution algorithm.  Section 

4.3 examines the various assumptions used in model formulation and assesses how accurate the 

model is in estimating the aggregate TSF.  Section 4.4 discusses the issue of cost and service 

level tradeoffs.  Section 4.5 examines the impact of variability on the optimal schedule and 

compares the stochastic model to the deterministic mean value model.  Section 4.6 examines the 

impact of staffing flexibility and assesses the impact that part time resources can have on the 

overall cost of service delivery.  Section 4.6 summarizes the results of the analysis and assesses 

the contributions of the model and its managerial implications.   
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4.2 Problem Formulation and Solution Approach 

4.2.1 Overview 

In this model I attempt to find a minimal cost staffing plan that satisfies a global service level 

requirement.  The model estimates the number of calls that meet the service level requirement in 

each period by making a piecewise linear approximation to the TSF curve; the curve that relates 

the number of agents to a given service level for a given arrival rate.  I generate the linear 

approximation of the TSF curve based on an Erlang A model which estimates abandonment rates 

based on an exponential patience distribution.  Since the model allows for abandonment, it 

remains valid if the arrival rate exceeds the service rate.  The Erlang C model on the other hand 

becomes undefined in this condition and the queue size become infinite.  Because of the high 

level of variability in the support desk environment, arrival rates will often exceed service rates, 

at least temporarily.  This happens if we experience unplanned spikes in arrivals.  It may also 

happen by design for short periods of (known) high demand.   

  

I formulate the model as a two stage mixed integer stochastic program. In the first stage staffing 

decisions are made and in the second stage call volume is realized and we calculate SLA 

attainment.   
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4.2.2 Formulation 

I formulate a model with the following definitions: 

Sets 
I: time periods 
J: possible schedules 
K: scenarios 
H: points in a linear approximation 
 

Decision Variables 
xj: number of resources assigned to schedule j 
 
 

Deterministic Parameters 
cj: cost of schedule j 
aij: indicates if schedule j is staffed in time i 
g: global SLA goal 
mikh: slope of piecewise TSF approximation h  
    in period i of scenario k 
bikh: intercept of piecewise TSF approximation  
     h in period i of scenario k 
pk: probability of scenario k 
µi: minimum number of agents in period i 

jη : maximum number of agents that can be  
      assigned to schedule j 
r:   per  point penalty cost of TSF shortfall 

State Variables  
yik: number of calls in period i of scenario k  
      answered within service level 
Sk: TSF shortfall in scenario k 
 

Stochastic Parameters 
nik: number of calls in period i of scenario k 
 
 

The model can then be expressed as 

min j j k k
j J k K

c x p rS
∈ ∈

+∑ ∑   (4.1) 

    subject to 

ik ikh ij j ikh
j J

y m a x b
∈

≤ +∑  , ,i I k K h H∀ ∈ ∈ ∈  (4.2) 

( )ik k ik ik
i I i I

n S gn y
∈ ∈

≥ −∑ ∑  ,i I k K∀ ∈ ∈  (4.3) 

ik iky n≤  ,i I k K∀ ∈ ∈  (4.4) 

ij j i
j J

a x µ
∈

≥∑  i I∀ ∈  (4.5) 

j jx η≤  j J∀ ∈  (4.6) 

, ,j ik kx y S+ + +∈ ∈ ∈] \ \   , ,i I k K h H∀ ∈ ∈ ∈  (4.7) 
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The objective of this model is to minimize the total cost of staffing plus the expected penalty cost 

associated with failure to achieve the desired service level.  The optimization occurs over a set 

K of sample realizations of call arrivals.  These samples are called scenarios.  Constraint (4.2) 

defines the variable yik as the number of calls answered within SLA in period i of scenario k based 

on a convex linear approximation of the TSF curve.  Constraint (4.3) calculates the TSF 

proportional shortfall; the maximum of the percentage point difference between the goal TSF and 

achieved TSF and zero.  Constraint (4.4) limits the calls answered within the SLA target to the 

total calls received in the period.  Constraint (4.5) defines the minimum number of agents in any 

period. Constraint (4.6) sets an upper limit on the number of agents assigned to each schedule.  

Constraint (4.7) defines the non-negativity and integer conditions for program variables.   

 

This model is derived from the basic set covering formulation in models such as (Dantzig 1954) 

but with the following extensions: 

• The server sizing and staff scheduling steps are combined into one optimization program.   

• The model is explicitly defined for a queuing process with a non homogeneous arrival 

rate.   

• The model explicitly recognizes that the arrival rate is a random variable.   

• This model specifies both a per-period performance constraint and a global performance 

constraint.   

• The model uses a piecewise linear approximation for the TSF curve derived from an 

Erlang A model.   

 

The size of the model, and therefore the computation effort required to solve it, is driven in large 

part by two factors; the number of potential schedules ( J ) and the number of scenarios ( K ).  

The number of integer variables is equal to the number of schedules, while the number of 

continuous variables is equal to the product of the number of scenarios and the number of time 

periods, plus the number of scenarios.   

 

In this analysis we are creating schedules for a week (with explicit breaks between shifts, but not 

within shifts.)  In simple cases where I allow only five day a week eight hour shifts, the number 

of possible schedules is 576.  In more complex cases where we have a wider range of full and part 
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time schedule options we have 3,696 schedules.  I investigate the number of scenarios required in 

the next section, but 50 scenarios is not unreasonable.  This implies the requirement to solve 

models with 3,696 integer variables and over 16,000 continuous variables.   

4.2.3 Scenario Generation 

This program (4.1) -(4.7) is solved over some set of sample outcomes from the statistical model 

of call arrival patterns. An algorithm for generating simulated calls was presented in Figure 2-10 

and is repeated here for convenience.   

For d = 1 to 7 
 Read DAd,DSd     ‘ Read daily average and sd 
 DVd = RndNorm(DAd,DSd)  ‘ Generate random volumes 
Next 
For d = 1 to 7     ‘ Gen initial proportions 
 For t = 1 to 48 
  Read TAt,TSt    ‘ Read period average and sd 
  TPt = min[RndNorm(TAt,TSt),0] ‘ Calc initial proportion 
  SPd = SPd + TPt    ‘ Sum up proportions  
 Next 
Next 
For d = 1 to 7     ‘ Normalize proportions 
 For t = 1 to 48 
  TVdt = TPt*DVd/SPd   ‘ Calculate period volume 
  LAMdt = 2* TVdt    ‘ Calculate arrival rate 
 Next 
Next 

Figure 4-1 Simulated Call Generation Algorithm 

This algorithm is coded in Visual Basic.Net and is used to generate scenarios for the optimization 

algorithm.  The program is designed to generate scenarios in batches of variable size.  Each batch 

is fully independent of other batches; i.e. the first scenario in a batch of 50 scenarios is different 

from the first scenario in a batch of 100 scenarios.  The algorithm writes call volumes to a file 

that can be read directly by the GAMS system38.  This algorithm uses a relatively simple 

approach to generate simulated call volumes.  The objective here is to generate a reasonable set of 

call arrival patterns to test the optimization model.  A more detailed set of generation algorithms 

is provided in (Avramidis, Deslauriers et al. 2004).   

 

                                                      
38 GAMS is the front end system used to define the model and code the solution algorithm.  GAMS calls on 
CPLEX which actually solves the integer and linear programs.   
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4.2.4 Solution Algorithm 

This model is formulated as a MIP and as such can be solved by an implicit enumeration (branch 

and bound) algorithm.  Branch and bound works well for smaller problems, but tends to bog 

down as the number of scenarios increases.  To facilitate the solution of large scale problems I 

implemented a version of the L-Shaped decomposition algorithm (Birge and Louveaux 1997).  

My decomposition method is a straight forward implementation of this method, adapted for a 

discrete first stage.  I decompose the problem into a master problem where the staffing decision is 

made, and a series of sub-problems where the TSF shortfall is calculated for each scenario.   

 

Letting v denote the major iterations of the algorithm, vθ  the approximated recourse cost, and 
v
ikE  and 

ik

ve  the coefficient of the recourse function cuts, the master problem can be defined as  

min v
j j

j J
c x θ

∈

+∑   (4.8) 

    subject to 

ik

v v v
k ik ij j

k K j J

p E a x eθ
∈ ∈

≥ +∑ ∑  ,i I v∀ ∈  (4.9) 

ij j i
j J

a x µ
∈

≥∑  i I∀ ∈  (4.10)

j jx η≤  j J∀ ∈  (4.11)

, v
jx θ+ +∈ ∈] \   j J∀ ∈  (4.12)

 

In this problem vθ represents an estimate of the TSF shortfall penalty term.  Let ( , )v vx θ be an 

optimal solution.   

 

For each realization of the random vector 1,...,k K=  we then solve the following subproblem  

min krS   (4.13) 

    subject to 
v

ik ikh ij j ikh
j J

y m a x b
∈

≤ +∑  , ,i I k K h H∀ ∈ ∈ ∈  (4.14)
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( )ik k ik ik
i I i I

n S gn y
∈ ∈

≥ −∑ ∑  k K∈  (4.15)

ik diky n≤  ,i I k K∀ ∈ ∈  (4.16)

, ,v
j ij kx y S+ + +∈ ∈ ∈] \ \   , ,i I k K h H∀ ∈ ∈ ∈  (4.17)

 

I use the dual variables from the solution of the set of subproblems to improve the approximation 

of the penalty term.  Let 1v
ikhπ be the dual variable associated with(4.14), 2v

kπ the dual variable 

associated with (4.15), and 3v
ikπ the dual variable associated with (4.16).  I then calculate the 

following parameters used for cut generation: 

 1 1v v v
ik ikh ikh ij j

i I h H j J

E m a xπ+

∈ ∈ ∈

= ∑∑ ∑  (4.18) 

 1 3 1 2v v v v
k ik ik ikh ikh ik k ik

i I h H i I

e n b n g nπ π π+

∈ ∈ ∈

 
= + − 

 
∑ ∑ ∑  (4.19) 

  

I use these values to generate a constraint of the form (4.9).  Set 1v v= + , add the constraint to 

the master and iterate.   The algorithm solves the master program then solves each sub-program 

for the fixed staffing level defined in the master solution.  Based on the solution of the sub-

problems, each iteration adds a single cut to the master problem.  These cuts create an outer 

linearization of the penalty function (Geoffrion 1970).   

 

The solution of the master problem provides a lower bound on the optimal solution, while the 

average of the subproblem solutions provides an upper bound.  In my implementation I solve the 

LP relaxation of the master until an initial tolerance level on the optimality gap is achieved and I 

then reapply the integrality constraints.  I continue to iterate between the master MIP and the 

subprogram LPs until a final tolerance gap is achieved.   

 

Whereas the branch and bound approach solves a single large MIP, the decomposition solves a 

large number of relatively small LPs and a single moderately sized MIP39.  The advantage of the 

                                                      
39 A representative instance with 100 scenarios required 30 major iterations, thereby requiring the solution 
of the master problem 30 times, and the subproblem 3,000 times.  The master was solved as an LP 
relaxation 26 times and as a MIP 4 times.     
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decomposition approach is that solution time will tend to increase as an approximately linear 

function of the number of scenarios, while the branch and bound algorithm will increase as a non-

linear function of the number of scenarios. 

 

The following graph shows the results of solving an instance with a moderate number of 

schedules (384), and a variable number of scenarios using a branch and bound solution of the 

extensive form, and the decomposition algorithm.  In each case I solved five instances with a 

randomly generated set of scenarios.   
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 Figure 4-2 Mean Solution Times 

 

The graph shows that the solution time for the L-Shaped method does increase in an 

approximately linear fashion in the number of scenarios.  Average solution time for the branch 

and bound algorithm is larger in each case, though it is somewhat erratic; the average solution 

time for 150 scenarios is, for example, smaller then the average solution time for 100 scenarios.  

The following graphs illustrate individual solution times: 
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Individual Solution Times - L Shaped
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Individual Solution Times - Extensive
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Figure 4-3  Individual Solution Times 

The variance of solution times for the L Shaped method is much lower than for the branch and 

bound method.  The average performance of the branch and bound method is highly influenced 

by the worst case solution time.  Note that these solution times are for instances with only a 

moderate number of schedules (384).  In later experiments we increase the number of schedules 

to well over 2,000 as we introduce more flexible staffing options.  Given that each schedule 
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option creates an integer variable solving these larger problems by branch and bound will be 

extremely difficult40.   

 

The following graph illustrates the convergence of the L-Shaped decomposition algorithm41. 

 

L Shaped Method - Optimality Bounds
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Figure 4-4 Convergence of the L-Shaped Algorithm 

As is the case with a branch and bound algorithm relatively good bounds are found in the first 

few iterations.  Convergence then slows as each successive iteration cuts a smaller area from the 

feasible region of (4.8) - (4.12).  In this particular case the relaxation was solved 41 times and the 

MIP was solved 4 times.  A slight shift in the bounds occurs when the integrality constraints are 

reapplied in iteration 42.  The bump that occurs when integrality constraints are reapplied in this, 

and many other instances, is quite small.  I believe this is due to two facts.  First, by the time 

integrality constraints are reapplied, a large number of cuts have been applied, narrowing the 

search to a relatively small region.  Second, an instance the weighted set covering problem, with 

many schedule options, has a large number of nearly identical solutions.  In some instances where 
                                                      
40 I have solved instances of the problem with 500 scenarios using the L Shaped method and there seems to 
be no upper limit above which the problem will not solve as is often the case in branch and bound.   
41 This particular instance had 384 schedules and 100 scenarios.   
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the algorithm switches to MIP mode with fewer cuts, such as when the penalty rate is set to zero, 

the bump is more significant and the time to solve the final MIP can be much longer.   

 

This analysis indicates that the decomposition method provides a generally superior approach for 

solving most instances of this problem.  It is more scalable and the solution time tends to be less 

variable.  The remainder of this analysis is based on a decomposition algorithm.   

4.2.5 Post Optimization Analysis 

The solution of (4.1) - (4.7) is the optimal solution of the sample path problem.  We denote this 

solution as *
nz , where n is the number of scenarios used to calculate the solution. This is a biased 

estimate of the solution true problem; that is the problem evaluated against the continuous 

distribution of arrival rates.  I denote the true solution as *z .   (Mak, Morton et al. 1999) show 

that the expected bias in the solution is decreasing in sample size 

* * *
1[ ] [ ]n nE z E z z+≤ ≤  (4.20) 

 

From a practical perspective a key decision is determining the number of scenarios to use in our 

optimization.  As I increase the number of scenarios the solution becomes a better approximation 

of the true solution, but the computational cost of finding that solution increases.   

 

To aid in this process I perform a post optimization evaluation of the candidate solution using a 

Monte Carlo bounding process described in (Mak, Morton et al. 1999).  Denote the solution to 

the sample problem as x̂ .  I then solve the subprogram (4.13) to (4.17) using x̂ as the candidate 

solution, to obtain the expected cost of implementing this solution.  In this analysis I solve the 

subprogram with un  equal 500 scenarios generated independently from the scenarios used in the 

optimization.  The solution to the subprogram gives us an upper bound on the true solution, while 

the solution to the original problem *
nz  is a lower bound.   

 

To obtain better bounds on the true optimal solution we may choose to solve the original problem 

multiple times, each with independently generated scenarios.  Denote the number of batches (sets 

of scenarios) used to solve the original problem as nA and the sample variance of the objective as 
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( )s nA A .  Similarly I calculated the sample variance of the expected outcome of the candidate 

solution against the un  evaluation scenarios.  We can then define the following standard errors 

1, ( )
un u u

u
u

t s n

n
αε −=�  (4.21) 

1, ( )nt s n

n
αε −= A A A

A
A

�  (4.22) 

 

Where 1,unt α− is a standard t-statistic, i.e. { }1, 1
un nP T t α α−≤ = − .  We can now define an 

approximate (1 2 )α−  confidence interval on the optimality gap as  

0, ( ) ( )u uU n L n ε ε
+  − + +   A A� �  (4.23) 

 

Note that we take the positive portion of the difference between the upper and lower bounds 

because it is possible, due to sampling error, that this difference is negative.   This procedure 

allows us to generate a statistical bound on the quality of our solution, i.e. the potential distance 

from the true optimal.    

4.3 TSF Approximation and SIPP 

4.3.1 Overview 

This model attempts to generate a schedule that meets a Service Level Agreement (SLA) at a 

minimal cost.  For the sake of this analysis, I assume that the SLA is defined based solely on the 

TSF.  In order to do so effectively the optimization program must estimate the service level that 

will be achieved for any staffing plan for each realization of calls.  In this section I outline the 

approach used to estimate the TSF and document the assumptions used in developing this 

estimate.  I then attempt to validate the estimate using a discrete event simulation model.   

4.3.2 Basic TSF Calculations 

The basic model used to estimate the service level in this analysis is the Erlang A model.  The 

Erlang A model is a widely accepted model for call center systems with non-negligible 

abandonment rate.  Details of the Erlang A model are presented in section 3.3.2.3 and 



 

   

 109 

 

 

summarized here.  Erlang A assumes calls arrive via a Poisson process with rate λ  and are 

served by a set of homogeneous agents with an exponentially distributed service time with mean 

1 µ .  If no agent is available when the call arrives it is placed in an infinite capacity queue where 

it waits for the next available agent.  Each caller has a patience level which are iid draws from an 

exponential distribution with mean  1 θ .  If a caller is not served by the time her patience expires 

she hangs up.   The call center is also assumed to have infinite capacity so no calls are blocked.   

 

In steady state, the staffing decision then involves forecasting the arrival rate iλ and setting the 

staff level based on equation (3.36).  The Erlang A model is difficult to calculate and I use a 

series of approximations defined explicitly in equations  (3.20) - (3.36).  The result is a non-linear 

S-shaped curve that for a fixed arrival rate, relates the achieved service level to the number of 

agents staffed.  The following figure shows an example.   
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 Figure 4-5 TSF Curve for a Fixed Arrival Rate 

4.3.3 Piecewise Linear Approximation 

It is obvious from this graphic that the TSF curve is neither convex nor concave over the full 

range of staffing.  For very low staffing levels, where performance is very poor, the curve is 

convex and we experience increasing efficiency from incremental staffing.  For higher staffing 

levels the curve becomes concave and the impact of incremental staffing becomes decreasing.  
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Note that the area of convexity corresponds to very poor system performance; an area where we 

do not plan to operate.  In addition, embedding this function in our optimization model creates a 

non-convex optimization problem.   

 

To address this problem I create a piecewise linear, convex approximation to the TSF curve as 

shown in the following figure: 

 
 Figure 4-6 Piecewise Approximation of TSF 

In this graph the straight lines represent the individual constraints, and the piecewise linear 

function is my approximation of the nonlinear curve42.  The piecewise linear approximation and 

the true TSF curve are very close for staffing levels above 15 for this data43.  For very low 

staffing levels the linear approximation will overly penalize performance, potentially calculating 

a negative TSF level.  My assumption is that we are almost always operating in the higher 

performance region; I constrain the problem so that expected performance in any period is over 
                                                      
42 This graph has five linear segments, including a horizontal segment at a service level of 100%. The 
optimization model requires that the TSF is less than each line segment.  The optimization process will 
force these constraints to be binding.      
43 In general the piecewise approximation will provide a good approximation if staffing levels are large 
enough; that is if the staff levels are above the lower inflection point of the TSF curve.   
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some minimal threshold level of say 50%.  Only in the case of very large shocks will we ever be 

driven into the poor performance region.   

4.3.4 Non Stationary Arrivals 

I estimate the TSF in each period using equations  (3.20) - (3.36).  However, these equations are 

based on limiting behavior in steady state.  For the most part, our analysis is concerned with 

nonstationary transient behavior.  In my analysis I use a Stationary Independent Period by Period 

approximation.  The SIPP approach is described in more detail in (Green, Kolesar et al. 2001) 

and is reviewed in section 3.3.2.5 of this thesis.  Essentially in this approach I divide each day 

into 48 periods of 30 minutes each.  I then estimate the average number of calls received in that 

period, set the arrival rate appropriately, and assume steady state behavior is quickly achieved in 

that period.  I therefore assume that equations (3.20) - (3.36) can be used to estimate system 

performance in each 30 minute period using average arrivals.  In applying the SIPP approach the 

arrival rate is assumed to change discontinuously at the start of each 30 minute as shown in the 

following figure 
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Figure 4-7 Arrival Rates for the SIPP Approximation 

Clearly these assumptions have the potential to introduce significant error and the literature 

suggests several modifications of this approach, namely the SIPP Max and SIPP Mix approaches, 

both of which attempt to adjust for performance bias in the standard SIPP approach.  We can 
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define the three alternative approaches as follows.  Let ( )n t be the simulated arrivals that occur in 

the (thirty minute) period t , and let ( )tλ denote the arrival rate used to calculate the service level. 

 

In the standard SIPP approach the arrival rate is 

 ( ) 2 ( )t n tλ =  (4.24) 

The SIPP Max approach uses the maximum arrival rate over the course of the period.  I 

implement this as the maximum of the arrival rate in the current period, the average of the current 

and preceding rates, and the average of the current and succeeding rates. 

 [ ]( ) 2 max ( ( 1) ( )) / 2, ( ), ( ( ) ( 1)) / 2t n t n t n t n t n tλ = ⋅ − + + +  (4.25) 

Finally the SIP Mix approach uses the current arrival rate when rates are increasing, but the 

average of the preceding and current rates when rates are declining. 

 
2 ( ) ( ) ( 1)

( )
( ) ( 1) ( ) ( 1)
n t n t n t

t
n t n t n t n t

λ
> −

=  + − ≤ −
 (4.26) 

4.3.5 Scenario Based TSF Approximation  

The TSF calculations defined above are based on the call volume in each 30 minute period, ikn , 

which is a random variable.  The TSF calculations are therefore dependent on the sample path 

and must be included in the scenario generation algorithm.  A comprehensive algorithm for 

scenario generation is then provided by the following algorithm: 

1. Generate a week of call volume using the algorithm 
shown in Figure 4-1. 

2. Based on the SIPP method calculate the per period 
arrival rate using equations (4.24), (4.25) or (4.26).     

3. For a given call volume, select 1h +   probability 
levels for estimating points on the TSF curve44.   

4. Calculate the staff level required to achieve the 
target probabilities defined in Step 3 using equations 
(3.20) - (3.36).   

5. Recalculate the TSF for the integral staffing level 
calculated in Step 4.  We now have 1h +  staff level 
probability pairs on the TSF curve. 

                                                      
44 In practice I use values of .3, .72, .9, .98, and .995 for all periods with call volumes of at least 5.  
Different values are used for lower call volumes to maintain a convex approximation.   
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6. Calculate the slope ( ikhm ) and intercept ( ikhb ) for each 
pair of adjacent points found in Step 5. 

7. Generate a scenario that includes the per period call 
volumes ( ikn ) and h  pairs of slope and intercept 
parameters for each period in the planning horizon.   

Figure 4-8 Scenario Based TSF Approximation Approach 

In addition to the individual scenario information, parameters for the minimum agent level 

constraint (4.5) must be generated.  This is a straightforward procedure as follows: 

1. Define w, the worst case acceptable expected service 
level, and nmin the overall minimum number of agents to 
be staffed at any time45.   

2. Repeat Steps 2 – 6 for each period i  
3. Determine the expected call arrival rate 
4. Calculate the staff level nw required to achieve the 

worst case expected service level defined in Step 1 
using equations (3.20) - (3.36).   

5. Calculate ( )minmin ,i wn nµ  =   , the minimum agents to staff 
in period i.   

6. Write out iµ  in a GAMS compatible format.   
Figure 4-9 Minimum Staff Level Constraint Generation 

The scenario generation algorithm described above is written in VB.Net.  It generates scenario 

files in a format that can be read by GAMs and are used to generate CPLEX models.  A 100 

scenario file is generated in a few seconds on a desktop computer.  Overall, the scenario 

generation time is negligible as compared to solution time for the stochastic program.   

4.3.6 SIPP Testing and Model Validation  

4.3.6.1 Overview 

A number of approximations go into calculating the service level in this stochastic optimization 

model.  Since the TSF level is the key driver of the staffing level, it is reasonable to question the 

accuracy of these approximations and to consider the SIPP adjustments discussed above.  In this 

section I perform a numerical experiment to test the accuracy of each version of the SIPP model.  

                                                      
45 Throughout this dissertation, unless stated otherwise I use a worst case TSF of 50% and a minimum 
staffing level of 2. 
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I test each SIPP version against models based on 3 of the model projects46 described in Section 2-

7. 

4.3.6.2 Experimental Approach 

As outlined above, the basic process involved with solving the stochastic program is to solve the 

model (4.1) - (4.7) against a set of scenarios, simulated realizations of call volume.  During this 

process I calculate a TSF level and objective value, both of which are biased estimates of the true 

values.  I then perform a post optimization analysis which tests the candidate solution against a 

set of evaluation scenarios.  In this process I calculate an expected outcome (service level and 

cost) that is an unbiased estimate of the true solution47.  The objective of this validation is to 

determine how well the unbiased, post optimization analysis is at predicting the actual realized 

service level.  Note that since arrivals are random, the realized service level will be random. 

 

In order to make this assessment I turn to Discrete Event Simulation (DES).  DES is a well 

established methodology for examining complex queuing systems like this one.  Using DES we 

can more closely model the specific behavior of the system to specific realized call patterns.  The 

DES model used in this analysis uses the same algorithm shown in Figure 4-1 to generate a 

nonstationary call pattern.  The model then generates individual simulated calls which are 

processed using the same theoretical distributions used in the Erlang A model.  The simulation 

approach allows us to run the model for a large number of simulated arrival patterns and to 

calculated statistical bounds on key performance metrics such as TSF.   See  (Banks 2005) or 

(Law 2007) for a detailed description of the simulation process.  Assuming that the DES model is 

a valid representation of the non-stationary Erlang-A queuing model, we can use this model to 

assess the accuracy of the TSF calculation in the optimization program.   

 

The validation processed is outlined below: 

1. Generate a set of 100 scenarios and use these to solve 
the stochastic optimization problem (4.1) - (4.7). 

2. Using the solution found in step 1 as the candidate 
solution, perform a post optimization evaluation 

                                                      
46 The fourth project outlined in section 2.7 is too small to be off interest in the scheduling model.  Given 
its very low volumes the project is almost always staffed at the minimal staffing level of two agents.  I 
examine this project in the final model of this thesis which addresses project pooling.   
47 The post optimization process is discussed in more detail in the next session. 
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against 500 independently generated scenarios to find 
the expected service level associated with the 
candidate solution.   

3. Use the period by period staffing plan developed in 
step 1 to create the resource profile in a discrete 
event simulation model with an identical statistical 
distribution of call volumes.   

4. Perform 50 replications of the DES model to calculate 
a point estimate of the expected TSF from implementing 
the solution found in step 1 using SIPP, SIPP Max, and 
SIPP Mix. 

5. Compare the results found in step 2 to those found in 
step 4 to assess the error associated with each SIPP 
approach.   

Figure 4-10 TSF Validation Approach 

In the following table I summarize the results from applying this approach to compare the three 

SIPP models to Project J.   

Optimization Std Max Mix
Scheduled Hours 1,160 1,200 1,200
Expected  TSF 83.2% 81.0% 83.2%
Std. Dev of TSF 2.6% 3.0% 2.6%

Simulation Std Max Mix
Expected  TSF 81.50% 84.00% 84.29%
Std. Dev of TSF 2.70% 2.87% 2.46%
Bias (Opt-DES) -1.72% 3.00% 1.07%
Error in Std Dev of Sim TSF -0.64 1.05 0.43

SIPP Method

 
Table 4-1 TSF Validation – Project J 

As predicted by theory, the standard SIPP model overestimates the expected service level and 

under staffs the call center.  However, at least in this case the error is rather low.  The TSF 

estimated in the optimization program is only 1.72% above what is estimated by the DES model.  

Furthermore in the DES model the standard deviation of the TSF measure is 2.70%, so the 

estimate is within .64 standard deviations. Both the SIPP Max and SIPP Mix models use a more 

conservative estimate of the service level attained and as a result calculate a higher staffing level.  

The SIPP Max is the most conservative and underestimates the service level by over 3%.  SIPP 

Mix is less conservative and underestimates the service level by 1.07%.    SIPP Mix is arguably a 

better fit in this case as the error is slightly smaller and in a conservative direction.  If I apply the 

same analysis to projects S and O we obtain the following results.   
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Optimization Std Max Mix Std Max Mix
Scheduled Hours 1,080 1,160 1,120 2,760 2,880 2,880
Expected  TSF 81.5% 82.8% 81.9% 78.2% 78.3% 76.2%
Std. Dev of TSF 2.9% 2.8% 3.0% 9.7% 10.4% 11.0%

Simulation
Expected  TSF 80.99% 84.70% 84.30% 79.33% 81.80% 83.28%
Std. Dev of TSF 3.22% 3.02% 3.40% 4.74% 4.80% 3.64%
Error (Opt-DES) -0.54% 1.91% 2.45% 1.15% 3.50% 7.08%
Error in Std Dev of Sim TSF -0.17 0.63 0.72 0.24 0.73 1.95

SIPP Method

Project O Project S

SIPP Method

 
Table 4-2 TSF Validation – Projects O and S 

Results from these two projects again show that the SIPP Standard method is the least 

conservative, but in the case of project O it overestimates the service level.  The Standard SIPP 

model is in general the most accurate and I will utilize this approach in the remainder of this 

analysis.   

4.4 Cost and Service Level Tradeoffs 

In a deterministic optimization approach to call center scheduling we set a performance target for 

some metric and then find the minimal cost schedule that satisfies that constraint.  In a stochastic 

setting the solution criteria is more complex. Given that call volume, and therefore service level is 

random, the performance target can only be expressed in probabilistic terms.  The resulting 

schedule will achieve the stated performance target with some probability.  I call this probability 

the confidence level.  Given the nature of arrival variability it is not practical, or desirable, to 

generate a schedule that will always achieve the service level target as this schedule would be 

prohibitively expensive.   

 

In my formulation I express the degree of certainty indirectly by assigning a financial penalty to 

the probability of missing the performance target.  By adjusting the performance penalty factor 

r , I adjust the degree of certainty associated with meeting the target.  We now analyze the 

relationship between the penalty rate, the cost of service delivery, and the confidence associated 

with the performance target.  This model applies two performance constraints.  Constraint (4.5) 

defines a minimum staff level in each period, which in my test cases I set to the minimum of a 

global minimum staffing level and the staffing level required to achieve some minimal 
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performance level at expected volumes.48   If the penalty rate is set to zero the penalty term drops 

out of the objective function and constraint (4.5) becomes binding.  As I increase the penalty rate 

the scheduled staff levels will increase to balance the cost of staffing and the expected penalty 

cost associated with TSF shortfalls.  

 

In the following tables I show the result of an experiment to evaluate the impact of various 

penalty rates.  For each project I evaluate the schedule at eight design points (DPs) and in each 

case we solve the stochastic problem five times, each with an independent batch of 50 scenarios.  

I then evaluate that solution against an independently generated set of 500 scenarios to determine 

the expected outcome of implementing the candidate solution.  The model is solved with the 

constraint that all schedules are full time (40 hours)49.   

 

DP
Penalty 

Rate
Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

1 0 8,800 8,800 60.5% 0.0% 0 0 0.00% 0.00%
2 25,000 10,800 11,008 80.6% 61.6% 0 18 0.16% 2.73%
3 50,000 10,880 11,249 81.0% 65.7% 179 40 1.16% 12.71%
4 75,000 11,120 11,332 82.6% 82.9% 179 28 1.11% 11.35%
5 100,000 11,120 11,419 82.7% 83.1% 179 127 1.11% 11.74%
6 150,000 11,200 11,458 83.1% 87.9% 0 36 0.30% 2.74%
7 200,000 11,200 11,504 83.1% 88.8% 0 56 0.23% 2.36%
8 250,000 11,200 11,597 83.1% 89.0% 0 72 0.31% 2.30%

Standard DeviationAverage

 
Table 4-3 Cost and Service Level Tradeoffs – Project J 

DP
Penalty 

Rate
Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

1 0 20,880 20,880 52.5% 0.0% 179 179 0.82% 0.00%
2 25,000 22,880 26,869 64.1% 1.9% 179 23 0.71% 1.00%
3 50,000 26,160 29,280 75.2% 41.1% 358 31 1.07% 7.26%
4 75,000 26,800 30,677 77.0% 53.2% 283 59 0.71% 4.76%
5 100,000 27,920 31,801 79.5% 67.3% 769 118 1.42% 6.45%
6 150,000 29,040 33,554 81.5% 76.1% 1,152 89 1.72% 5.03%
7 200,000 30,480 34,801 83.7% 80.9% 1,481 343 2.20% 6.47%
8 250,000 31,920 35,662 85.7% 84.4% 1,559 392 2.26% 4.23%

Standard DeviationAverage

 
Table 4-4  Cost and Service Level Tradeoffs – Project S 

                                                      
48 In our test problems we require that at least 2 agents are scheduled at all times.  We also require that at 
expected volumes we achieve a minimum 50% TSF in each period.   
49 This issue is addressed thoroughly in section 4.6 Here I use schedule B.   
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DP
Penalty 

Rate
Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

Labor 
Cost

Expected 
Outcome

Average 
TSF Confidence

1 0 8,240 8,240 54.2% 0.0% 219 219 1.49% 0.00%
2 25,000 10,800 11,705 76.8% 27.2% 0 37 0.17% 1.52%
3 50,000 11,360 12,294 79.9% 62.0% 219 37 0.97% 11.80%
4 75,000 11,600 12,736 80.6% 71.6% 0 58 0.33% 3.72%
5 100,000 11,600 13,022 80.9% 74.2% 0 46 0.21% 1.89%
6 150,000 12,000 13,595 82.5% 86.2% 0 21 0.17% 2.49%
7 200,000 12,000 14,127 82.4% 86.0% 0 112 0.36% 3.40%
8 250,000 12,320 14,591 83.1% 89.3% 179 72 0.71% 2.30%

Standard DeviationAverage

 

Table 4-5 Cost and Service Level Tradeoffs – Project O  

The following figures show the same data graphically. In the first set of graph I show how 

confidence and average service level vary with the penalty rate.   
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Expected Service Level - Project J
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Confidence by Penalty Rate - Project S
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Expected Service Level - Project S
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Confidence by Penalty Rate - Project O
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Expected Service Level - Project O
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Figure 4-11 Confidence and Expected Service Level as a function of Penalty Rate 
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For each project the panel on the left shows the confidence level of the resulting solution, i.e. the 

proportion of the evaluation scenarios in which the performance target was achieved.  The panel 

on the right shows the corresponding expected service level associated with the candidate 

solution.  These plots imply that an efficient frontier exists, an optimal region that balances the 

labor cost and penalty cost for a given vector of labor and penalty rates.    

 

In all cases low penalties result in a zero confidence and an expected TSF near 60%50.  As the 

penalty rate increases the expected TSF begins to increase as additional staffing is added to offset 

shortfall penalties. Both factors increase rapidly and then level off as it becomes increasingly 

expensive to meet the service levels in the tail of the arrival rate distribution.  It is interesting to 

note that each project requires a different penalty rate to achieve a desired confidence level. 

Project S which has the largest staff levels and a high degree of variability, requires penalty rates 

in the range of $200,000 (2,000 per percentage point shortfall) to schedule with 80% plus 

confidence.  Project O, a smaller project with moderate variability, plateaus with penalty rates 

around 100,000.  Project J is a relatively predictable project and the level of confidence stabilizes 

with penalty rates above 75,000.   

 

The call center manager seeks to minimize the cost of staffing, while maximizing the probability 

of achieving the target service level.  These two goals are clearly in conflict and the manager 

must decide how to balance cost and risk; a decision obscured in a deterministic optimization 

approach.   

 

In the following graphs I recast the data from Figure 4-10 to illustrate this tradeoff. On the left 

side we see the confidence level of achieving the performance target as a function of staffing cost, 

and on the right we see the expected service level as a function of staffing cost.   

                                                      
50 This model requires that the service level is at least 50% in every period based on expected volumes.  In 
order to achieve that level in the busiest period staffing is set such that the service level is above 50% in 
subsequent periods.  This is due to the constraint of scheduling agents to full time shifts.   
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Confidence vs. Staffing Cost - Project O
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Avg. Service Level vs. Staffing Cost - Project O
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Confidence vs. Staffing Cost - Project O
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Confidence vs. Staffing Cost - Project O
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Figure 4-12 Confidence and Expected Service Level 

The managerial implications here are important.  When making day to day staffing decisions 

managers must make decisions about how much risk of missing the service level they are willing 

to tolerate.  Conversely, they decide how much insurance to buy in the form of excess capacity.  

In most situations managers must make these decision based on intuition.  The model 

operationalizes this decision by assigning a financial penalty to the possibility of failing to meet 

the service level target.   
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4.5 The Impact of Variability and VSS 

4.5.1 Overview 

As discussed previously, the solution of the mean value program generates a biased estimate of 

the true cost of implementing the proposed solution.  Solving a stochastic program reduces that 

bias, and the bias declines with the number of scenarios, going to zero as the number of scenarios 

goes to infinity  (Mak, Morton et al. 1999).   The expected cost of implementing the stochastic 

solution is lower than the cost of implementing the mean value solution, or stated differently we 

can lower the expected cost of operating the system by explicitly considering variability in our 

optimization problem.  This reduction in cost is known as the Value of the Stochastic Solution 

(VSS).  It is easily shown that VSS is a nonnegative quantity, (Birge 1982; Birge and Louveaux 

1997)51 

 

The following figure depicts the relationship of the various costs.   

 
Figure 4-13 Relative Cost of Optimal Solutions 

 

                                                      
51 The nonnegativity of the VSS implies that we can do no worse on an expected basis by considering 
variability in the optimization process.  VSS may be zero, so we do not necessarily do better by considering 
variability.   

Relative Solutions  

MV  
Bias 

VSS 
Value of Stochastic Solution 

Mean Value Solution 

Stochastic Solution 

Expected Cost of the Mean 
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4.5.2 VSS and Solution Convergence 

In this section I estimate the bias and VSS for three test projects for various scenario levels. At 

each scenario level I generate 5 independent batches and solve the program once for each batch.  

The expected outcome is found by evaluating that solution against 500 evaluation scenarios.  The 

following table summarizes the results.  

 

Project Scenarios
Direct 
Cost

Calculated 
Optimum

Expected 
Outcome

Solution 
Bias VSS VSS %

Confidence 
Level

Project J MV 10,020 10,081 12,838 2,758 1.6%
10 10,824 10,959 11,253 295 1,585 12.3% 63.5%
25 10,848 11,044 11,146 121 1,693 13.2% 70.6%
50 10,868 11,044 11,108 64 1,730 13.5% 74.4%

100 10,884 11,075 11,092 36 1,747 13.6% 76.8%
Project S MV 23,200 23,240 34,860 11,620 14.0%

10 25,400 25,710 28,663 2,953 6,197 17.8% 56.2%
25 26,720 27,376 27,540 193 7,320 21.0% 84.6%
50 26,440 27,280 27,496 303 7,364 21.1% 81.2%

100 26,260 27,069 27,337 304 7,523 21.6% 81.5%
Project O MV 8,820 8,820 13,855 5,035 69.9%

10 10,488 10,717 11,079 361 2,776 20.0% 80.2%
25 10,500 10,844 11,009 199 2,846 20.5% 80.5%
50 10,388 10,872 10,993 125 2,862 20.7% 80.1%

100 10,520 10,879 10,956 77 2,899 20.9% 80.8%     
Table 4-6 Solution Bias and VSS 

In each case I find substantial bias in the Mean Value Solution and find substantial value from 

implementing the stochastic solution.  On the moderately variable project J the stochastic 

program reduces expected cost by 13%.  On the more variable projects S and O, the stochastic 

solution reduces cost by over 20%.   Also note that the stochastic solution provides a higher 

confidence that the performance target will be achieved.   

4.5.2.1 Sampling Bounds 

In Section three, I showed that the average solution to the stochastic program provides a point 

estimate on the lower bound on the true optimal solution, while the average expected outcome of 

the candidate solution forms a point estimate of the upper bound of the true optimal.  In Figure 4-

12 I plot the point estimate of the upper and lower solution bounds for Project J at multiple 

scenario levels, estimated using five batches at each scenario level.    
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Sampling Bounds Point Estimate - Project J
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 Figure 4-14 Point Estimate of Bounds 

Equation (4.23) provides a mechanism to calculate a confidence interval on the optimality gap.  

In Figure 4-13 I plot the 90% confidence interval on the magnitude of the optimality gap  

Sampling Error Optimality Gap - Project J
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Figure 4-15 Optimality Gap 

These graphs show that the mean value problem exhibits significant bias, but that even with a 

moderate number of scenarios, and a few batches, we are able to generate fairly tight bounds on 

the true optimal value.  The data suggests that solving the problem with as few as 25 scenarios 

provides reasonably good results, while a 50 or 100 scenario model gives us a tighter bound that 

may be useful when trying to make detailed comparisons between alternatives.   
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For each project listed in table 6-1 the stochastic program lowers overall expected cost by 

increasing direct labor.  It is somewhat paradoxical that stochastic programs provide better results 

by calculating worse objective functions.  The intuition is however straightforward; deterministic 

optimization programs assume away uncertainty and therefore do not adequately hedge for 

variability.   

 

Figure 4-16 compares the schedules generated from a mean value program and a stochastic 

program.  The stochastic program adds incremental staffing at various points throughout the day.  

Figure 4-17 shows a 90% confidence interval for the calls received by period.  Comparing that 

graph to Figure 4-16 we see that incremental staffing is added in periods with relatively high 

volumes and high variability.   
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Figure 4-16 Comparison of 2 schedules  
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Call Arrivals - 90% Confidence Level
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 Figure 4-17 Confidence Interval for per period calls 

Figure 4-16 shows the mean value and stochastic solution for Monday, the busiest day of the 

week.  In Figure 4-18 I plot the incremental staffing generated by the stochastic solution over the 

course of the week.  We see that the stochastic model adds incremental capacity during the busy 

periods of most days, but reduces staffing in some low volume periods.    

 

Incremental Staffing from Considering Variability
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 Figure 4-18 Mean Value vs. Stochastic Staffing 



 

   

 126 

 

 

4.5.3 Impact of Variability  

In the prior analysis I calculated schedules for models of several real world projects and 

examined the convergence properties of the solution.  I examined the differences between the 

mean value solution and the stochastic solution and showed that the stochastic schedule adds 

extra capacity to buffer against uncertainty.  The analysis showed that VSS varies from project to 

project and the data suggests that for projects with higher variability the stochastic solution 

diverges from the Mean Value Solution more significantly.   

 

In this section I conduct a controlled experiment to assess the impact of variability more directly.  

While I still base the analysis on a specific project, I manipulate key parameters to determine the 

impact of variability on the resulting schedule.  Specifically, I analyze a series of alternative 

project configurations for which the expected number of calls, and the average seasonality pattern 

are based on project J, but I manipulate key environment and policy variables.   

4.5.3.1 Experimental Design 

To assess the impact of variability I will conduct a controlled experiment that adjust factors 

related to variability as well as the required service level quality,  Specifically I will conduct an 

experiment using the following factors 

• Daily CV Scale: the variability of daily arrivals is adjusted by scaling the coefficient of 

variation for day of week effects; the mean is held constant and standard deviation is 

adjusted to achieve the scaled CV. 

• Time Period CV Scale: the same variability scaling is performed on the Time of Day 

effect.   

• Service Level Requirement: a loose SLA (70/120) and a tight SLA (90/30).   

• Service Level Penalty: different penalty costs for failing to achieve the specified service 

level target.   

• Shock Probability: arrivals with and without shocks.  In the case of shocks I scale down 

the non-shock volume so that the expected call volume is constant across all design 

points.   
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I created an experiment with 16 design points as defined below 

A B C D E Factor Definitions - +
1 - - - - + A Daily CV Scale 0.75 1.25
2 + - - - - B Time Period CV Scale 0.75 1.25
3 - + - - - C Service Level Requirement 70/120 90/30
4 + + - - + D Shock Probability 0% 5%
5 - - + - - E Service Level Penalty 50,000 150,000
6 + - + - +
7 - + + - +
8 + + + - -
9 - - - + -

10 + - - + +
11 - + - + +
12 + + - + -
13 - - + + +
14 + - + + -
15 - + + + -
16 + + + + +  

Table 4-7 Impact of Variability Experimental Design 

This is a 5 1
V2 −  fractional factorial design and contains 16 design points.  This design has a 

resolution of V, which allows us to estimate all the main effects and all the two way interaction 

effects.  Higher level interactions are confounded and can not be estimated independently.  

4.5.3.2 Experimental Results 

To conduct this experiment I generate 5 batches of 50 scenarios and a single evaluation batch of 

500 scenarios at each of the 16 design points.  I solve the optimization problems for each batch, 

calculating a candidate solution which is evaluated against the 500 scenario evaluation batch to 

calculate expected outcomes.  Based on these solutions I calculate the following response 

variables: 

• Labor cost: the cost of direct labor in the candidate solution. 

• Expected Outcome: the labor and penalty cost found when evaluating the candidate 

solution. 

• TSF Cushion: the difference between the expected TSF found when evaluating the 

candidate solution, and the SLA performance goal. 

• Confidence: the proportion of evaluation scenarios for which the service level target is 

achieved.  
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This approach generates 5 samples for each response.  The results of this analysis are presented in 

the following table.  Recall that all design points in this experiment have the same expected call 

volume.   

A B C D E
Labor 
Cost

Expected 
Outcome

TSF 
Cushion Confidence

Labor 
Cost

Expected 
Outcome

1 - - - - + 8,992 9,097 3.9% 93.3% 75.6 40.9
2 + - - - - 9,048 9,210 3.9% 85.0% 85.6 20.3
3 - + - - - 9,056 9,170 2.1% 83.2% 51.8 16.1
4 + + - - + 9,524 9,616 5.6% 95.9% 91.0 51.3
5 - - + - - 12,404 12,856 -0.4% 41.7% 138.1 53.7
6 + - + - + 13,200 13,520 1.9% 84.3% 154.9 45.7
7 - + + - + 13,440 13,969 0.7% 71.2% 105.8 62.5
8 + + + - - 13,408 14,002 -0.4% 47.5% 100.6 31.7
9 - - - + - 8,836 8,942 2.5% 83.8% 43.4 15.9

10 + - - + + 9,216 9,349 5.6% 94.1% 69.9 7.0
11 - + - + + 9,128 9,347 2.9% 88.7% 22.8 20.0
12 + + - + - 9,248 9,465 3.3% 80.8% 68.7 12.0
13 - - + + + 12,748 13,027 1.2% 80.2% 136.1 56.0
14 + - + + - 12,692 13,117 0.2% 58.9% 156.6 13.3
15 - + + + - 13,168 13,481 0.0% 54.7% 128.5 47.7
16 + + + + + 13,332 13,855 -0.1% 51.8% 136.8 11.8

Average Standard Deviation

 
Table 4-8 Impact of Variability Experimental Results 

4.5.3.3 Analysis of Results 

The resolution V experimental design allow us to calculate the main effects; the impact of 

moving each factor from it’s low to high value, as well as first level interaction terms; the 

interaction of each unique pair of factors.  Given the orthogonal nature of the experimental design 

all factors are perfectly uncorrelated and we have no issue of multicolinearity in our analysis.   

 

The following table summarizes the estimated main and first level interaction effects for each of 

the response variables.  The main effects represent the average change in the response when the 

factor is changed from its low value to its high value.  The interaction effects estimate the impact 

of factors that have a coupled influence upon the response beyond their main effects, they are 

calculated as one half of the average difference in response when both factors change together 

(Box, Hunter et al. 2005)52.   Only those effects that are statistically significant at the 0.01 level 

are displayed.   

                                                      
52 If both factors are at the same level, the interaction term is added to the estimated outcome.  If they are at 
opposite levels the interaction term is subtracted from the estimated outcome.  So for example, the BC 
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Factor Effects Labor
Expected 
Outcome

SL 
Cushion Confidence

Intercept 11,091 11,378 2.0% 74.4%
A - Daily CV 259 282 1.0%
B - Time Period CV 395 474 -0.6% -6.0%
C - Service Level Req 3,919 4,207 -3.3% -27.4%
D - Shock Prob -87 -104
E - SL Penalty 211 189 1.3% 15.7%
A*B -122 -41 -10.9%
A*C -0.8%
B*C 179 224 -8.3%
A*D -126 -64 -8.3%
B*D -45 -8.8%
C*D -106
A*E -55
B*E -48
C*E 34 11.8%
D*E -99 -52 -0.9% -12.3%   

Table 4-9 Impact of Variability on Expected Outcome - Main Effects 

This table presents a considerable amount of information.  Some key observations include: 

• The average cost of operating this call center is $11,378 per week, but the realized cost varies 

considerably.   

• The most influential cost driver is the service level requirement, increasing the service level 

requirement adds about $4,000, or 50% to the cost of operations.   

• Variability has a substantial impact on the cost of delivery, but the impact is influenced by the 

SLA regime. 

- In a loose SLA environment (C - , E - ) increased daily variability increases costs by 
about 6%.  Increased time variability increases cost by 2.3%, together they increase cost  
by 6.6% 

-  In a tight SLA environment (C - , E - ) increased daily variability increases costs by 
about 2.5%.  Increased time variability increases cost by 8.3%, together they increase 
cost  by 9.4% 

• On average the optimal staffing decision staffs the project so that the expected service level is 

2% above the requirement, which results in a 74% confidence level.  However in the tight 

SLA regime, the cost meeting  a high service level cause the cushion and confidence level to 

drop significantly.   

 

                                                                                                                                                              
interaction term increases the labor estimate by $179 if both factors have the same setting.  If one is high 
and the other low the estimate is reduced by $179.   
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4.6 Staffing Flexibility 

4.6.1 Overview 

One of the operational challenges associated with the type of call center analyzed here is that 

demand is often more variable then capacity.  The arrival pattern shown in Figure 2-24, for 

example, has a large spike in demand between 8 and 11 AM.  In order to efficiently match supply 

and demand we would like to create a corresponding spike in capacity at the same time.  

Accomplishing this with full time staffing can be difficult.  However, in practice some call 

centers are often staffed exclusively with full time resources; that is that resources scheduled to 

40 hour per week schedules.   

 

Managers have multiple reasons for hiring only full time agents.  Full timers are believed to be 

less expensive to train because their hiring and training cost is amortized more quickly.  Many 

managers also believe that full time agents will learn faster and thus be more productive than one 

working part time by being exposed to more calls.  Some managers also believe that part time 

agents are more difficult to recruit and retain53.  The potential savings from using part time 

resources is of interest, from a both a practical and research perspective.  I examine that issue in 

this section.   

 

In Section 4.6.2 I develop alternative scheduling patterns and develop a range of flexibility 

options.   In section 4.6.3 I develop a conceptual framework for evaluating the cost of staffing 

flexibility.  In section 4.6.4 I perform a numerical experiment to calculate the cost of staffing 

under each scheduling pattern for 3 model projects.  In section 4.6.5 I perform a related 

experiment that look at the implications of limiting the availability of part timers.   

4.6.2 Types of Staffing Flexibility 

In this section I review what I mean by flexibility and define different levels of staffing 

flexibility.  Conceptually staffing flexibility implies the ability to schedule resources as necessary 

to closely match capacity with demand; unrestricted by constraints on possible schedules.  

Constraints may include union rules on feasible schedules, restrictions on starting time or days 
                                                      
53 The company I worked with uses full time agents almost exclusively for all the reasons cited above.  In 
addition their human resource policies restrict benefits to full time agents making it hard for them to retain 
part time resources if they should hire them.   



 

   

 131 

 

 

off.  For the purpose of this analysis I focus on the constraint imposed by full time staffing.  I 

consider a work force to be more flexible the more options we have to schedule resources to work 

part time shifts if that is what the demand pattern dictates.    

 

I consider two types of part time resources: 

- Full Shifts: full time shifts, less than five days per week 
- Partial Shifts: shifts of less then eight hours, five days a week 

 

Based on this I define the following potential shift patterns: 

- 5 x 8: 5 days a week, 8 hours a day (40 hr week) 
- 4 x 10: 4 days a week, 10 hours a day (40 hr week) 
- 4 x 8: 4 days a week, 8 hours a day (32 hr week) 
- 5 x 6: 5 days a week, 6 hours a day (30 hr week) 
- 5 x 4: 5 days a week, 4 hours a day (20 hr week) 

 

In each case I assume that a shift can start during any half hour period, for a total of 48 starting 

times per day.  I also assume a full complement of daily work patterns that require a two 

consecutive day off policy.  For five day a week schedules this implies only seven feasible day 

patterns.  For a four day a week schedule there are 28 day patterns that satisfy the two 

consecutive day off constraint.   

 

Based on this I define the following set of schedule patterns: 

Pattern  Schedule Types Included Feasible Schedules 

A 5x8 only 336 

B 5x8, 4x10 1,680 

C 5x8, 4x10, 4x8 3,024 

D 5x8, 4x10, 4x8, 5x6 3,360 

E 5x8, 4x10, 4x8, 5x6, 5x4 3,696 

Table 4-10 Scheduling Patterns  

For patterns A-E I incrementally add more flexibility into the set of available schedules.  Table 4-

9 illustrates the combinatorial problem associated with evaluating multiple scheduling patterns.  

As we move from five day a week, 8 hour a day staffing in pattern A to the multiple options of 

pattern E the number of possible schedules, and the corresponding number of integer variables, 

increases five fold.   
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4.6.3 The Value of Flexibility 

In the previous section I outlined a number of different scheduling options and developed a set of 

over 2,700 schedules from which to choose.  We know from basic optimization theory that 

adding more schedule options can make our objective no worse, and I argued qualitatively that 

adding part time shifts will improve the objective function.  However, the choices made in putting 

this list together are somewhat arbitrary.  We restricted the set of schedules to those that included 

at least 20 hours and 4 working days, but perhaps we should consider two ten hour shifts, or six 

three hour shifts.  The number of possible shift patterns is unlimited.  In this section I attempt to 

define a lower bound on the cost reduction that can be achieved via flexible staffing, and in the 

process develop a framework for categorizing the costs associated with service delivery. 

 

Assume that calls arrive via a non-homogeneous Poisson process with a known arrival rate in 

each 30 minute period.  Also assume that we have the option of scheduling any integral number 

of servers (agents) in each 30 minute period, independent of any other 30 minute period, as if we 

could schedule workers to 30 minute shifts.  We could then make an independent staffing 

decision in each period, and because of the concave nature of the TSF curve each period would be 

staffed to achieve a service level near the goal54.  We call this staffing level the ideal or maximum 

flexibility staffing model.  The cost of providing this staff level, in dollars or person hours, 

represents the minimal cost required to deliver the required service.  

 

Now assume that we relax the assumption of known arrival rates and allow call volume to vary 

stochastically.  Incremental staffing will be required to hedge against uncertainty and the cost of 

service delivery will increase.  I refer to this incremental cost as the cost of load uncertainty.   

 

In reality, we can not make independent staffing decisions in each period.  Workers are scheduled 

in shifts so the staffing level in any period is not independent of the staffing level in the 

neighboring periods.  If we now relax the assumption of maximum flexibility and instead pick 

scheduling pattern from table 4-5, then we have the cost of shift constrained staffing.  I call the 

                                                      
54 Because of the integrality constraint on the number of servers TSF would still vary moderately from 
period to period.   
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difference between these two staffing costs the cost of staffing inflexibility; it is the additional cost 

of service delivery due to shift constraints.  The following figure illustrates this relative costs. 

 

 
Figure 4-19 Relative Costs of Staffing Flexibility 

 

4.6.4 Numerical Experiment – Part Time Staffing 

In this section I perform a numerical experiment to estimate the cost of service delivery under 

various levels of staffing flexibility.  I wish to examine how the schedule changes, qualitatively 

and quantitatively, as we increase the level of flexibility of the workforce.  For each project I 

calculate the staffing cost and expected outcome for each scheduling option listed in Table 4-9.  I 

evaluate the savings in service delivery cost at each level from the baseline, and also look at how 

each level compares to the max flex option.  In this analysis I assumed agents are paid $10 per 

hour, regardless of the schedule to which they are assigned.   

 

For each project and schedule set combination I optimized against five batches of 50 scenarios 

each and computed the average for all performance metrics.  Each candidate solution was 

evaluated against the same set of 500 evaluation scenarios to calculate the expected outcome.   

Relative Costs with Staffing Flexibility 

Ideal (Flex) Staffing 
w/Known Arrivals 

Cost of Staffing Inflexibility 

Flex Staffing 
Uncertain Arrivals

Cost of Load Uncertainty 

Shift Staffing 
Uncertain Arrivals
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4.6.4.1 Project J 

In this experiment I analyze a model based on project J.  The following table summarizes the 

results for each scheduling option.   

 

DP
Sched 

Set
Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Average 
TSF Confidence Bias

Cost of 
Inflexibility

1 A 11,280 11,679 11,660 81.1% 66.1% -19.6 696
2 B 10,800 11,204 11,239 80.4% 59.8% 34.9 275
3 C 10,944 11,197 11,235 81.3% 71.0% 37.3 271
4 D 10,844 11,083 11,103 81.5% 73.2% 20.6 139
5 E 10,720 10,976 11,019 81.3% 70.5% 42.6 55
6 MF 10,677 10,867 10,964 81.2% 70.8% 96.6 -  
7 MF-MV 9,845 9,859 12,544 74.6% 3.6% 2,685 -  

Cost of Load Uncertainty 1,105

Average

 

Sched 
Set

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

A
B 4.3% 4.1% 3.6% 79.6% 58.5% 60.5%
C 3.0% 4.1% 3.6% 55.7% 59.3% 61.1%
D 3.9% 5.1% 4.8% 72.3% 73.5% 80.0%
E 5.0% 6.0% 5.5% 92.9% 86.6% 92.1%
MF 5.3% 7.0% 6.0% 100.0% 100.0% 100.0%

% of Max Savings Achieved% Savings by Flexibility

 
Table 4-11  Impact of Flexible Scheduling- Project J 

The data shows for this arrival pattern flexibility can lower the cost of service delivery 

considerably.  Simply adding full time 4x10 shifts lowers total cost by 4% as the weekly seasonal 

pattern is better matched.  Adding part time shifts allows time of day seasonality to be better 

matched and lowers cost by an additional 1.8%.  The max flex schedule is 6.1% less expensive 

then the 5x8 schedule, but most of that savings can be achieved with less flexible options.  Over 

half the total possible savings are achieved simply with 4x10 schedules, and in schedule set E we 

are able to achieve fully 96% of the total possible savings.   
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To gain insight into how flexibility alters the optimal schedule we can examine the results 

graphically.  In the following graphics I plot the Monday schedule for each shift pattern.  (Note: 

the schedule was calculated by optimizing over the full week, we show only the Monday schedule 

in this graphic.  On the next page I show the full week.)   
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Monday Schedule - SS B
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Monday Schedule - SS C
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Monday Schedule - SS D
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Monday Schedule - SS E
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Monday Schedule - Max Flex
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Figure 4-20 Impact of Part Timers on Daily Schedule - Project J 
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We can make some observations about the evolution of the optimal schedule as we add more 

flexibility in to the set of possible schedules: 

• With 5x8 staffing only we maintain a relatively flat level of staffing throughout the busy 

period.  The staffing level is a compromise between the busier morning and slower 

afternoon, set to balance out to a service level 80% over the course of the week.  We will 

tend to be understaffed in peak periods and overstaffed in slower periods during the 

primary busy period.   

• With full shift schedules (B,C) we see little change in this pattern and staffing remains 

relatively flat over the course of the busy period. 

• With the introduction of shorter schedules (D,E) capacity becomes more variable 

throughout the day.  With 6 hour shifts we start to see the double hump pattern that 

characterizes arrivals repeated in the capacity plot.  With 4 hour shifts the pattern 

becomes more pronounced as morning staffing increases and afternoon staffing 

decreases.   

• With maximum flexibility shifts in staffing become more pronounced as the model 

attempts to match the shape of the arrival pattern as closely as possible.   
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In the following graphic we look at the schedule over the course of the week to see how we are 

able to address weekly seasonality.  
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Figure 4-21 Impact of Part Timers on Weekly Schedule Project J 

 

• With 5x8’s only weekly staffing is fairly constant over the course of the week with only a 

small number of resources peeled off of Wednesday’s and Thursdays to meet weekend 

demand. 

• 4x10 staffing allows a better matching of the weekly pattern and we see an uneven 

staffing profile over the course of the week.   

• With 4x8 staffing (C) the weekly staffing pattern better matches the arrival patterns and 

capacity declines steadily throughout the week.   
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• Adding short shifts (D-E) makes little change in the aggregate weekly capacity profile, 

the changes are primarily made to better match the intraday seasonality.   

4.6.4.2 Project S 

I then repeated the analysis for project S.   

DP
Sched 

Set
Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Average 
TSF Confidence Bias

Cost of 
Inflexibility

1 A 30,960 34,238 35,305 83.2% 80.5% 1,067 6,369
2 B 30,320 33,597 34,728 83.7% 81.3% 1,132 5,793
3 C 30,384 33,639 34,733 83.6% 81.0% 1,094 5,797
4 D 30,092 33,398 34,585 83.5% 80.6% 1,187 5,649
5 E 30,096 33,407 34,595 83.5% 80.2% 1,189 5,659
6 MF 25,427 27,458 28,936 74.3% 36.0% 1,478 -  
7 MF-MV 24,040 24,079 33,654 60.8% 0.2% 9,575 -  

Cost of Load Uncertainty 4,857

Average

 

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

2.1% 1.9% 1.6% 11.6% 9.5% 9.0%
1.9% 1.7% 1.6% 10.4% 8.8% 9.0%
2.8% 2.5% 2.0% 15.7% 12.4% 11.3%
2.8% 2.4% 2.0% 15.6% 12.3% 11.1%

17.9% 19.8% 18.0% 100.0% 100.0% 100.0%

% of Max Savings Achieved% Savings by Flexibility

 
Table 4-12 Impact of Flexible Scheduling- Project S 
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Shown below are the Monday schedules for this project.   
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Monday Schedule - SS C
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Monday Schedule - Max Flex
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Figure 4-22 Impact of Part Timers on Daily Schedule - Project S 
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Shown here are the weekly patterns.   
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Figure 4-23 Impact of Part Timers on Weekly Schedule - Project S 

Both the data and the graphs and the numbers reveal that part time staffing is less effective for 

this project.  Some possible reasons are summarized below: 

• The project has a less well defined seasonal pattern. 

• Greater call volume on weekends allows better tailoring of the mid week staffing profiles 

with full time resources. 

• The highly volatile nature of the project makes capacity shaping less effective.   

4.6.4.3 Project O 

Finally I examined a third project patterned off of Project O.  The results are similar to project S 

Here are the financial results 
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DP
Sched 

Set
Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Average 
TSF Confidence Bias

Cost of 
Inflexibility

1 A 11,600 12,254 12,443 80.2% 66.3% 188.8 236
2 B 11,360 12,020 12,257 80.1% 64.5% 236.9 50
3 C 11,296 12,044 12,278 79.5% 58.4% 233.9 71
4 D 11,352 11,967 12,210 80.2% 66.9% 243.2 3
5 E 11,316 11,951 12,226 79.9% 62.8% 274.6 19
6 MF 11,287 11,856 12,207 79.8% 62.0% 351.2 -  
7 MF-MV 9,275 9,275 15,662 67.2% -  

Cost of Load Uncertainty 2,932

Average

 

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

Labor 
Cost

Calculated 
Objective

Expected 
Outcome

2.1% 1.9% 1.5% 76.7% 58.6% 78.6%
2.6% 1.7% 1.3% 97.1% 52.7% 69.9%
2.1% 2.3% 1.9% 79.2% 72.0% 98.6%
2.4% 2.5% 1.7% 90.7% 76.1% 92.1%
2.7% 3.2% 1.9% 100.0% 100.0% 100.0%

% of Max Savings Achieved% Savings by Flexibility

 
Table 4-13 Cost of Schedule Patterns – Project O 

Again it would appear that the lack of a strong seasonal pattern, either weekly or daily; makes the 

part time strategy less effective.  The strategy does however provide non-trivial benefit, boosting 

utilization and cutting costs.   

4.6.5 Incremental Value of Part-timers 

In this next experiment I examine the benefit potential from flexible staffing if the number of part 

time workers is limited; either by policy or availability.  I continue to solve the stochastic 

optimization program but with an additional constraint that limits the number of agents assigned 

to a shift of less then 40 hours to some parameter.  I then vary that parameter from 0 to 20, 

running 5 batches at each level and computing the resulting costs.   
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In the following graph I plot the expected cost of operation as a function of the maximum number 

of allowable part time workers. 
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Figure 4-24 Incremental Value of Part Time Staff 

The graph reveals that the benefit of part time staffing comes from the first few part timers.  With 

zero part timers this schedule is equivalent to schedule B with an estimated cost of operation of 

about $11,300.  As part timers are added the schedule evolves toward schedule E and an 

estimated cost of operation of approximately $11,000.  The graph shows that the full benefit is 

achieved with about 5 part time workers, or approximately 16% of the workforce.  Beyond 5 

workers the change in the estimated outcome is statistical noise.   

 

This illustrates an important point I will return to in the conclusions in Chapter 7.  While 

flexibility greatly improves the efficiency of the system, only a limited amount of flexibility is 

needed.  A small number of flexible workers is all that is required to achieve the bulk of the 

benefit.   
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4.7 Comparison with the Common Practice 

4.7.1 Introduction 

Throughout this chapter we have analyzed a model that utilizes the Erlang A model, a model that 

includes abandonment, and arrival rate uncertainty.  Neither of these conditions are included in 

industry standard models; “common practice uses the M/M/N (Erlang C) queuing model to 

estimate the stationary system performance of short – half hour or hour – interval.” (Gans, Koole 

et al. 2003) p.92.   Furthermore, standard industry practice is to make staffing decisions based on 

a period by period (local) service level requirement; “each half hour interval’s forecasted λi and 

µi give rise to a target staffing level for the period.  ... determination of optimal set of schedules 

can then be described as the solution to an integer program” (Gans, Koole et al. 2003) p.93. 

 

In section 4.5.2 I showed that ignoring arrival rate uncertainty leads to verifiably more expensive 

solutions, on an expected cost basis, than models which account for variability.  In this section I 

compare the stochastic Erlang–A model to the commonly applied known arrival rate Erlang C 

model.   

4.7.2 Weighted Set Covering Model 

The standard approach described above generates a set of fixed staffing requirements in each 

period, and then attempts to find the lowest cost schedule to satisfy these requirements.  The 

resulting integer program is a standard weighted set covering problem which can be expressed as   

 
min j j

j J
c x

∈
∑

 (4.27) 

    subject to 

 ,ij j i
j J

a x b i I
∈

≥ ∀ ∈∑  (4.28) 

 ijx +∈]  (4.29) 

Where jc is the cost of the jth schedule, jx  is the number of resources assigned to the jth schedule, 

and ija is the mapping of schedules to time periods.   
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4.7.3 Locally Constrained Erlang C Model 

I refer to the standard approach described in (Gans, Koole et al. 2003) as the locally constrained 

Erlang C model because it uses Erlang C to generate a local constraint in each period55. I 

construct the locally constrained Erlang C schedule using the following process: 

1. Calculate the average volume in each 30 minute period of the week. 

2. Using the volumes calculated in step 1, determine the number of agents required 

to achieve the target service level in each 30 minute period by performing a 

search using equation (3.16). 

3. Set the period staffing requirement to the maximum of the number calculated in 

step 2 and the global minimal staffing requirement.   

4. Using the resulting vector of staffing requirements as the requirement parameter 

bi in the IP (4.27) - (4.29).  

The general problem with this approach is the constraint created by the per period service level 

requirement, coupled with the requirement to schedule resources in shifts.  The peak staffing level 

is set by the peak arrival period, and depending on the length of the arrival peak, and the length of 

the flexibility of the staffing model, a substantial amount of excess capacity may be created in 

other periods.  I refer to the extra capacity created in other periods as the deadweight loss56, the 

extra man-hours scheduled due to the shift constraint.   The magnitude of the deadweight loss will 

be a factor of the flexibility of the available set of schedules.   With more flexible staffing 

options, the weighted set covering algorithm can match the requirement more closely.   

 

Consider the examples shown in the following two graphs.  In each graph the inner region defines 

the requirements generated for the set covering problem.  The envelope of the graph represents 

the total staffing assigned by solving the set covering problem.  The outer region therefore 

represents the excess capacity assigned above and beyond what was specified. 

 

                                                      
55 In this context local refers to a period by period constraint, and global refers to a constrained applied over 
a longer period of say a week or a month.  This is generally accepted terminology, see for example Koole, 
van der Sluis (2003). 
56 The term deadweight loss is borrowed from the economics literature where it refers to the loss of 
economic efficiency from an equilibrium that is not Pareto efficient.  It is often used to quantify the loss of 
efficiency created by taxes.  In this case I use the term to refer to the loss of efficiency from the optimal 
solution created by shift constraints.  
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Figure 4-25 WSC Excess Staffing – Project J  -Schedule Set A 
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Figure 4-26 WSC Excess Staffing – Project J - Schedule Set C 



 

   

 146 

 

 

In Figure 4-24 we can only assign resources to full time 4x8 schedules and so the set covering is 

poor.  The graph shows a significant amount of overstaffing throughout the course of the week. In 

Figure 4-25 we have the option of 4x10 and 4x8 shifts so we can match the required demand 

much more closely.   

 

To quantify the impact I ran a locally constrained Erlang C model for each of the three test 

projects for each of the 5 schedule sets.  The per-period constraints are set so that the service level 

with expected volumes is at least 80%.  In the following table I compare the results of this 

analysis with the results of the stochastic schedules generated in section 4.6.    

Direct 
Labor

Expected 
Penalty

Expected 
Outcome

Average 
TSF DWL

DWL 
%

Direct 
Labor

Expected 
Penalty

Expected 
Outcome

Average 
TSF

Project J
Sched A 16,000 0 16,000 91.8% 4,055 34% 11,280 380 11,660 81.1% 4,720 29.5% 4,340 27.1%
Sched B 13,200 0 13,200 91.0% 1,255 11% 10,800 439 11,239 80.4% 2,400 18.2% 1,961 14.9%
Sched C 12,880 0 12880 90.4% 935 8% 10,944 291 11,235 81.3% 1,936 15.0% 1,645 12.8%
Sched D 12,500 0 12500 89.5% 555 5% 10,844 259 11,103 81.5% 1,656 13.2% 1,397 11.2%
Sched E 12,300 0 12300 89.2% 355 3% 10,720 299 11,019 81.3% 1,580 12.8% 1,281 10.4%

Project S  
Sched A 38,000 1,565 39,565 91.6% 8,340 28% 30,960 4,345 35,305 83.2% 7,040 18.5% 4,260 10.8%
Sched B 32,800 3,847 36,647 88.0% 3,140 11% 30,320 4,408 34,728 83.7% 2,480 7.6% 1,919 5.2%
Sched C 32,320 4,184 36,504 87.4% 2,660 9% 30,384 4,349 34,733 83.6% 1,936 6.0% 1,772 4.9%
Sched D 30,900 4,820 35,720 86.1% 1,240 4% 30,092 4,493 34,585 83.5% 808 2.6% 1,135 3.2%
Sched E 30,980 4,796 35,776 86.2% 1,320 4% 30,096 4,499 34,595 83.5% 884 2.9% 1,181 3.3%

Project O  
Sched A 13,600 384 13,984 85.7% 2,180 19% 11,600 843 12,443 80.2% 2,000 14.7% 1,542 11.0%
Sched B 12,400 514 12,914 83.4% 980 9% 11,360 897 12,257 80.1% 1,040 8.4% 656 5.1%
Sched C 12,160 544 12,704 83.0% 740 6% 11,296 982 12,278 79.5% 864 7.1% 426 3.4%
Sched D 11,980 592 12,572 82.4% 560 5% 11,352 858 12,210 80.2% 628 5.2% 362 2.9%
Sched E 11,880 624 12,504 82.1% 460 4% 11,316 910 12,226 79.9% 564 4.7% 278 2.2%

SCCS - Erlang A
Direct Labor 

Savings
Expected 
Savings

Locally Constrained Erlang C

 
Table 4-14 Comparing the Stochastic and Local Erlang C Schedules 

The data confirms that the excess staffing is high for 4x8 staffing but decreases quickly with more 

flexible scheduling options.  It also shows that this is a more significant problem for project J, 

which has a strong seasonality pattern, that for either Project S or O.  The set covering approach 

tends to overstaff the project and achieves expected service levels higher than those achieved in 

the stochastic model.  However, because the set covering model considers only the expected 

value and not the variance of arrivals, it is less effective at hedging than the stochastic model.  

Consider the case of schedule D for project S.  The deterministic model has an expected service 

level of 86.2%, versus the goal of 80%, but still an expected penalty cost of $4,700.  The 

stochastic model on the other hand has an expected service level of 82.9%, 3.3% lower, but an 

expected penalty only slightly higher at 5,080.   

 

In all cases the stochastic model yields a lower direct labor cost and a lower expected cost of 

operation.  The benefit of using the stochastic model is most significant when arrivals have a 
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strong seasonal pattern, as in Project J, or when workforce flexibility is low.  With 4x8 only 

staffing the stochastic model provides at least 10.8% reduction in operating costs.   

4.7.4 Globally Constrained Erlang C Model 

In the previous section I showed that the stochastic model based on the Erlang A model provides 

lower cost solutions than the locally constrained Erlang C model discussed in the literature.  An 

alternative approach is to use a deterministic Erlang C model, ignoring abandonment and 

uncertainty as in the previous model, but optimizing to a global vs. local constrained.  While this 

approach is not presented in the literature as far as I know, it is a natural simplification of the 

stochastic model I have analyzed so far.  Because the model is deterministic, it assumes arrival 

rates are known, it will in general be easier to solve then the stochastic model.  Ignoring 

abandonment will tend to increase recommended staffing, but ignoring uncertainty will tend to 

decrease staffing.  It may be the case that under some circumstances these errors will cancel each 

other out and we can achieve good solutions at a lower computational cost.   

 

The method for formulating and solving these problems is a straightforward implementation of 

the model (4.1) - (4.7).  I solve a mean value version of the problem.  The major change is that 

the coefficients for constraints (4.3) and (4.5) are calculated based on the Erlang C model.  I still 

require a minimum of two agents staffed at all times, and a minimum service level at expected 

volume in every period of at least 50%.   

 

I solve a version of this problem for each of the 3 projects for each scheduling option.  Since the 

model is deterministic there is no need to solve multiple batches.  To evaluate the expected cost 

of implementing the solution I continue to evaluate the resulting schedule against the stochastic 

Erlang A model.   I assume that the Erlang A model with uncertain arrivals is the correct model 

ands the objective of this analysis is to determine the error introduced by using a Globally 

Constrained Erlang C model.   
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The results of this analysis are shown in the following table: 

Direct 
Labor

Expected 
Penalty

Expected 
Outcome

Average 
TSF

Direct 
Labor

Expected 
Penalty

Expected 
Outcome

Average 
TSF

Project J
Sched A 14,000 20 14,020 88.6% 11,280 380 11,660 81.1% 2,720 19.4% 2,360 16.8%
Sched B 12,000 2 12,002 87.1% 10,800 439 11,239 80.4% 1,200 10.0% 763 6.4%
Sched C 11,760 5 11,765 86.3% 10,944 291 11,235 81.3% 816 6.9% 530 4.5%
Sched D 11,600 7 11,607 86.3% 10,844 259 11,103 81.5% 756 6.5% 504 4.3%
Sched E 11,580 26 11,606 85.8% 10,720 299 11,019 81.3% 860 7.4% 587 5.1%

Project S  
Sched A 35,200 953 36,153 87.3% 30,960 4,345 35,305 83.2% 4,240 12.0% 848 2.3%
Sched B 30,400 5,412 35,812 84.8% 30,320 4,408 34,728 83.7% 80 0.3% 1,084 3.0%
Sched C 30,160 5,426 35,586 84.7% 30,384 4,349 34,733 83.6% -224 -0.7% 854 2.4%
Sched D 29,340 6,080 35,420 83.6% 30,092 4,493 34,585 83.5% -752 -2.6% 835 2.4%
Sched E 29,320 6,050 35,370 83.7% 30,096 4,499 34,595 83.5% -776 -2.6% 775 2.2%

Project O  
Sched A 11,600 976 12,576 79.9% 11,600 843 12,443 80.2% 0 0.0% 133 1.1%
Sched B 11,200 1,305 12,505 78.5% 11,360 897 12,257 80.1% -160 -1.4% 247 2.0%
Sched C 11,120 1,394 12,514 78.3% 11,296 982 12,278 79.5% -176 -1.6% 236 1.9%
Sched D 10,960 1,442 12,402 78.0% 11,352 858 12,210 80.2% -392 -3.6% 192 1.5%
Sched E 11,080 1,421 12,501 78.1% 11,316 910 12,226 79.9% -236 -2.1% 276 2.2%

SCCS - Erlang A
Direct Labor 

Savings
Expected 
Savings

Globally Constrained Erlang C

 
Table 4-15 Comparing the Stochastic and Global Erlang C Schedules 

4.8 Fine Tuning via Simulation 

4.8.1 Overview 

The models analyzed throughout this chapter utilize an analytical approximation of the Erlang-A 

model to estimate queuing system behavior in general to estimate service level in particular.  The 

model uses a piece wise stationary approximation to estimate nonstationary behavior; the 

Stationary Independent Period by Period (SIPP) approximation.  In section 4.3 we examined the 

accuracy of the SIPP approach and found that in general it provided reasonably accurate estimate 

of total service level, but we also found that the accuracy of the approximation varied from 

project to project.  

 

In this section I develop an extension of the scheduling process used throughout this chapter that I 

term simulation based fine tuning.  The basic idea is to take the schedules generated by solving 

the stochastic scheduling model and see if a better schedule can be found via a simulation based 

local search heuristic.      

4.8.2 Simulation Based Optimization Approach 

In this approach I use Discreet Event Simulation (DES) to model the operation of the call center.  

Unlike the analytically based model used so far, the DES approach simulates individual call 

processing.  The simulation model is designed to generate call arrivals using the same statistical 
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model described in Figure 2-10.  The simulation model also varies the number of agents based on 

the time phased staffing model generated from the scheduling model.  

 

Basic DES can evaluate the expected outcome of the candidate schedule, but in order to find a 

better schedule we need to implement some form of optimization algorithm.  I implement a local 

search algorithm that starts with the schedule generated from the stochastic optimization process 

and searches the neighborhood of closely related schedules.  The local search algorithm is guided 

by a variable neighborhood search (VNS) metaheuristic.  VNS is a metaheuristic that makes 

systematic changes in the neighborhood being searched as the search progresses  (Hansen and 

Mladenovic 2001; Hansen and Mladenovic 2005).  When using VNS a common approach is to 

define a set of nested neighborhoods, such that  

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X⊂ ⊂ ⊂ ∀ ∈  (4.30) 

The general structure of the VNS is then as follow: 

1. Initialization  
a. Select the set of neighborhood structures ,kN for 

max1,...,k k=  

b. Construct an initial incumbent solution, Ix , using 
some heuristic procedure. 

c. Select a confidence level α for the selection of 
a new incumbent solution 

2. Search: repeat the following until Stop=True 
a. Set 1k =  
b. Find 

minkn candidate solutions, Cx  that are 

neighbors of Ix  
c. Simulate the system with each candidate and 

compare the results to the incumbent using a 
pairwise T Test.  

d. If any Cx is superior to Ix  at the α  level then 

set *
I Cx x= , where *

Cx is the best candidate 
solution  
Else, set 

minki n= , set found = false, and repeat 

until (
maxki n= or found=True) 

i. Find a new candidate 
ikx   

ii. Simulate the system with each candidate and 
compare the results using a pairwise T 
Test.  
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iii. If 
ikx is superior to Ix  at the α  level then 

set 
iI kx x= and found = True 

e. If a no new incumbent was found in neighborhood 
k then  
i. set 1k k= +  

ii. if maxk k> then Stop = True 
Figure 4-27 General VNS Search Algorithm 

A common approach in VNS is to define a series of nested neighborhood structures such that  

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X⊂ ⊂ ⊂ ∀ ∈  (4.31) 

When defining the neighborhood structure I make the distinction between the set of active 

schedules, those schedules with a non-zero assignment in the candidate schedule, and feasible 

schedules which include all schedules in the feasible schedule set.  Based on this distinction I 

define the following neighborhoods 

• 1( )N x : Active 1 Change: the set of all staff plans where an active schedule is either 

incremented or decremented by 1.   

• 2 ( )N x : Active 2 Change: pick any two active schedules and independently increment or 

decrement each.   

• 3( )N x : Feasible 1 Change: pick any feasible schedules and add an assignment.     

• 4 ( )N x : Feasible 2 Change: pick any feasible schedule and add an assignment, pick an 

active schedule and decrement the number assigned.  .     

4.8.3 Fine Tuning Process 

In this test I evaluate the base schedule developed for each of the three test projects for each of 

the five standard scheduling options; resulting in a total of 15 different optimization problem.  In 

each case I begin with the results found in section 4.6.   

 

The results for project J are shown as follows: 

Sched 
Set

Labor 
Cost

Expected 
Outcome

Average 
TSF

TSF 
SD

Labor 
Cost

Expected 
Outcome

Average 
TSF

TSF 
SD

Labor 
Savings

Total 
Savings

% Total 
Saving

A 11,200 12,362 78.3% 4.1% 11,600 12,105 81.0% 3.8% -400 256 2.1%
B 10,800 11,933 78.1% 3.2% 11,200 11,611 80.6% 3.0% -400 322 2.7%
C 10,960 11,867 78.9% 3.3% 11,360 11,697 81.5% 3.4% -400 170 1.4%
D 10,840 11,609 79.4% 3.5% 11,060 11,380 81.2% 3.0% -220 228 2.0%
E 10,720 11,521 78.9% 3.3% 10,920 11,402 80.3% 3.1% -200 119 1.0%

Preliminary Solution Simulation Results Comparison
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Table 4-16 Simulation Based Fine Tuning – Project J 

The results show that moderate improvement is possible in all cases.  The first section lists the 

results found by simulating the results of the schedule generated from the stochastic optimization 

model.  Comparing the results in this table with those in table 4-11 show that the simulation 

model calculates a lower service level and higher penalty then estimated in the optimization 

model.   This is consistent with optimistic bias found in section 4-3 and summarized in table 4-1.  

The simulation search is then able to find lower cost schedules by adding resources.  The 

incremental cost of staffing is offset by the lowered expected cost of the service level penalty.  In 

this particular project the benefits are moderate in the range of 1.0% to 2.7%.   

 

The results for projects S and O are similar and are summarized in the following tables: 

 

Sched 
Set

Labor 
Cost

Expected 
Outcome

Average 
TSF

TSF 
SD

Labor 
Cost

Expected 
Outcome

Average 
TSF TSF SD

Labor 
Savings

Total 
Savings

% Total 
Saving

A 30,800 32,143 83.5% 4.5% 30,000 31,313 83.3% 4.9% 800 830 2.6%
B 30,400 31,167 84.7% 4.2% 29,200 29,866 84.0% 4.6% 1,200 1,301 4.2%
C 30,880 31,418 85.0% 4.0% 28,960 29,860 83.7% 4.7% 1,920 1,558 5.0%
D 29,860 30,759 84.4% 4.2% 29,060 29,960 84.1% 4.4% 800 799 2.6%
E 30,320 30,879 85.3% 4.1% 29,080 30,102 84.0% 4.6% 1,240 777 2.5%

Preliminary Solution Simulation Results Comparison

 
Table 4-17 Simulation Based Fine Tuning – Project S 

Sched 
Set

Labor 
Cost

Expected 
Outcome

Average 
TSF

TSF 
SD

Labor 
Cost

Expected 
Outcome

Average 
TSF TSF SD

Labor 
Savings

Total 
Savings

% Total 
Saving

A 11,600 12,244 79.9% 3.7% 11,600 12,097 80.3% 3.6% 0 148 1.2%
B 11,200 12,281 78.5% 3.6% 11,600 12,047 80.6% 3.5% -400 234 1.9%
C 11,120 12,236 78.3% 3.5% 11,440 11,978 80.2% 3.6% -320 258 2.1%
D 11,380 12,035 79.7% 3.4% 11,480 11,972 80.2% 3.3% -100 63 0.5%
E 11,340 12,151 79.1% 3.3% 11,540 12,015 80.2% 3.1% -200 136 1.1%

Preliminary Solution Simulation Results Comparison

  
Table 4-18 Simulation Based Fine Tuning – Project O 

 The improvement for Project O is more significant than what was found for Project J and 

generally results from reducing labor.  This is consistent with the SIPP findings for project S 

where the scheduling model tends to underestimate the achieved service level.  The results fro 

Project O are similar to those for project J with savings in the range of in the range of 0.5% to 

2.1% resulting from increased staffing and improved service levels. 

4.8.4 Summary and Other Applications 

This experiment shows two things.  First the schedules generated from the stochastic optimization 

process are quite good, but not optimal.  The addition of a simulation based fine tuning algorithm 
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can improve the schedule slightly.  In this particular case the simulation model applied the same 

set of assumptions as the optimization process; e.g. exponential talk time, exponential patience.  

Those assumptions were necessary to obtain the analytical expressions of the Erlang A model and 

some of them are troublesome, in particular the exponential talk time assumption57.   

 

These assumptions are however easily relaxed in the simulation based approach.  An alternative 

scheduling process might involve solving the stochastic optimization model under an Erlang A 

assumption, then fine tuning under a different set of assumptions, e.g. lognormal talk time.   

 

An open issue in either case is the precision applied in each step of the optimization process.   

One could envision a process whereby the stochastic program is solved in less time with less 

precision, perhaps by using fewer scenarios or a larger optimality gap on the final IP, and then a 

final schedule is generated by simulation based optimization.  The performance tradeoffs between 

the computational effort expended in each stage of the process is a potential topic of future 

research.   

4.9 Summary and Conclusions 

4.9.1 Summary 

In this chapter I examined the issue of short term shift scheduling for call centers for which it is 

important to meet a service level commitment over an extended period.  While the analysis 

focused exclusively on a TSF based SLA, the model could easily be adapted to support other 

forms of an SLA; such as abandonment rate or average speed to answer.  The model was 

designed to recognize the uncertainty in arrival rates and was formulated as a mixed integer two 

stage stochastic program.  Although difficult to solve, I showed the model is tractable and can be 

solved in a reasonable amount of time.  In previous chapters I showed that uncertainty is of real 

concern in call centers, and in this chapter I showed it has a real impact on scheduling decisions.   

                                                      
57 Other analytical models are available for general talk time distributions without abandonment, but 
relaxing the exponential assumptions and allowing abandonment creates an analytically intractable 
situation.    See the empirical work by Brown et. al. that addresses the exponential talk time assumption.   
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4.9.1.1 Expected Cost of Implementation 

In Section 4-5 I showed the Value of the Stochastic Solution for this model is substantial; ranging 

from 12.3% to over 21%.  The clear implication is that for this model formulation ignoring 

variability is a costly decision; however most models in practice ignore both uncertainty and 

abandonment.  The implication is that one should not introduce abandonment into the model 

without also considering uncertainty.   In section 4.7 I compared this model with the common 

practice of scheduling to a local Erlang C constraint; that is scheduling based on a model that 

ignores abandonment and uncertainty but requires the service level target is achieved in every 

period.  Comparing my model to this common practice I again found my model achieve lower 

cost results; ranging from 2.4% to 27%.  The basic implication here is that the Erlang C model 

sometime achieves good results, since the abandonment and uncertainty assumptions create 

counter balancing errors.  However the stochastic model always achieves a better solution and in 

many practical cases a substantially better result.  This is particularly true when the flexibility of 

the workforce is limited to full or near full time shifts and the set covering approach introduces 

considerable slack in the schedule.   

 

Finally I compared this model to a Globally Constrained Erlang C model.  Though not addressed 

in the literature, to my knowledge, the global Erlang C model is a simple extension of the Erlang 

C model that relaxes the period by period service level constraint.  It’s rather obvious that one 

should expect a better result from a global constraint.  This model gives superior results as 

compared to the local constrained Erlang C, but again my stochastic model outperforms this 

model in every case, by as little as 1% but by as much as 16%.   

 

The overall conclusion is that compared to the alternative methods analyzed here, the Stochastic 

Model will always give a lower cost of operation schedule, and sometime this difference can be 

substantial.  This is a basic property of stochastic programming in general, but in this analysis I 

have shown that the difference is significant in real world cases.   

4.9.1.2 A Probabilistic Framework 

In addition to provide a lower cost solution, the model presented in this chapter addresses the 

scheduling problem from a fundamentally different perspective.  In the standard set covering 

approach the service level constraint is a hard constraint, it must be satisfied and any candidate 
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schedule either achieve the service level requirement or does not.  But in reality the service level 

is a random variable and we will achieve the SLA target with some probability.  The analysis in 

Section 4-4 examines this explicitly and addresses the trade offs that managers must make in 

terms of cost and the confidence of achieving the service level.  My analysis shows how the cost 

of operation increases non-linearly with the desired confidence level.  This trade-off is obscured 

in the deterministic setting.   

4.9.1.3 The Value of Flexibility 

In Section I examined how the cost of service delivery varies with the flexibility of staffing; that 

is the availability of workers to staff part-time schedules.  Obviously introducing more staffing 

options (feasible schedules) will reduce costs and my analysis quantifies that reduction.  I show 

directly that part time staffing can substantially lower costs when managers are faced with the 

types of seasonality patterns evaluated in this analysis.  I also show that it is only necessary to 

have a few workers wiling to work part time in order to get most of the benefits.  The flexibility 

of the workforce is also a key factor in subsequent analysis.  Set covering models in particular are 

inefficient if the workforce is constrained to full time shifts.   

4.9.2 Contributions  

I believe this analysis makes several important contributions to the literature. This model is in 

several respects quite unique, and represents a fundamental departure from the scheduling models 

in the literature.  As discussed previously, the scheduling problem has two basic components: 

• Server Sizing: determining the number of agents required to achieve a targeted 

performance level.  This is generally accomplished via queuing model analysis assuming 

some type of stationary behavior.   

• Staff Scheduling: determining what schedules to assign agents to in order to satisfy the 

requirements established by the server sizing process.  This is a combinatorial 

optimization problem and is typically solved via integer programming.  

All of the literature I examined treats these two problems as separate and distinct.  The literature 

on staff scheduling is rich but dated; the problem being essentially solved from a theoretical 

perspective.  The literature on server sizing is also rich, but more recent.  Many recent papers 

address aspects of this problem such as uncertainty, time varying rates, etc.  But all of these 

papers find a staffing vector independent of any staffing constraints.  The implicit assumption is 
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that the output of the server sizing problem can be implemented with little loss via some set 

covering approach.  

 

Perhaps the most significant contribution this analysis makes is combining these two steps into 

one.  Throughout this analysis I have shown that no mater how accurate the server sizing 

calculation, staff scheduling constraints can introduce substantial slack into the schedule unless 

the workforce is very flexible.  It is a well established principle in operations research that one 

will obtain sub optimal results by optimizing the components of a system instead of optimizing 

the system globally.  This analysis verifies and quantifies that concept for this particular problem.   

 

Once the problem is model as global optimization problem it is fairly straightforward to introduce 

uncertainty and formulate it as a stochastic optimization problem.  This paper is to my knowledge 

the first application of stochastic programming to the staff scheduling problem.   

4.9.3 Management Implications 

4.9.3.1 Consider Variability 

Managers should consider variability of arrivals when creating staffing plans and/or estimating 

the cost of service delivery. Periods with higher variability require extra staffing capacity to 

properly hedge risk.  Similarly, if projects have the same average volume, but one is more 

variable than the other, the more variable project will be more expensive to service.   

4.9.3.2 Add Flexibility 

Flexibility in staffing can substantially lower the cost of service delivery.  The ability to schedule 

resources to part time staffing allows the staffing profile to better match the demand profile.  

However, as the analysis in section 4-6 shows, a little bit of flexibility goes a long way.  If 

managers can find just a few people to work part-time they can achieve mnost of the benefit that 

comes from part time staffing.   
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4.9.4 Future Research 

4.9.4.1 Break Scheduling 

In this analysis I focused only on scheduling what Pinedo calls solid tours (Pinedo 2005).  A 

relatively straightforward extension allows breaks to be scheduled at the same time as the solid 

tours.  Assume that for each shift we can define a break window, the period during which breaks 

may be scheduled.  For an eight hour (work) schedule, this might be periods 7-12.  (An eight hour 

shift with a one hour break will cover nine elapsed hours or 18 periods.)    Further, assume that 

the actual break time might occur during any two consecutive periods in the window, and that all 

choices are equally likely.  The following figure illustrates: 

Period 1 2 3 4 5 Avg
1 1 1 1 1 1 1.0
2 1 1 1 1 1 1.0
3 1 1 1 1 1 1.0
4 1 1 1 1 1 1.0
5 1 1 1 1 1 1.0
6 1 1 1 1 1 1.0
7 - 1 1 1 1 0.8
8 - - 1 1 1 0.6
9 1 - - 1 1 0.6

10 1 1 - - 1 0.6
11 1 1 1 - - 0.6
12 1 1 1 1 - 0.8
13 1 1 1 1 1 1.0
14 1 1 1 1 1 1.0
15 1 1 1 1 1 1.0
16 1 1 1 1 1 1.0
17 1 1 1 1 1 1.0
18 1 1 1 1 1 1.0

Schedule

 
Figure 4-28 Implicit Break Calculations 

We can then generate the shift mapping coefficients ija in (4.2) as non-integral “expected staffing 

levels.”  The TSF calculation in (4.2) and illustrated in Figure 4-6 does not require integral 

staffing levels.  This is a direct consequence of the integration of the server sizing and staff 

scheduling steps into one optimization problem.   
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4.9.4.2 Alternative Queuing Assumptions 

The service level calculation in this analysis was based on a piecewise linear approximation of 

the Erlang A queuing formula.  While Erlang A is a reasonably good model, it does have some 

limitations, most notably the assumptions of exponential talk time.  These assumptions are easily 

relaxed.  One approach is the simulation based tuning approach discussed in this chapter.  An 

alternative is to use a different queuing model to generate the service level approximation.  This 

is unlikely to generate fundamentally different results, but it could conceivably provide a better fit 

if scheduling a real project.   

4.9.4.3 Simulation Based Heuristic 

The stochastic model presented in this chapter generates a better scheduling that the man value 

model.  The stochastic model does however require a non-trivial amount of computer resources.  

It may be possible to create a faster heuristic that will generate good results.  An algorithm that 

first applies a greedy heuristic to cover local constraints than performs a simulation based fine 

tuning is one promising possibility.     

4.9.4.4 Erlang C Assumption Sensitivity 

The analysis in Section 4-7 shows that the stochastic scheduling model performs consistently 

better than the Erlang C model.  What is a somewhat surprising is how well the Erlang C model 

performs given the questionable assumptions.  I postulate in this dissertation that error created by 

the abandonment and uncertainty assumptions tend to cancel.  Future research could investigate 

the conditions under which the Erlang C model provides reasonably good results.   

4.9.4.5 Algorithm Tuning 

In this dissertation I have developed a model to find an optimal staffing plan when arrival rates 

are uncertain.  I implement a version of the L-Shaped Decomposition algorithm that that provides 

a reasonable tractable solution.  I do not however focus on algorithmic efficiency in this 

dissertation.  I have no doubt that additional analysis could improve the efficiency of the 

algorithm.   
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5 The Medium Term Hiring Model 

5.1 Overview 

The objective of the medium term model is to address capacity management in the 0-3 month 

start up phase of a new project launch.  Since the services provided are highly technical a 

significant training investment is required for new hires.  Significant learning occurs during the 

start up phase and productivity increases rapidly.  The outsourcing contract typically specifies a 

global service level agreement, but the SLA is often not strictly enforced until the third month of 

the launch.  The management problem I address is the development of a staffing plan for a new 

project in the face of uncertain demand and productivity.  Over hiring results in training expenses 

that can not be recouped on other projects, while under hiring results in poor customer service 

and may make it impossible to achieve the service level commitment.  I seek to develop a model 

that finds the optimal level of hiring; that is the level of hiring with the lowest total expected cost 

of operation.     

 

The level of pre-launch hiring is a critical decision in the new project launch process.  The 

following graph outlines the basic timeline of the process.   

 
 Figure 5-1 Project Launch Timeline 

At time t0 a set of resources are hired and entered into a training program.  The company makes a 

hiring decision with an uncertain call volume and talk time.  Training occurs in period zero and at 

time t1 the project launches and the uncertainty in average call volume and initial talk time are 

revealed.  In periods one through three the company provides service, measuring service levels 

which are reported at times t2 through t4.  Periods one and two are considered transition periods, 

significant learning occurs during this period and service level agreements are often not strictly 

P0 P1 P2 P3 

Hire Launch 
Train 

SLA1 SLA2 SLA3 

t0 t1 t2 t3 t4 

Transition 

Period 

Operational 
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enforced.  Period three is typically the first month in which service levels are contractually 

enforced.  Turnover and learning occur throughout the launch process.  

 

Learning occurs through individual and institutional processes.  Individual learning occurs as 

agents become more familiar with the systems and become more productive in solving customer 

problems.  Institutional learning occurs as the project knowledge base, the repository of known 

problems and solutions, is enhanced.  Both types of learning result in increased agent 

productivity.  Individual learning is lost when turnover occurs while institutional learning remains 

in the knowledge base.   In this model I assume turnover occurs only at discrete points in time, t1 

through t4.  We assume hiring is instantaneous, but that training delays the deployment of 

replacement hires by one period.  Average volume is revealed at time t1, but call volumes are 

subject to stochastic variability in all periods.   

 

This model is developed as a multistage decision problem.  The initial decision on hiring occurs 

at time t0.  This decision occurs before average call volumes or learning curve effects are 

revealed.  Recourse decisions are made at times t1, t2, and t3 that include additional hiring and/or 

termination.  The management objective is to minimize the overall expected cost of staffing such 

that the service level agreement is satisfied by period three.   

5.2  Model Formulation 

The model presented here is a refinement of the model in (Robbins and Harrison 2006), modified 

to address the specific issue related to a new project startup58.  I formulate the model as a multi 

stage stochastic program with the following definitions: 

                                                      
58 The Robbins and Harrison (2006) model examined optimal hiring in a generic professional services 
environment where demand and attrition where variable and hiring was limited to certain time periods.  The 
model here tailors that model to the specifics of the project start up situation and explicitly includes 
learning curve and service level agreement considerations.   
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Sets 
T:  time periods 
K: scenarios 
H: linear segments of service level curve 
 
Deterministic Parameters 
w: wage rate 
ht: hiring and training cost 
f:  termination cost 
g: SLA target 
qt: SLA penalty rate in period t 
µ: minimum expected SLA 
r:   expected SLA shortfall penalty rate 

Variables 
Xtk:   resources in period t of scenario k 
Htk:   hires in period t of scenario k 
Ytk:   SLA shortfall in period t of scenario k 
Ftk:   terminations in period t of scenario k  
Ctk:   effective capacity in period t of scenario k 
Stk:   SLA in period t of scenario k 
Et:    Expected SLA penalty 
 

Stochastic Parameters 
mtkh: SLA slope in period t of scenario k 
btkh: SLA intercept in period t of scenario k 
atk:  attrition rate in period t of scenario k 
γtk:  institutional productivity in period t of  
        scenario k 
ρjtk:  individual productivity in period t of  
        scenario k for resources hired in period j 
 
 

Probabilities 
pk: probability of scenario k 
 

( )tk t gkk tk t tk t
t T k K

wX h HMin p fF q Y rE
∈ ∈

+ + + +∑∑   (5.1) 

subject to 

1, 1,tk t k tk tk tk t kX X H F a X− −= + − −  ,t T k K∀ ∈ ∈  (5.2)

( )1,
,

tk tk jtk jk jk tk t k
j T j t

C H F a Xγ ρ −
∈ <

 
= − − 

 
∑  ,t T k K∀ ∈ ∈  (5.3)

tk tkh tkh tkhS m C b≤ +  , ,t T k K h H∀ ∈ ∈ ∈  (5.4)

tk tkY g S≥ −  ,t T k K∀ ∈ ∈  (5.5)

t k tk
k K

E u p Y
∈

≥ − ∑  t T∀ ∈  (5.6)

, , , , , 0tk tk tk tk tk tkX H Y F C S ≥  ,t T k K∀ ∈ ∈  (5.7)

0kX ∈]  k K∀ ∈  (5.8)
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The objective function (5.1) seeks to minimize the expected cost of staffing plus the penalty cost 

associated with failing to meet the SLA target; a penalty is applied for any scenario that does not 

achieve the period’s SLA target.  A second, large penalty is assessed of the expected service level 

in any period it is below some minimal threshold.  This condition ensures that some minimal 

service level target is enforced based on expected volume.  Constraint (5.2) is the staff balance 

constraint; it defines the staff in a period to equal the prior period staff plus new hires, less 

attrition and terminations.  Constraint (5.3) defines the effective capacity of the current staff.  For 

each hiring cohort the factor thkβ  specifies the individual productivity component.  Effective 

capacity is further adjusted by the institutional capacity factor tkα .  Constraint (5.4) defines the 

SLA achieved in period t based on the stochastic demand.  The model is formulated so that 

demand is expressed in terms of the slope and intercept of the linear approximation of the TSF 

curve.   Constraint (5.5) defines the SLA shortfall, the degree to which the realized SLA is below 

the target level g .  Constraint (5.6) calculates the expected SLA shortfall, the degree to which the 

expected service level falls short of the minimum target.  Constraint (5.7) defines non-negativity 

and conditions and constraint (5.8) forces the period 0 hiring decisions to be integral valued.     

 

The most significant uncertainty in demand is in the first period where the overall level of 

demand is uncertain.  After the general level of demand is revealed, period to period volume 

varies stochastically.     

5.2.1 Detailed Decision Process Timing 

The model (5.1) - (5.6) implements the decision process outlined in Figure 5-1.  To further clarify 

how this process works, the following steps present the process in more detail. 

1. At time 0t the firm hires an initial group of agents.  Those agents are trained during 

period 0P .  During this period the agents are paid a salary and the firm makes an 

additional investment in training.   

2. At time 1t the project goes live and begins accepting calls. Calls are received 

throughout period 1P and overall call volumes and call patterns are revealed.  

Throughout period 1P agents may resign reducing the capacity of the project team.   
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3. At time 2t the first period SLA is calculated and any shortfall penalty is assessed.  At 

this time the firm may choose to hire additional agents or terminate existing agents.  

The firm incurs a severance cost for all terminated agents.   

4. Newly hired agents are trained during period 2P  and are unavailable to take calls.  A 

training cost is incurred for these agents and they are paid a salary.  Call volume 

during period 2P  is handled by the original set of agents who are now more 

productive due to learning.   

5. At time 3t the second period SLA is calculated and any shortfall penalty is assessed.  

At this time the firm may again make a hire/termination decision.    

6. During period 3P agents hired at time 3t are trained and paid a salary.  Call volume is 

handled by the remaining agents hired at times 0t through 2t . 

7. At time 4t the third period SLA is calculated and any shortfall penalty is assessed.  At 

this time the firm may again make a hire/termination decision.    
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The detailed decision process is illustrated in the following diagram: 

 
Figure 5-2 Detailed Timeline 

5.2.2 Effective Capacity 

An important consideration in this model is the capacity available to service calls in any time 

period.  I define the base capacity as the total number of agents available in the period. The 

effective capacity is the capacity of the equivalent number of experienced agents; that is the base 

capacity adjusted for training and deflated by the relative productivity of the agent base.   

 

The base capacity is impacted by hiring, firing and attrition.  Net capacity is impacted by agents 

held for training along with learning curve issue.  In any time period average agent productivity 

will vary based on length of service. Throughout this analysis I assume that all terminations, 
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voluntary or involuntary, come from the initial hiring class.  This is a conservative assumption; 

these will be the longest tenured and most productive agents.  I also assume that quits are 

distributed evenly through the time period but firing occurs at the beginning of the period.  

Furthermore, as illustrated in figure 5-2, I assume that no firing occurs at the start of period one.  

In this model firing occurs only to adjust capacity and there is no reason to adjust capacity prior 

to launch.  In reality firing may also occur because of performance issues.  This is a random event 

and for the purposes of this model such firing can be included in the attrition parameter.   

 

The base and effective capacity available in each time period is summarized in the following 

table: 

 

Period Base Capacity Effective Capacity 

1 
0 1 1

.5H H Q+ −  ( )01 0 1.5H Qρ −  

2 
0 1 2 1 2 2

. .5H H H Q Q F+ + − − −  ( )02 0 1 2 2 12 1. .5H Q Q F Hρ ρ− − − +  

3 
0 1 2 3 1 2 3 1 2

. .5H H H H Q Q Q F F+ + + − − − − − ( )03 0 1 2 3 2 3 13 1 23 2. .5H Q Q Q F F H Hρ ρ ρ− − − − − + +  

Table 5-1 Start Up Capacity by Period 

5.2.3 The Multistage Decision Tree 

The uncertainty associated with model parameters in the program (5.1) - (5.6) is represented by 

generating a set of sample paths, or scenarios, against which the optimization is conduced.  

However, the scenario generation problem for the multistage program is considerably more 

difficult than that of the two stage problem analyzed in Chapter 4.  The key issues in the 

multistage problem are nonanticipativity and the multistage scenario explosion problem; issues I 

briefly review in the following sections.   

 

In a multistage stochastic program the decisions made at each stage, 1, 2,...,t T=  are based on 

the observed realizations of the random variables made in all proceeding 

stages, { }1
1 2 1, ,...T

Tω ω ω ω−
−= .  I represent these realizations via a scenario tree; an oriented 

graph that begins with a single root node at level 0, and branches into a series of nodes at level 1, 

each node corresponding to a possible realization of ω in period one. The tree continues to 

branch up to the nodes at level 3.  Each node in the tree has a single predecessor and a finite 
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number of descendants corresponding to the possible realization of the random vector at that 

stage.   A scenario tree that is constructed such that the number of descendants is identical for 

each non-leaf node and the tree is said to be balanced.  If a different number of scenarios are 

allowed at each stage then the tree is said to be unbalanced.   

 

An example of a balanced tree is shown in the following figure  

S1

S2

S3

S4

S5

S6

S7

S8

 

Figure 5-3 Multistage Scenario Tree 

5.2.4 The Scenario Explosion Problem 

This tree in Figure 5-3 is balanced with two realizations per stage.  The tree has a total of eight 

scenarios or possible sample path outcomes.  In general, for this three stage problem the number 

of scenarios in a with tR realizations per stage, the number of scenarios is  

 1 2 3N R R R=  (5.9) 
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The total number of scenarios therefore grows in a rapid, but polynomial, fashion with the 

number of realizations per stage.  The following graph illustrates the number of scenarios 

associated with various realization levels for a balanced tree.   

Multi-stage Scenario Explosion
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 Figure 5-4 Scenario Explosion  

Since the size of the multistage linear program increases nonlinearly with the number of 

scenarios, computational effort will clearly increase significantly as the number of realization per 

stage increases.   

5.2.5 Information Bundles and Nonanticipativity Constraints 

An important practical consideration in multistage programs is the enforcement of 

nonanticipativity.  Simply stated nonanticipativity requires that any decisions made at any stage 

in the decision process are based only on the information available to the decision maker at that 

time; decision making can not anticipate future outcomes.  To facilitate this restriction we need to 

introduce the concept of a bundle.   
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Consider the unbalanced tree depicted in the following figure. 
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Figure 5-5 Unbalanced Scenario Tree 
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Each node has a number of scenarios that pass through that node.  A bundle is the set of all 

scenarios that pass through a specified node. Bundles are indicated by squares and are 

denoted ijB , where i represents the decision stage, and j sequentially indexes the bundles in each 

stage.   

 

Consider the bundle labeled 11B , this bundle is the set of scenarios{ }1 2 3 4, , ,S S S S .  In stage 1 of 

the decision problem, the decision maker can not anticipate which of these four outcomes will 

ultimately be realized and hence his decision must be identical for each scenario.  The notation 

below the square (H2(1-4), F2(1-4)) indicates that the stage 2 hiring and firing decisions for 

scenarios 1-4 must be identical.  Likewise the stage three decisions made at the bundle 

{ }21 1 2,B S S= must be identical.  These conditions are represented via nonanticipativity 

constraints.  In our model we must implement nonanticipativity constraints on both the hiring and 

firing variables, both at stages one and two.  Let 2Ν  denote the set of nonanticipativity 

constraints applied to stage two.  The constraints on hiring can then be represented as  

 2 22 0 2nk k
k K

Hη η
∈

= ∀ ∈ Ν∑  (5.10) 

2nkη  is a coefficient with value in { }1,1− .  By selecting the appropriate pairs the constraints 

enforce nonanticipativity.  For example, consider the bundle 11B in Figure 5-5 and its associated 

hiring constraint.  This constraint can be represented as 21 22 0h h− = .  The scenario tree in Figure 

5-5 requires two nonanticipativity constraints on hiring in stage one, and six constraints in stage 

two.  An identical number of constraints are required on firing.   
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5.2.6 Problem Formulation with Explicit Nonanticipativity 

Given the scenario approach I will use for this problem I can now restate the complete problem 

with explicit nonanticipativity constraints.   

( )tk t gkk tk t tk t
t T k K

wX h HMin p fF q Y rE
∈ ∈

+ + + +∑∑   (5.11) 

subject to 

1, 1,tk t k tk tk tk t kX X H F a X− −= + − −  ,t T k K∀ ∈ ∈  (5.12)

( )1,
,

tk tk jtk jk jk tk t k
j T j t

C H F a Xα β −
∈ <

 
= − − 

 
∑  ,t T k K∀ ∈ ∈  (5.13)

tk tkh tkh tkhS m C b≤ +  , ,t T k K h H∀ ∈ ∈ ∈  (5.14)

tk tkY g S≥ −  ,t T k K∀ ∈ ∈  (5.15)

t k tk
k K

E u p Y
∈

≥ − ∑  t T∀ ∈  (5.16)

22 0nk k
k K

Hη
∈

=∑  
22η∀ ∈ Ν  (5.17)

33 0nk k
k K

Hη
∈

=∑  
33η∀ ∈ Ν  (5.18)

22 0nk k
k K

Fη
∈

=∑  
22η∀ ∈ Ν  (5.19)

33 0nk k
k K

Fη
∈

=∑  
33η∀ ∈ Ν  (5.20)

, , , , , 0tk tk tk tk tk tkX H Y F C S ≥  tk∀  (5.21)

 

In this formulation constraints (5.17) - (5.20) enforce nonanticipativity.  Constraints (5.17) and 

(5.18) enforce nonanticipativity on hiring while constraints (5.19) and (5.20) enforce 

nonanticipativity on firing.   

5.3 Characterizing Uncertainty 

In Chapter 4 we reviewed a scheduling model that considered variability in arrival rates.  In this 

model the variability is stochastic in the sense that outcomes are random realizations from known 

probability distributions.  In the start up phase we face the additional challenge of parameter 
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uncertainty.  In most cases the decision maker does not have hard data on key system parameters 

but must instead make subjective prior estimates.   

 

For the sake of this analysis I will assume uncertainty in the following parameters: 

• Volume: overall average weekly call volume. 
• Arrival Rate Variability: the level of variability in day of week and time of time call 

variability.   
• Talk Time: average service time for experienced agents.   
• Learning Curve: the learning curve coefficients both at the individual and institutional level.   

 

In each case I assume that the true parameter value is unknown and is drawn from some prior 

probability distribution.  In addition to parameter uncertainty the system under analysis here faces 

stochastic variability in key parameters; specifically: 

• Realized Volume: actual call volume presented by day of week and time of day. 

• Attrition: the number of employees who resign in any time period. 

 

For the sake of this analysis, all other parameters (e.g. hiring cost, firing cost and SLA penalties) 

are considered know59.  These parameters may however vary over time; for example hiring may 

be less expensive in the initial period when training costs can be amortized over a large number 

of hires.  In this model I assume that parameter uncertainty is effectively eliminated during the 

first operational period.  During P1 managers have the opportunity to observe four weeks of data 

and make informed estimates of model parameters.  In subsequent periods model parameters 

exhibit only stochastic variability. 

 

The process of generating scenarios then proceeds as follows.  For a given number of realizations 

at each stage, I calculate the total number of scenarios, information bundles, and nonanticipativity 

constraints at stages 2 and 3.  For each realization at stage 1 a set of parameter values are sampled 

that hold for that branch of the tree.  In each stage stochastic variability is added to the service 

level curves by adding an error term to the intercept of the service level curves.  Attrition rates are 

                                                      
59 I also fix the institutional productivity factor to 1 for this analysis and consider only the impact of 
individual productivity.  While the distinction between individual and institutional productivity is 
theoretically appealing, I lack the data to make independent estimates.  It’s also apparent from the analysis 
that follows that the level of post launch hiring is small enough so that the distinction has no practical 
impact on the results.   
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estimated by calculating a random binomial variable based on the period average attrition and an 

average estimate of staffing.  Individual productivity is calculated by calculating the average 

productivity rate from the learning curve and adding a stochastic error term.   

5.3.1 Service Level Approximations 

5.3.1.1 Overview 

A key consideration in the practical application of this program will be the development of a set 

of service level approximation curves; the curves whose coefficients create the piecewise linear 

approximation of the service level achieved for various staffing level decisions.  These curves are 

represented in the problem formulation as the coefficients tkhm  and tkhb in equation (5.14).     

5.3.1.2 TSF Curve Generation Process 

To develop the service level approximation curves I utilize the procedure described below.  Let 

N be the average weekly volume, T the average talk time, dv be the daily variability scale factor, 

and tv be the time period variability scale factor.   

1. Identify a template project profile that has the 
approximate seasonality pattern of the new project.   

2. Define prior probability distributions for stochastic 
parameters, N , T , dv , tv  

3. Generate a uniform design for four factors and 10 design 
points. 

4. Define S different staffing levels.   
5. For each design point, set the total volume and scale the 

variability of arrivals appropriately.  Generate five 
batches of 25 scenarios each.   

6. For each staff level find the associated service level by 
solving problem. 

7. Calculate a slope and intercept for each adjacent pair of 
staffing levels using the average of the five batches.   

Figure 5-6 Service Level Approximation Process 

5.3.1.3 Service Level Maximization Program  

In step six of the process outlined in Figure 5-6 we must find the service level for a sample call 

pattern for a fixed staffing level.  The scheduling algorithm in Chapter 4, (4.1) - (4.7) solves a 

related problem - finding the minimum cost schedule to achieve a desired service level.  We can 
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modify this program to find the maximum expected service level possible for a given staffing 

level. I call this program the service level maximization problem.  Using the notation from 

Chapter 4 the model can be expressed as 

max
ik

i I
k

k K ik
i I

y
p

n
∈

∈
∈

∑
∑ ∑

  (5.22) 

    subject to 

ik ikh ij j ikh
j J

y m a x b
∈

≤ +∑  , ,i I k K h H∀ ∈ ∈ ∈  (5.23)

ik iky n≤  ,i I k K∀ ∈ ∈  (5.24)

ij j i
j J

a x µ
∈

≥∑  i I∀ ∈  (5.25)

j jx m≤  j J∀ ∈  (5.26)

j
j J

x N
∈

≤∑   (5.27)

,j ikx y+ +∈ ∈] \  , ,i I j J k K∀ ∈ ∈ ∈  (5.28)

 

The objective function (5.22) seeks to maximize the expected service level; the ratio of calls 

answered within service level to the total number of calls.  As in the Chapter 4 program, 

constraints (5.23) and (5.24) create a piecewise linear approximation of the service level curve.  

Equation (5.25) creates a lower bound on the total number of agents scheduled in each period and 

this coefficient is set to achieve at least a 50% expected service level and guarantee that at least 

two agents are always staffed.  Constraint (5.26) sets an upper limit on the total number of agents 

that can be scheduled to each shift, and constraint (5.28) enforces non-negativity and integrality 

conditions.   

5.3.2 The Base Case Example  

To illustrate the analysis process I’ll work through an example.  Assume that we are planning a 

launch of a new corporate support project that operates 24x7.  The project is subject to an 80/60 

SLA.  We first pick a similar project profile, which in this case is Project J.  In many cases 

detailed call volume data is not available, for example if multiple help desks are being 

consolidated.  In this case assume that the best estimate is that call volume will average 5,000 
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calls per week, and that we are reasonably sure volume will be at least 4,000 and no more than 

7,000 calls per week.  With limited data a common prior distribution is the triangular distribution 

(Law 2007).  So for planning purposes we assume that the true expected average weekly volume 

has a triangular distribution with parameters (4000, 5000, 7000).  Talk time for corporate projects 

tends to be in the range of 9 to 14 minutes.  Without empirical data I will assume that the true 

average talk time is drawn from a uniform distribution on this range.  Finally we must develop a 

prior estimate for the variability of arrivals, relative to project J.  I will assume that the scaling 

factor is uniformly distributed on [.75, 1.25].  

 

Using these distributions I use a 10 point uniform design in four factors to generate 10 design 

points. The Uniform Design is summarized in the following table: 

DP Volume Talk Time
Daily 

Variability

Time 
Period 

Variability
1 4,387 10.75 0.88 0.98
2 5,183 11.75 1.08 0.78
3 5,775 9.75 0.83 0.83
4 5,025 12.25 0.78 1.18
5 5,357 10.25 1.23 1.03
6 5,551 13.75 0.93 1.08
7 6,452 12.75 0.98 0.93
8 6,051 11.25 1.13 1.23
9 4,671 13.25 1.18 0.88

10 4,866 9.25 1.03 1.13  
Table 5-2 Uniform Design for Service Level Approximations 

The Uniform Design approach ensures that the 10 points effectively fill the four dimensional 

design space.  

 

At each design point I generate 25 scenarios.  The service level maximization problem (5.22) - 

(5.28) is solved for 8 staffing levels (15,20,25,30,35,40,50,65). 
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Executing this process results in the service level curves shown in the following figure: 
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Figure 5-7 Estimated Service Level Curves 

Each of the 10 lines in this figure represents, based on the assumed priors, an equally likely 

aggregate service level curve.   

5.4 Empirical Properties of the Sampled Problem 

5.4.1 Overview 

Given the scenario explosion problem illustrated in Figure 5-4, a key decision will be the number 

of realizations to choose when solving the sample path (scenario) approximation problem.  

Increasing the number of scenarios is likely to yield a more accurate result but at a rapidly 

increasing cost.  In this section I examine the properties of the sampled problem as the number of 

scenarios increases.  Because parameter uncertainty is revealed in the first stage and subsequent 

stages exhibit only stochastic variability, it is reasonable to assume that stage 1 realizations have a 

bigger impact on the outcome than subsequent stages.  For this reason I implement an unbalanced 

tree approach with more realization in the first stage. 



 

   

 175 

 

 

 

In the following section I examine the sampling properties of the MIP along with the LP 

relaxation, i.e. a problem that allows non-integral stage 0 hiring decisions.   

5.4.2 Sampling Properties of the LP Relaxation 

I first examine the sampling properties of the relaxed problem.  I use an unbalanced tree where 

the number of realizations in stage one is larger than the number of realization in stages two and 

three.  I use the same number of realization in stages two and three, and examine two cases where 

each later stage has either 10 or 15 realizations.   

5.4.2.1 N/10/10 Sampling 

In this analysis I keep second and third stage realizations at 10 each and vary stage one 

realizations between 10 and 80.  This results in a set of problems where the number of scenarios 

varies from 1,000 to 8,000.  In each case I generate a batch of 15 independent scenario files. From 

an analysis perspective I am interested in the objective value, the stage 0 hiring decision and the 

solution time; each of which will be a random variable.    

 

The results of this analysis are summarized in the following table: 

Scenarios Mean
Standard 
Deviation Mean

Standard 
Deviation Mean

Standard 
Deviation

1,000 331,753 11,953 42.5 1.92 7.9 1.87
1,500 331,158 13,239 42.2 1.82 12.7 2.88
2,000 335,744 12,341 42.4 1.46 25.5 7.15
2,500 324,385 4,992 41.4 0.76 43.6 14.84
3,000 326,976 7,542 41.6 0.97 79.1 40.84
3,500 334,215 8,380 42.5 1.16 95.7 70.78
4,000 330,863 5,884 42.1 0.80 116.5 37.13
4,500 326,974 6,363 41.4 0.91 124.3 44.32
5,000 332,040 6,112 42.2 0.83 314.3 179.63
5,500 331,276 7,007 42.1 0.89 263.6 164.36
6,000 331,631 9,359 42.0 1.16 317.9 277.07
6,500 334,711 4,016 42.5 0.61 351.8 185.34
7,000 335,213 6,368 42.6 0.78 417.6 338.40
7,500 333,057 5,551 42.1 0.72 503.7 434.20
8,000 334,161 4,245 42.4 0.53 605.5 417.78

Objective Stage 0 Hiring Reource Use

 
Table 5-3  Empirical Properties of N/10/10 Models 

A few observations are immediately apparent.  The variability of the objective and stage zero 

hiring decision both decrease with the number of scenarios, but do so at a relatively slow and 

somewhat erratic rate.  The sample standard deviation sometimes increases with increased 
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samples, and in general the difference between sampled observations of the standard deviation 

from adjacent rows in table 5-3 is not statistically significant at the .95 level.   Similar results hold 

for the stage zero hiring decision.  The mean values for each of these quantities also change very 

little with sample size and a paired T-Test fails to reject the null hypothesis that either the 

objective or the hiring decision means are different from row to row.   

 

A graphical view further illustrates these results.  The following graph shows the objective values 

for each of the 15 samples at each scenario level.  The small points represent individual samples 

while the larger square represents the sample average.   
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Figure 5-8 Objective Values for Sample Problems (N/10/10) 

The variance of the samples is seen to decline slightly as the number of scenarios increases but 

the sample average seems to show only minimal variation.  Note that unlike the two stage 

problem, the sampled problem does not necessarily exhibit a bias level decreasing in the number 

of scenarios.  Similarly, if we examine the distribution of the hiring decision shown in the 

following graph we see a similar pattern.   
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Period 0 Hiring Decision (n/10/10)
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Figure 5-9 Initial Hiring for Sample Problems (N/10/10) 

Again the variance is slowly decreasing with an increased number of scenarios, but the sample 

average values do not change in a statistically significant manner.  However, if we examine the 

computational effort required to solve the problems, expressed as the resource usage statistic, we 

see a clear pattern.   
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Figure 5-10 Resource Use for Sample Problems (N/10/10) 
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The average time required to solve the problem increases in a non-linear fashion with the number 

of scenarios.  (Fitting a Power curve in Excel yields the function 6 2.17362 10y x−= ⋅ , where x is the 

number of scenarios and y is the resource use time in seconds.  This curve matches the data with 

an R2 value of .985.)   

 

In summary, adding more scenarios has a significant negative impact on computational costs, 

along with a minor positive impact on solution quality when using 10 samples in each of the later 

stages.  It may be possible that 10/10 sampling is not sufficient so in the next section I perform a 

similar test with 15 samples in each of the later stages.   

5.4.2.2 N/15/15 Sampling 

In this section I perform a similar test, but allow for 15 samples in each of the later stages.  In this 

situation the total number of scenarios is equal to 225 times the number of stage one realizations.  

I again allow the number of first stage realizations to vary from 10 to 80, which implies the total 

number of scenarios varies from 2,2,50 to 18,000.  The results are summarized in the follow g 

table.   

Scenarios Mean
Standard 
Deviation Mean

Standard 
Deviation Mean

Standard 
Deviation

2,250 331,867 12,274 42.7 1.97 42.8 10.06
3,375 331,410 13,543 41.9 1.81 82.8 39.11
4,500 334,829 11,519 42.4 1.36 162.4 73.51
5,625 326,697 5,936 41.6 0.82 480.2 245.85
6,750 326,867 7,596 41.7 0.98 404.3 134.90
7,875 334,226 8,315 42.6 1.18 567.8 377.92
9,000 331,780 4,528 42.2 0.65 755.5 533.46

10,125 326,329 5,961 41.5 0.86 758.0 274.68
11,250 332,327 6,088 42.0 0.82 1,487.0 1238.63
12,375 331,347 6,709 42.2 0.84 1,188.6 501.18
13,500 330,851 9,031 42.0 1.13 1,451.1 1132.20
14,625 335,270 4,089 42.5 0.61 1,406.2 1273.69
15,750 335,468 6,085 42.5 0.76 2,232.8 1186.20
16,875 332,135 4,973 42.0 0.65 1,761.8 566.22
18,000 334,734 4,505 42.5 0.56 2,157.0 474.68

Objective Stage 0 Hiring Reource Use

 
Table 5-4 Empirical Properties of N/15/15 Models 

The general convergence results are similar to the previous case, but the computational costs are 

much higher.  The general conclusion is that the additional late stage realizations add 

considerable cost but little in the way of precision. 
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5.4.3 Sampling Properties of the MIP 

I now examine the empirical properties of the mixed integer problem, the problem where the 

stage zero decision is constrained to be integer valued.  Constraining the stage 0 decision clearly 

leads to an actionable decision, which the relaxation does not, but presumably at a slightly higher 

cost.  Given that the MIP has only a single variable to branch on, the increased computational 

cost should be minimal.   

 

These expectations are confirmed in the following data that list the results from solving a MIP 

with n/10/10 scenarios.   

Scenarios Mean
Standard 
Deviation Mean

Standard 
Deviation Mean

Standard 
Deviation

A 1,000 332,356 11,694 43.0 1.66 8.0 0.52
B 1,500 331,568 13,237 42.6 1.90 22.1 7.42
C 2,000 336,400 12,314 42.8 1.49 41.8 26.53
D 2,500 325,200 4,896 42.0 0.74 63.9 33.44
E 3,000 327,674 7,619 42.1 0.99 79.5 27.64
F 3,500 334,940 8,411 43.1 1.10 106.4 58.14
G 4,000 331,553 5,934 42.7 0.85 122.5 56.37
H 4,500 327,691 6,309 42.0 0.88 161.2 41.95
I 5,000 332,677 6,133 42.7 0.84 196.1 41.94
J 5,500 331,843 7,090 42.6 0.97 311.1 100.83
K 6,000 332,105 9,353 42.3 1.17 317.7 81.36
L 6,500 335,577 3,879 43.1 0.57 1,029.8 773.18
M 7,000 335,886 6,550 43.1 0.94 391.4 158.97
N 7,500 333,817 5,590 42.7 0.79 403.9 81.45
O 8,000 334,741 4,250 42.9 0.57 610.5 365.89

Objective Stage 0 Hiring Reource Use

 
Table 5-5 Empirical Properties of N/15/15 MIP Models 
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If we again look at the results graphically we see the following: 
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Figure 5-11 Objective Value for MIP N/10/10 Problem 

The objective value is again distributed such that the variance declines slightly with the number 

of scenarios and the batch averages are within a fairly tight range.  The next figure examines the 

stage 0 hiring decision.   

Period 0 Hiring Decision MIP (n/10/10)
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Figure 5-12 Initial Hiring Value for MIP N/10/10 Problem 
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In this case the graph is a bit different than the graph of the relaxation in that the hiring variables 

are all integer valued, while the batch average continues to be non-integer.  The individual 

solutions include up to six discrete values in the low scenario case.  Even in the high scenario 

situations three different candidate solutions are identified in each batch.   

 

From a resource perspective the addition of the integrality constraint adds to the cost.  However, 

since their is only a single variable to branch on, the additional cost is relatively small.   
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Figure 5-13 Resource Usage for the MIP n/10/10 Problem 

5.4.4 SAA Based Algorithm 

The results of the previous section suggest that finding a precise solution form a single 

optimization run may be quite expensive.  They also suggest however that on average, even low 

scenario solutions provide good estimates.  This suggests a batch solution algorithm that is a 

variation of the Sample Average Approximation approach and has three main steps 

• Identify Candidate Solutions: solve a batch of sample path problems to identify one or more 
candidate solutions.   

• Evaluate Candidates: calculate the expected outcome for each candidate against a reference 
set of scenarios.  Select the candidate with the lowest expected cost. 

• Calculate Bounds: calculate statistical bounds on the outcome and optimality gap.   
 

The algorithm is presented in detail in the following figure 
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1. Identify Candidate Solutions 

a. Initialization 
i. Define realizations per stage 1 2 3, ,R R R , and 

calculate the number of scenarios 1 2 3SN R R R=  

ii. Define BN the number of batches 

b. Generate BN batches of SN scenarios each 

c. Solve BN  optimization problems finding candidate 

optimal solutions 0Ĥ and objective value ẑ  
2. Evaluate Candidates 

a. Generate an independent set of CN comparison 
scenarios 

b. Calculate the expected outcome of each candidate 
solution 

c. Select the best outcome  
d. If the selected outcome is superior to the second 

best at the .01α =  level then continue, else 
repeat Step 2 with a larger sample size 

3. Calculate Bounds 
a. Generate an independent set of EN evaluation 

scenarios ( E CN N> ) 
b. Calculate the expected outcome of selected 

solution for each EN scenario 
Figure 5-14 Sample Average Algorithm 

5.5 Numerical Analysis 

5.5.1 Screening Analysis 

In this section I perform a series of computational experiments to estimate the optimal level of 

hiring and expected cost for various project conditions.  As an initial objective I seek to determine 

what factors have the biggest impact on the optimal level of excess hiring.  To accomplish this 

goal I conduct a preliminary screening experiment.  I use a fractional factorial experiment of 

resolution IV.  This experiment will allow the unconfounded estimation of all main effects.  

 

In this initial screening I consider the following seven factors: 

1. Hiring Cost: the cost to hire new agents in period 0.   

2. Termination Cost: the cost to terminate an employee. 
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3. SLA Target: the contractual SLA target.   

4. Operational Penalty Rate: the penalty rate per point of SLA shortfall assigned 

beginning in period three.    

5. Hiring Cost Differential: the incremental cost, relative to the period zero hiring 

cost, to hire agents in periods 1-3.  

6. Period Two Penalty Rate: the penalty rate per point of SLA shortfall assigned 

in period two.   

7. Minimum Launch Expected SL: the minimal expected service level allowable 

in the first period.   

The first four factors essentially address base operating characteristics of the system, such as the 

cost to hire and fire along with the financial constraints placed on SLA attainment.  Factors five 

through seven are focused on the transition phase.  Factor five estimates the inefficiency from last 

minute hiring, while factors six and seven indicate how poor service level performance can be 

during the transition period; factor 6 specifies how severely shortfalls are penalized in the second 

month of operation and factor seven specifies the required expected performance in the first 

month of launch.   

 

The experimental design is a 16 run 7-3
IV2 experiment and allows the unconfounded estimation of 

all main (single factor) effects.   
A B C D E F G Factor Definitions - +

1 - - - - - - - A Hiring Cost 500 1500
2 + - - - + - + B Hiring Cost Differential 0% 50%
3 - + - - + + - C Termination Cost 0 3200
4 + + - - - + + D SLA Target 80% 90%
5 - - + - + + + E Operational Penalty Rate 50,000 320,000
6 + - + - - + - F Period Two Penalty Rate 0% 100%
7 - + + - - - + G Min Launch Expected SL 50% 75%
8 + + + - + - -
9 - - - + - + +

10 + - - + + + -
11 - + - + + - +
12 + + - + - - -
13 - - + + + - -
14 + - + + - - +
15 - + + + - + -
16 + + + + + + +  

Table 5-6 Screening Analysis Design of Experiment 
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At each design point I first solve the Mean Value problem.  I then solve the stochastic problem 

using the process outlined in 5-13.  I solve 15 instances of the problem at each design point using 

a 30/10/10 realization pattern for 3,000 scenarios.  I then run an evaluation comparing the average 

hiring level, rounded to the nearest integer, with the four closest neighboring solutions.  The 

comparison is run against a set of 9,000 scenarios generated from a 60/15/10 realization pattern.  

The solution with the best expected outcome is selected and the results from the 9,000 scenario 

run are used to calculate the statistical properties of the outcome.  The mean value solution is 

evaluated against the same set of scenarios to estimate its expected outcome.  The Value of the 

Stochastic Solution (VSS) is then calculated as the difference between the expected outcome of 

implementing the mean value solution and implementing the stochastic solution. 

 

The results of this analysis are summarized in the following table.  The table lists the coded value 

of each factor along with the hiring level determined by the mean value program and the hiring 

level selected through the evaluation process outlined above.  The table also lists the VSS 

calculated.   

DP A B C D E F G
MV 
Hire

Best 
Hire

Best 
Outcome VSS VSS %

1 - - - - - - - 38 38 266,460 0 0.0%
2 + - - - + - + 50 49 356,154 3,408 0.9%
3 - + - - + + - 50 52 340,442 3,360 1.0%
4 + + - - - + + 50 49 375,309 600 0.2%
5 - - + - + + + 50 50 367,397 0 0.0%
6 + - + - - + - 43 45 390,142 2,393 0.6%
7 - + + - - - + 50 49 328,474 5,435 1.6%
8 + + + - + - - 40 38 318,460 7,777 2.4%
9 - - - + - + + 54 56 387,236 900 0.2%

10 + - - + + + - 56 60 469,510 6,769 1.4%
11 - + - + + - + 50 49 338,152 2,162 0.6%
12 + + - + - - - 39 38 346,832 1,633 0.5%
13 - - + + + - - 38 38 309,384 0 0.0%
14 + - + + - - + 50 49 388,464 0 0.0%
15 - + + + - + - 54 52 401,208 623 0.2%
16 + + + + + + + 56 58 491,623 1,136 0.2%  

Table 5-7 Experimental Results 

A few important observations are apparent from this data.  First and foremost, the mean value 

problem often provides very good results.  In several cases the mean value problem finds the 

same hiring level as the stochastic problem and hence the VSS is zero.  In cases where the 
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stochastic model finds a different solution, the Value of the Stochastic Solution is relatively 

small.  In the best case, the VSS represents about a 2.4% improvement over the mean value 

solution.  It is apparent from this analysis that the main benefit from the stochastic model will not 

be in improving the objective, but rather in understanding the statistical distributions of the 

outcomes.  I return to this topic later, but first analyze the impact of the experimental factors on 

the outcomes.   

 

The following table summarizes the Main Factor Effects of each experimental factor on two 

response variables, the stage zero hiring level and the expected cost of operation over the start-up 

period.   

Factor Definitions Hiring Objective
A Hiring Cost 0.06 12,429 *
B Hiring Cost Differential 0.00 180
C Termination Cost -0.38 3,596 *
D SLA Target 0.94 12,174 *
E Operational Penalty Rate 0.56 3,344
F Transition Penalty Rate 2.31 * 17,828 *
G Min Launch Expected SL 1.50 * 5,949 *

Average 48.13 367,203

* Indicates significance at the 95% level

Main Effects

 
Table 5-8 Main Effects on Hiring and Objective 

5.5.1.1 Effects on Hiring 

The data in Table 5-7 shows that for this particular volume estimates the average optimal hiring 

level is just under 49, but varies from 38 to 56.  Table 5-8 decomposes this variability into the 

effect that results from each variable.  The most significant factors to impact the stage zero hiring 

decision relate to the degree that the SLA must be met during the transition phase; factors F and 

G are in fact the only statistically significant factors.  In a tight start up, where the transition 

penalty and minimum staffing levels are both high, the optimal hiring is on average higher by 

about 7.6 individuals, an increase of nearly 16% from the mean.   

 

Other factors have a much smaller impact on initial hiring, and are not statistically significant.  

Raising the steady state service level requirement only increases hiring by about 1.8 on average. 
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A tighter service level requirement, expressed as a higher operational penalty rate, increase hiring 

by only about 1 full time equivalent.  Conversely, making it more expensive to terminate 

employees depresses initial hiring by only about 1 FTE.  Finally, the cost of hiring has very little 

impact on the optimal number to hire as these costs are dominated by other costs in the decision 

process.     

5.5.1.2 Effects on Objective 

The last column of Table 5-8 provides additional information about how these factors drive the 

expected cost of operation.  Again, the service level requirements during transition have a 

practical and statistically significant impact on the expected outcome.  Tight transition 

requirements add about 12.9% to the start up cost.  The steady state service level requirement and 

penalty rate also add significantly to the overall cost.   

 

Termination costs on the other hand have a more significant impact on the total cost than they do 

on the stage zero hiring decision.  While a high cost of terminating employees adds to the total 

cost of operation, it has a relatively limited impact on the initial decision.  The ability to downsize 

the staff once uncertainty is revealed is a valuable recourse option, even if the cost is high.  Since 

only a few agents will be terminated the increased cost of termination does little to lower the 

initial hiring level.  

 

Similarly, the cost of hiring has a significant impact on the cost of operation but almost no impact 

on the hiring decision; the hiring cost shifts the cost by 6.8% but the hiring decision by only .4% 

on average.  The rationale is that while the cost to hire has a major impact on the cost to start up 

the project, there are no other options in this model.    

5.5.2 Distribution of Outcomes 

 The results of the previous section indicate that solving the stochastic model may lead to 

moderately reduced cost launches as compared to solving the mean valued solution.  However, in 

addition to decreasing the expected cost of operation, the stochastic model provides the important 

of providing insight to decision makers on the statistical distribution of outcomes.  The mean 

value model provides a single point-estimate of model parameters while the stochastic model 

allows us to estimate the statistical distribution of outcomes.   
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In the solution process outlined in Figure 5-13 we estimate the outcome of the candidate solution 

by evaluating the solution against a set of evaluation scenarios.  The expected outcome for any 

random parameter is the average result over all the evaluations scenarios.  If we examine the 

scenario results in detail we can estimate the distribution.   

 

As an example, the following figure plots a histogram of the objective value generated for DP1.  

Recall from table 5-7 that the expected outcome of this startup is $266,458.  
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Figure 5-15 Distribution of Start Up Costs – DP1 

The graph shows that the outcome is positively skewed with outcomes as much as $83,000 (31%) 

above the mean possible.  In this particular case there is a 21% probability that start up costs will 

exceed $300,000. A similar analysis generates the following histogram of the ending staff level. 
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Distribution of Ending Staff Level - DP1
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Figure 5-16 Distribution of Ending Staff Level – DP1 

The mode of this distribution is 34, while the initial hiring level was 38; indicating that on 

average the staff level will decrease by 4 agents over the course of the start-up.  In this particular 

case there is in fact an approximately 60% probability that the ending staff level will be less than 

the number originally hired.  The staff level reduction occurs because of attrition, but also 

because of terminations.  In this particular case the expected number of post launch terminations 

is 1.6.  The logic is fairly straightforward.  Given uncertainty and learning curve issues the 

optimal policy calls for acquiring some spare capacity prior to launch.   

 

The following figure plots the distribution for the number of agents hired and fired post launch.  It 

may seem odd that the expected number of hire and fires are both positive, but the specific action 

will depend on how demand is realized. In rare cases the model may call for post launch hiring 

and firing in the same scenario.   
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Distribution of Post Launch Staffing Actions - DP1
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Figure 5-17 Distribution of Post Launch Hiring and Firing – DP1 

The above graphs show the distribution of key outcome graphically for a single design point.  To 

get a sense of how these distributions may vary with the model’s control factors I list some 

summary statistics in the following tables. The first table summarizes the distribution of the 

objective and ending hiring level, while the second summarizes the post launch hiring and firing.   

 



 

   

 190 

 

 

DP Avg SD Min Max Range Avg SD Min Max Range
1 266,460 24,496 227,229 345,676 118,447 36.1 5.8 24.9 53.6 28.7
2 356,154 19,052 322,936 445,399 122,463 36.6 5.2 26.1 52.8 26.7
3 340,442 59,465 284,468 592,640 308,172 36.7 5.3 26.1 52.1 26.0
4 375,309 49,156 322,376 551,197 228,821 36.1 4.9 26.0 49.0 23.0
5 367,397 62,719 313,761 635,479 321,718 45.3 2.2 36.8 52.8 16.0
6 390,142 60,797 327,385 599,291 271,906 40.9 2.0 33.1 46.7 13.7
7 328,474 7,180 308,240 368,134 59,894 44.3 2.2 36.0 49.7 13.7
8 318,460 33,559 276,458 444,065 167,607 38.0 5.1 28.6 55.6 27.0
9 387,236 56,808 318,638 567,845 249,207 43.4 5.2 31.2 56.0 24.8

10 469,510 73,557 395,926 747,177 351,252 44.8 6.1 31.6 61.5 29.9
11 338,152 31,519 289,148 449,185 160,037 44.5 7.1 31.1 67.2 36.1
12 346,832 38,252 282,628 453,562 170,934 36.2 2.7 28.6 46.5 18.0
13 309,384 35,323 247,620 422,780 175,160 46.5 8.4 30.6 70.9 40.3
14 388,464 18,862 357,240 462,380 105,141 44.3 2.2 36.0 49.0 13.0
15 401,208 63,593 331,165 605,114 273,949 47.0 2.3 38.2 52.0 13.8
16 491,623 74,325 421,963 778,523 356,561 52.5 2.6 42.6 59.1 16.4

Cost Ending Staff

 
Table 5-9 Summary of Cost and Ending Staff 

DP Avg SD Min Max Range Avg SD Min Max Range
1 3.41 4.91 0.00 16.72 16.72 1.56 2.34 0.00 8.84 8.84
2 0.21 0.80 0.00 4.53 4.53 8.31 5.50 0.00 19.84 19.84
3 0.02 0.16 0.00 1.23 1.23 10.90 6.02 0.00 22.83 22.83
4 0.00 0.00 0.00 0.00 0.00 8.63 5.58 0.00 19.84 19.84
5 0.14 0.62 0.00 3.85 3.85 0.00 0.00 0.00 0.00 0.00
6 0.20 0.66 0.00 3.19 3.19 0.00 0.00 0.00 0.00 0.00
7 0.05 0.29 0.00 2.17 2.17 0.00 0.00 0.00 0.00 0.00
8 3.92 5.40 0.00 17.79 17.79 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 7.63 5.91 0.00 20.53 20.53

10 0.08 0.49 0.00 3.58 3.58 10.06 6.76 0.00 23.53 23.53
11 3.22 5.34 0.00 18.65 18.65 2.99 3.56 0.00 12.53 12.53
12 2.01 2.67 0.00 9.95 9.95 0.08 0.33 0.00 2.53 2.53
13 12.99 9.08 0.00 32.86 32.86 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.02 0.12 0.00 0.84 0.84 0.00 0.00 0.00 0.00 0.00
16 0.08 0.53 0.00 4.00 4.00 0.00 0.00 0.00 0.00 0.00

Post Launch Hiring Post Launch Firing

 
Table 5-10 Summary of Post Launch Staffing Actions 

The data shows the wide range of outcomes possible.  In many cases the cost of operation varies 

by more than $250,000, and final staffing varies by as much as 40.   
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5.6 Summary and Conclusions 

5.6.1 Summary 

This model examines the issue of how to staff a new call center outsourcing project in the face of 

uncertainty about demand.  I developed a model that is motivated by the empirical analysis in 

Chapter 2 and extends the scheduling model developed in Chapter 4.  I use a version of that 

model to generate an estimated aggregate service level curve for a range of possible demand 

outcomes.  Given those estimates I develop a multistage model of the project start-up process that 

accounts for agent learning, and attrition.   

 

The model is developed as a multistage stochastic problem, with an integer constrained decision 

in the first stage.  The analysis shows that an approach, based on Sample Average 

Approximations, provides tractable solutions to this problem, exploiting the fact that the stage 0 

decision is scalar valued.   

 

Detailed numerical analysis shows that the stochastic formulation provides only a moderate 

benefit in terms of lowering the cost of the launch.  It does however provide a significant 

qualitative benefit in terms of contingency planning by providing estimated distributions of key 

parameters such as total cost, hiring, or firing.  Given these distributions, managers can make 

more informed decisions regarding pricing as well as staffing contingencies.   

 

A key insight in this model is the importance of the transition phase of the start-up.  Given the 

nature of the learning curve, it is extremely difficult, and expensive, to achieve targeted service 

levels in the first few month of the launch.  Managers have responded by attempting to lower 

expectations for the service level over the first few months of launch.  My analysis supports that 

strategy, but also helps to quantify the costs associated with attempting to meet service level 

commitments in the first few moths.  The model also helps to quantify the degree to which the 

project should be overstaffed at start-up, a practice currently mot employed at the company I 

analyzed.  The analysis indicates the combined effects of learning and attrition provide strong 

incentive to err on the side of over hiring.   
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5.6.2 Contributions 

Like the other chapters in this dissertation, this chapter presents the development and evaluation 

of an applied OR model. This model is, to my knowledge, relatively unique in the literature.  I 

have seen no other model that addresses the issue of project staffing in a start up outsourcing 

project.  Perhaps this model is too application specific for presentation in the OR literature, but it 

does, in the author’s opinion, synthesize multiple concepts to address an important practical issue.  

The model integrates research on queuing theory, call center operations, stochastic optimization 

and learning curves. The primary contribution of this particular chapter is the integration of these 

concepts into a formulation that can solve a specific problem of practical importance.    

5.6.3 Management Implications 

The analysis presented in this chapter identifies several issues with important managerial 

implications.  The most important implications arise from issues related to the learning curve.  At 

launch time all agents are inexperienced and subject to rapid productivity improvement.  Failure 

to account for this learning when planning a startup, as is the case in the company I studied, will 

often lead to significant start up challenges.  A second key implication is the need to plan for 

staffing flexibility.  The analysis shows that the optimal staffing level at start-up time is not likely 

to be the optimal staffing level once the transition phase has been completed. Managers must 

maintain the flexibility to add additional staff, or if necessary to remove staff once uncertainty is 

revealed and learning has occurred.  Lastly, is the issue of the quality of service during the 

transition phase.  In projects where learning is significant rapid attainment of service level 

objectives is possible, but very expensive.   

5.6.4 Future Research 

Several extensions to this model are possible.   

• Alternative Utility Functions: the model has implicitly assumed a risk neutral decision 

maker seeking to minimize expected cost.  The stochastic model formulation allows for 

other utility models.  An approach such as minimax that seeks to minimize the maximum 

cost can be implemented quite easily.   

• Investment in Learning: the learning curve has a significant impact on the project start-

up.  Throughout this analysis we assumed that the learning rate was exogenous.  One 

potential extension of this research is to examine the benefit that would accrue from 
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investments that increase the rate of learning, for example higher levels of investment in 

training or knowledgebase development.   

• Phased Start-Up: the analysis presented here is based on a single cut over of support 

services.  The model is however motivated in part by the service level collapse observed 

during a phased roll out process.  Each time a new cutover occurred, things became 

worse as the project got further and further behind.  Extending this model to look at a 

phased rollout would be difficult, but beneficial.   
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6 The Cross Training Model  

6.1 Overview 

The cross training model further examines the operations of a call center.  I investigate the option 

of cross training a subset of agents so that they may serve calls from two separate projects, a 

process I refer to as partial pooling.  Since queuing systems have natural economies of scale 

cross training agents will increase overall system performance.  However, given the investment 

required in training, and the potential requirement to pay a differential wage, it may not be 

beneficial to cross train all agents.  Alternatively, consider the case of a multi-lingual call center.  

Staffing the call center with multi-lingual agents will increase the efficiency of the center.  But 

presumably multi-lingual agents are more difficult to find and can command a premium wage.   

 

This model seeks to quantity the benefits of partial pooling and characterize the conditions under 

which pooling is most beneficial.  We then determine the optimal number of agents to cross train 

given the training investment and incremental wage paid to cross skilled agents.  

 

The staffing challenge in this model is to find the optimal mix of agents so as to achieve the 

global SLA target with a high probability and at the lowest possible cost.  In partial pooling a 

small subset of super agents are cross trained to take calls from two projects.  The call center can 

then be viewed as a skills-based routing (SBR) model with two skills.  Super agents possess both 

skills, while base agents have only one skill set.  It is clear that cross training all agents will 

increase the service level of the call center for a fixed level of staffing.  My hypothesis is that 

cross training a small number of agents can deliver a substantial portion of the benefit and my 

objective is to find the level of cross training that minimizes staffing costs, while satisfying the 

service level constraint with high probability.   
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I examine the case of cross training between two projects (or two language groups) and assume 

that the skills based routing system is configured as follows: 

1 3 2

1 2 Call Types

Feasible Routings

Pools of CSRs

 
 Figure 6-1 Pooling Model 

 

We have two call types, one for each project, and three agent pools.  Pool 1 has skill 1 and can 

service call type 1.  Similarly pool 2 services call types 2.  Pool 3 is cross trained (or multilingual) 

and can service calls from either queue.   

6.2 Partial Pooling in Steady State 

In this section we analyze system performance in steady state using simulation.  In this analysis I 

assume a simple routing model.  When a call arrives it is routed to an appropriately skilled base 

agent if one is available. Only if all base agents are busy will the call be sent to a super agent.  If 

all super agents are busy, then the call is placed in queue to be serviced by the next available 

qualified agent.  When a base agent becomes available, she will pull an appropriate call from the 

queue if available.  When super agents become available they take a call from the virtual queue 

with the largest number of waiting calls.  Other routing models are possible; in particular we may 

wish to route calls based on a month to date SLA achievement.   

 

The model is analyzed using an extension of the simulation model described in (Robbins, 

Medeiros et al. 2006).  This general purpose call center simulation model has been modified to 

support the pooling approach described in this paper, and to execute a search based optimization 

algorithm.  The model generates two independent Poisson arrival processes and services those 



 

   

 196 

 

 

calls using the routing scheme described above.  The model is configured to vary the number of 

pooled agents for any given arrival rate pair.   

6.2.1 The TSF Response Function 

In the single queue, single resource pool case, we have an analytical expression for the service 

level as a function of arrival rates and staffing (equation (3.36)) and can easily generate a plot of 

the TSF as a function of staffing (see Figure 4-5).  In the pooling case the situation is 

considerably more complicated.  There are no known analytical expressions available to calculate 

the service level.  Based on intuition we expect the service level is increasing in the number of 

base agents and the number of super agents. To verify this intuition I use simulation to create the 

following graphical representation of the TSF as a function of the number of agents. 

 

In this simulation I assume that each queue receives calls at a rate of 100 calls per hour, that in 

each cases talk time averages 12 minutes, callers have an average patience of 350 seconds, and 

the service level is based on a 120 second hold time.   I vary the number of agents assigned to 

each base pool and the number of agents assigned to the super agent pool independently.  For 

each staffing combination I simulate operations for two days, and perform 25 replications.   
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Figure 6-2 Pooled Model TSF Surface 
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In Figure 6-2 I show a three dimensional plot of the TSF surface.  The graph illustrates a large 

plateau of 100% TSF when the total number of agents is large.  Similarly a small plateau at 0% 

TSF exists when the total number of agents is small.  In between the surface exhibits an S shaped 

profile.  Figure 6-3 is a contour plot of this data in two dimensions.  The contour plot shows a 

series of iso-service level lines, agent combinations that deliver the same service level.  So for 

example, to achieve a 95% service level we need roughly 25 agents in each pool or 50 agents 

overall. However, in a pure pooled mode the same service level can be achieved with a total of 

only 45 pooled agents.   
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Figure 6-3 Pooled TSF Contour Diagram 

Though difficult to see, close inspection reveals that the iso-service lines are not straight, but have 

a convex bowed shape.  This is further illustrated in the next figure where I show the 80% TSF 

contour with a line connecting the end points.  The convexity of the contour implies that the cost 

minimizing combination of pooled and base agents may be in the interior.   
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Figure 6-4 80% TSF Contour 

An alternative way to look at this data is to examine the marginal impact on the service level by 

adding one type of agent, while holding the other agent pool fixed.  This is illustrated in the 

following pair of graphs.   
TSF by Base Agents for Various Levels of Pooled Agents
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Figure 6-5 Marginal Impact on Service Level 

On the left side I vary the number base agents while holding the number of pooled agents fixed.  

With zero pooled agents we get the standard TSF curve as seen in Figure 4-5.  When pooled 

agents are in place the TSF curve is effectively shifted to the left and the service level for any 

level of base agents.  The right side graph reveals a similar relationship when the number of base 

agents is held constant.   
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6.2.2 Symmetric Projects in Steady State 

In this experiment I test the impact of pooling on steady state performance with symmetric 

projects.  Consider two statistically identical projects each staffed with 36 agents and receiving 

calls at a constant rate λ.  Talk time has an exponential distribution with mean 12 minutes and the 

mean time to abandon is 350 secs.   The service level is measured against a two minute hold time.  

I evaluate the situation where the total number of agents remains constant, but each project 

contributes between 0 and 36 agents to the pool.  The first graph shows the service level for each 

level of pooling when λ is 200 calls per hour.  The next two graphs on the left side show the 

service level of arrival rates of 180 and 220.  On the right hand side I plot the abandonment rate.  

In each case I plot TSF and abandonment rate for one of the projects.  (Because of the symmetric 

nature of the model, each project has the same curve.)    The data was generated by simulating 

five days of operations over 50 replications.  In each curve I show the sample average along with 

a 90% confidence interval, where the confidence interval is calculated by 

 
2

1,1 / 2
( )( ) n

s nx n t
nα− −±  (6.1) 

where n is the number of replications, ( )x n is the sample average, 2 ( )s n  is the sample variance 

and 1,1 / 2nt α− − is the critical value from the Student’s t-distribution.   
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Figure 6-6 Impact of Pooling with Fixed Staffing Levels 

These graphs reveal that a small level of pooling yields improvement, but that the return on cross 

training declines rapidly.  In each case cross training 10 agents provides the bulk of the benefit 

and cross training beyond 15 agents provides very limited benefits.  In each case cross training 

can boost TSF by 5%-6%, while the biggest improvement is in the medium volume (200/hr) case.  

Abandonment is reduced by about 1% in the high volume case, 1.8% in the middle case, and 

2.3% in the slow case.   
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6.2.3 Steady State Differential Rates 

The previous analysis reveals that moderate benefits are achieved when agents are cross trained, 

and the amount of improvement depends on the spare capacity in the system.  However in that 

analysis both projects had the same arrival rate. A more interesting case occurs when the arrival 

rates are different as may be the case if rates are subject to forecast error.  In the next analysis I 

allow arrival rates to vary independently from target by ± 10%.  Total staffing is fixed at 72, so 

that in the now pooling each project has 36 agents, a staff level that results in an approximately 

76% service level with no pooling.  The following tables summarize the resulting TSF measures 

under various arrival rate combinations.   

 

λ1 λ2 0 5 10 15 20 25 30 35
180 180 87.9% 90.8% 91.9% 92.5% 92.7% 92.8% 92.9% 92.8%
180 200 81.5% 85.3% 86.9% 87.6% 88.0% 88.1% 88.1% 88.0%
180 220 73.6% 78.8% 80.9% 81.9% 82.4% 82.5% 82.5% 82.5%
200 200 76.1% 79.3% 80.8% 81.6% 81.9% 82.0% 82.1% 81.9%
200 220 68.8% 72.3% 74.2% 75.0% 75.3% 75.6% 75.6% 75.5%
220 220 62.3% 65.1% 66.6% 67.5% 67.8% 68.0% 68.0% 68.1%

TSF Total

 

λ1 λ2 5 10 15 20 25 30 35
180 180 2.8% * 1.1% * 0.6% * 0.2% * 0.1% * 0.0% 0.0%
180 200 3.8% * 1.6% * 0.7% * 0.3% * 0.1% * 0.0% 0.0%
180 220 5.2% * 2.2% * 1.0% * 0.5% * 0.1% * 0.0% -0.1% *
200 200 3.2% * 1.5% * 0.8% * 0.3% * 0.1% * 0.1% * -0.2% *
200 220 3.6% * 1.9% * 0.8% * 0.3% * 0.2% * 0.0% -0.1% *
220 220 2.8% * 1.5% * 0.9% * 0.3% * 0.3% * 0.0% 0.1%

* indicates statistical significance at the .9 level

∆ TSF Total

 
Table 6-1 Impact on Overall TSF of Pooling with Fixed Staffing Levels 
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λ1 λ2 0 5 10 15 20 25 30 35
180 180 86.8% 90.4% 91.7% 92.4% 92.7% 92.8% 92.8% 92.8%
180 200 86.8% 87.5% 87.7% 87.8% 87.7% 87.6% 87.4% 87.3%
180 220 86.8% 84.7% 82.9% 82.1% 81.4% 80.9% 80.6% 80.2%
200 200 75.5% 78.9% 80.5% 81.4% 81.8% 82.0% 82.0% 82.0%
200 220 75.5% 75.3% 75.1% 74.9% 74.7% 74.4% 74.3% 74.0%
220 220 61.9% 65.0% 66.4% 67.6% 68.0% 68.1% 68.2% 68.2%

TSF Pool 1

 

λ1 λ2 5 10 15 20 25 30 35
180 180 3.5% * 1.3% * 0.7% * 0.2% * 0.1% * 0.0% 0.0%
180 200 0.7% * 0.2% * 0.1% 0.0% -0.1% * -0.2% * -0.1% *
180 220 -2.2% * -1.7% * -0.8% * -0.7% * -0.5% * -0.3% * -0.4% *
200 200 3.4% * 1.6% * 1.0% * 0.4% * 0.1% * 0.1% -0.1% *
200 220 -0.2% -0.2% -0.3% * -0.2% * -0.2% * -0.1% * -0.2% *
220 220 3.1% * 1.5% * 1.1% * 0.4% * 0.2% * 0.1% 0.0%

* indicates statistical significance at the .9 level

∆ TSF Pool 1

 
Table 6-2 Impact on Low Volume Project TSF of Pooling with Fixed Staffing Levels 

 

λ1 λ2 0 5 10 15 20 25 30 35
180 180 89.0% 91.1% 92.1% 92.5% 92.8% 92.9% 92.9% 92.8%
180 200 76.7% 83.3% 86.1% 87.5% 88.2% 88.5% 88.7% 88.7%
180 220 62.7% 73.9% 79.3% 81.8% 83.2% 83.8% 84.1% 84.3%
200 200 76.7% 79.7% 81.0% 81.7% 82.0% 82.0% 82.2% 81.9%
200 220 62.7% 69.6% 73.4% 75.1% 75.9% 76.6% 76.8% 76.8%
220 220 62.7% 65.2% 66.7% 67.4% 67.6% 67.9% 67.8% 68.0%

TSF Pool 2

 

λ1 λ2 5 10 15 20 25 30 35
180 180 2.1% * 0.9% * 0.4% * 0.3% * 0.1% * 0.0% -0.1% *
180 200 6.6% * 2.8% * 1.4% * 0.7% * 0.4% * 0.1% * 0.0%
180 220 11.3% * 5.3% * 2.5% * 1.5% * 0.6% * 0.3% * 0.2% *
200 200 3.0% * 1.3% * 0.6% * 0.3% * 0.0% 0.1% * -0.2% *
200 220 7.0% * 3.8% * 1.7% * 0.9% * 0.7% * 0.2% * 0.0%
220 220 2.6% * 1.5% * 0.6% * 0.2% * 0.3% * -0.1% 0.2% *

* indicates statistical significance at the .9 level

∆ TSF Pool 2

 
Table 6-3 Impact on High Volume Project TSF of Pooling with Fixed Staffing Levels 
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λ1 λ2 0 5 10 15 20 25 30 35
180 180 7.9% 6.4% 5.8% 5.5% 5.4% 5.4% 5.3% 5.2%
180 200 7.9% 8.1% 8.3% 8.3% 8.4% 8.4% 8.5% 8.5%
180 220 7.9% 9.6% 10.7% 11.3% 11.7% 11.9% 12.0% 12.2%
200 200 13.6% 12.6% 12.1% 11.9% 11.8% 11.6% 11.6% 11.6%
200 220 13.6% 14.3% 14.7% 15.0% 15.1% 15.2% 15.2% 15.3%
220 220 19.7% 18.9% 18.6% 18.4% 18.2% 18.2% 18.2% 18.2%

Abandonment 1

 

λ1 λ2 5 10 15 20 25 30 35
180 180 -1.5% * -0.6% * -0.2% * -0.2% * 0.0% -0.1% * -0.1% *
180 200 0.2% * 0.2% * 0.1% * 0.0% 0.1% * 0.1% * 0.0%
180 220 1.7% * 1.1% * 0.6% * 0.4% * 0.2% * 0.1% * 0.2% *
200 200 -1.1% * -0.5% * -0.2% * -0.1% * -0.1% * 0.0% 0.0%
200 220 0.6% * 0.4% * 0.3% * 0.1% * 0.1% * 0.0% 0.1% *
220 220 -0.8% * -0.3% * -0.2% * -0.1% * 0.0% -0.1% * 0.1% *

* indicates statistical significance at the .9 level

∆ Abandonment Pool 1

 
 Table 6-4 Impact on Low Vol. Project Abandonment of Pooling with Fixed Staffing Levels 

 

λ1 λ2 0 5 10 15 20 25 30 35
180 180 7.2% 6.2% 5.8% 5.5% 5.5% 5.4% 5.3% 5.3%
180 200 13.1% 10.7% 9.5% 8.9% 8.6% 8.4% 8.3% 8.2%
180 220 19.2% 15.2% 13.2% 12.2% 11.6% 11.3% 11.1% 11.0%
200 200 13.1% 12.5% 12.1% 11.9% 11.8% 11.7% 11.7% 11.7%
200 220 19.2% 17.0% 15.9% 15.3% 15.1% 14.8% 14.7% 14.7%
220 220 19.2% 18.8% 18.6% 18.6% 18.5% 18.4% 18.4% 18.4%

Abandonment 2

 

λ1 λ2 5 10 15 20 25 30 35
180 180 -1.0% * -0.4% * -0.2% * -0.1% * -0.1% * -0.1% * 0.0%
180 200 -2.5% * -1.2% * -0.5% * -0.4% * -0.2% * -0.1% * -0.1% *
180 220 -4.0% * -2.0% * -1.0% * -0.6% * -0.3% * -0.1% * -0.2% *
200 200 -0.7% * -0.3% * -0.2% * -0.1% * 0.0% -0.1% * 0.0% *
200 220 -2.2% * -1.1% * -0.6% * -0.3% * -0.2% * -0.1% * -0.1% *
220 220 -0.4% * -0.2% * -0.1% 0.0% -0.1% * 0.0% 0.0%

* indicates statistical significance at the .9 level

∆ Abandonment Pool 2

 
Table 6-5 Impact on Low Vol. Project Abandonment of Pooling with Fixed Staffing Levels 

In the first set of three tables I examine the impact on the combined TSF, and the TSF of each 

individual project.  We see that the overall TSF is always improved by pooling, and the degree of 

improvement is based on the amount of spare capacity in the system.  When both projects are 

below plan the overall TSF is improved by 2.8% with just five agents.  If both projects have 

above plan volume, the TSF also improves by 2.8%.  The biggest gain comes when the projects 
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have differential rates; when one project is low and the other high we get a 5.2% gain in overall 

TSF.  The improvement quickly drops off with the number of agents cross trained; the most 

benefit comes from the first few agents.  Cross training beyond 15 agents yields results that are 

not meaningful, and in many cases are not statistically different from zero.   

 

The results are even more interesting when we examine the data at the individual project level.   

When each project has a similar arrival rate the benefits are distributed evenly.  But it is when the 

arrival rates are different that the maximum gain occurs; and that gain accrues disproportionately 

to the under staffed project.  When volumes are at opposite extremes, the understaffed project 

receives a benefit of an 11% boost in TSF from only 5 cross trained agents.  Cross training of 10 

agents increase TSF by another 10 points raising TSF to nearly 80%.  In the case of significant 

mismatch the over staffed project may suffer degradation in performance, but this decline is 

significantly smaller then the boost to the other project and aggregate TSF always increases.  The 

most significant case is when volumes have a maximum mismatch and the overstaffed project’s 

TSF declines by 2.2% with 5 agents cross trained.  Note however that this project had a baseline 

TSF of 86%, well over the standard target of 80%.  This result does however raise a caution for 

pooling projects with very high (90%) TSF targets.  In the case of a smaller mismatch the 

degradation was very moderate, about 0.9% with 10 agents cross trained, where the busy project 

may see an improvement on the order of four points from only 5 cross trained agents.   

 

Tables 6-4 and 6-5 shows a similar analysis for the abandonment rate for each project.  We see 

similar results; pooling reduces the maximum wait time callers face, and therefore reduces the 

proportion of callers kept on hold past their patience level. The improvement is the most 

significant when a capacity mismatch occurs.  

 

Overall this analysis shows that partial pooling yields substantial benefits in steady state.  The 

improvement is the greatest when a capacity mismatch occurs and the under capacity project 

receives the greater benefit.  In the next section we examine how arrival rate uncertainty impacts 

the pooling analysis.   
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6.2.4 Steady State but Uncertain Arrival Rate 

In this analysis I continue to examine the impact of pooling when projects have a constant rate, 

but I now allow for uncertainty in the arrival rate.  Specifically I assume that the calls in each 

pool will arrive with a constant rate, but the realized rate is a random variable.  Assume that the 

arrival rates are independent and identically distributed normal random variables with mean 200 

and standard deviation 20.  I examine how partial pooling impacts the expected TSF and 

abandonment rate.   

 

The following graphs present the results of a simulation experiment 
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Figure 6-7 Impact of Pooling with Steady but Uncertain Arrivals 
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The curves in Figure 6-7 are almost identical to the plots for steady state arrivals at 200 calls/hr 

shown in Figure 6-1.  The TSF level is slightly lower in the uncertain case; 74.2% vs. 75.4% with 

no pooling and 80.5% vs. 81.5% in the full pooling case.  Although not a major shift, this 

illustrates one of the effects of arrival rate uncertainty.  Because of the nature of the TSF curve 

the effects of volume changes is not proportional; higher volume causes a larger shift in the 

resulting service level then lower volume. So even if volume varies around the mean 

symmetrically, the resulting TSF will be lower in the uncertain case then the corresponding mean 

value case.  An interesting phenomenon is illustrated in the following two graphs.   
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Standard Deviation of Pool 1 Service Level (TSF) 
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Figure 6-8 Standard Deviation of TSF with Variable Pooling 

On the top we see that the standard deviation of the overall (combined) service level is essentially 

unaffected by pooling, remaining at a roughly constant level just over 8%.  The bottom graph 
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however reveals the standard deviation of the service level for pool one decreases as the pooling 

level increases, at least for the first few pooled agents.  In the case of no pooling the service level 

in each pool is independent from the service level in the other pool.  As pooling increases the 

service level in each pool become dependent random variables.    

6.3 Optimal Cross Training in Steady State 

6.3.1 Overview 

In the previous section I examined the impact of varying the number of cross trained agents for a 

fixed pool of resources.  I showed that the service level increases as agents are crossed trained, 

but that the incremental benefit drops off quickly.  This suggests, assuming cross training is 

costly, that cross training more than a moderate proportion of the work force is sub optimal. In 

this section I examine this issue more rigorously and attempt to find the optimal level of cross 

training. To do this I relax the assumption of a fixed resource pool.  The optimization problem 

then becomes selecting the staffing vector that defines the number of agents in each pool so as to 

minimize the expected cost of operation.   

6.3.2 Operational Costs 

As discussed previously, the cost of cross training is relatively high.  In this model I assume that 

the incremental cost has two components, a training component and a wage component.  The 

training component represents the investment in an individual agent to give her the skills 

necessary to handle the second project type.  The wage component represents the incremental 

wage paid to a cross trained agent.  Specifically the incremental cost of a cross trained agent is 

defined as  

TK w
γ

= +  (6.2) 

where w is the incremental wage.  T is the cost of training, and γ expected lifetime of an agent, 

so T γ represents the average cost of training amortized over the agents employment life.   

 

The second consideration is the degree of confidence sought to achieve the targeted service level.  

I quantify this by assigning a penalty cost proportional to the service level shortfall.  If we denote 
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the penalty rate as r, the goal as g, and the realized service level as S, then the penalty cost P can 

be expressed as  

 ( )P r g S += −  (6.3) 

The model assumes a penalty for failing to achieve the SLA, but no bonus for overachieving so 

the penalty cost is non-negative.  Our system has three staffing levels denoted as , 1, 2,3ix i =  and 

the total cost of operating the system is given by 

 ( )1 1 2 2 1 1 1 2 2 2 1 2 3( ) ( )TC K x K x r g S r g S w x x x+ += + + − + − + + +  (6.4) 

Our objective is to select the staffing vector that minimizes the expected cost of operating the 

system. 

6.3.3 A Simulation Based Optimization Method 

I use a simulation based local search algorithm to find the optimal cross training pattern for any 

given parameter setting.  The local search algorithm is guided by a variable neighborhood search 

(VNS) metaheuristic.  VNS is a metaheuristic that makes systematic changes in the neighborhood 

being searched as the search progresses  (Hansen and Mladenovic 2001; Hansen and Mladenovic 

2005).  When using VNS a common approach is to define a set of nested neighborhoods, such 

that  

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X⊂ ⊂ ⊂ ∀ ∈  (6.5) 

The general structure of the VNS is then as follow: 

1. Initialization  
a. Select the set of neighborhood structures ,kN for 

max1,...,k k=  

b. Construct an initial incumbent solution, Ix , using 
some heuristic procedure. 

c. Select a confidence level α for the selection of 
a new incumbent solution 

2. Search: repeat the following until Stop=True 
a. Set 1k =  
b. Find 

minkn candidate solutions, Cx  that are 

neighbors of Ix  
c. Simulate the system with each candidate and 

compare the results to the incumbent using a 
pairwise T Test.  
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d. If any Cx is superior to Ix  at the α  level then 

set *
I Cx x= , where *

Cx is the best candidate 
solution  
Else, set 

minki n= , set found = false, and repeat 

until (
maxki n= or found=True) 

i. Find a new candidate 
ikx   

ii. Simulate the system with each candidate and 
compare the results using a pairwise T 
Test.  

iii. If 
ikx is superior to Ix  at the α  level then 

set 
iI kx x= and found = True 

e. If a no new incumbent was found in neighborhood 
k then  
i. set 1k k= +  

ii. if maxk k> then Stop = True 
Figure 6-9 General VNS Search Algorithm 

This algorithm searches the neighborhood of the current incumbent evaluating at least 

minkn points.  If no statistically improving solution is found it continues to search until either an 

improving solution is found or a total of 
maxkn points have been evaluated.  Each time an 

improving solution is found the search restarts with the new incumbent.  If no new incumbent is 

found the search continues in the next largest neighborhood.  The search process continues until 

no improving solution is found in the largest neighborhood structure.   

 

Two important parameters for this search process are 
minkn and 

maxkn , the lower and upper bounds 

on the number of neighbors to evaluate before moving to the next neighborhood.  If the 

neighborhood is defined narrowly these parameters are both set equal to the total number of 

neighbors and the neighborhood is searched exhaustively.  In larger neighborhoods an exhaustive 

search is not practical and solutions are selected at random.  In this case 
minkn  is the minimum 

number of neighbors to evaluate.  Setting this parameter to one implements a first improving local 

search. 
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6.3.4 Optimal Cross Training with Known Arrival Rates 

In the case of steady state arrivals with known rates, two different neighborhoods are defined.  

1N  is the neighborhood of all 1-changes; that is the set of all feasible solutions ix such that one 

element differs from cx by either 1 or -1.  For any incumbent there are up to 6 solutions in this 

neighborhood.   1N  is the neighborhood of all 2-changes; that is the set of all feasible solutions 

ix such that exactly two elements differ from cx by either 1 or -1.  For any incumbent there are up 

to 12 solutions in this neighborhood.    

 

In this experiment I seek to determine the optimal staffing vector for a steady state process with 

known arrival rates.  I am interested in determining how the staffing vector is impacted by the 

relative arrival rates as well as management decisions related to the desired quality of service.  

Specifically I create a two level full factorial design in four factors as shown below.   

 

A B C D Variable Factor Definitions - +
1 - - - - A Arrival Rate 2 100 200
2 + - - - B Service Level Requirement 70/120 85/60
3 - + - - C Penalty Rate/hr 5           15           
4 + + - - D Pooled wage differential 10% 40%
5 - - + -
6 + - + -
7 - + + - Constant Factors
8 + + + - Arrival Rate 1 100
9 - - - + Talk Time (min) 12

10 + - - + Mean time to Abandon (sec) 350
11 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +  

Table 6-6 Cross Training with Steady State Known Arrivals – Experimental Design 

I ran this experiment using a version of the VNS algorithm outlined in Figure 6-9.  For each 

configuration I simulated two days of operations and performed 10 replications.  The search 

moved to a new solution if the pairwise comparison showed an improvement at the 80% 

confidence level.  The results of this optimization are shown in the following table. 
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A B C D N1 N2 N3 % Pooled
Average 

TSF 
Average 

Total Cost
Average 
Penalty 

1 - - - - 17 17 2 5.6% 70.2% 17,759 383
2 + - - - 17 31 4 7.7% 69.1% 25,693 541
3 - + - - 21 21 3 6.7% 86.2% 21,872 128
4 + + - - 21 39 4 6.3% 85.1% 31,226 314
5 - - + - 17 17 3 8.1% 73.9% 17,904 0
6 + - + - 17 32 4 7.5% 72.3% 25,808 176
7 - + + - 21 21 3 6.7% 86.2% 22,154 410
8 + + + - 21 40 4 6.2% 93.6% 32,496 1,104
9 - - - + 17 17 2 5.6% 70.1% 18,120 456

10 + - - + 17 32 3 5.8% 69.2% 26,082 546
11 - + - + 21 21 3 6.7% 86.2% 22,297 121
12 + + - + 21 40 3 4.7% 85.0% 31,718 422
13 - - + + 17 17 3 8.1% 73.7% 18,336 0
14 + - + + 17 32 4 7.5% 72.1% 26,338 130
15 - + + + 21 21 3 6.7% 86.2% 22,584 408
16 + + + + 21 40 4 6.2% 87.2% 32,025 57

Staffing VectorFactors Metrics

 
Table 6-7 Cross Training with Steady State Known Arrivals – Experimental Results 

This data shows that in all cases examined, partial pooling is beneficial and the optimal solution 

always includes some level of cross training.  In this analysis the optimal number of cross trained 

agents covers a relatively narrow range. The optimal solution always has at least two, but no more 

than four cross trained agents.  Cross trained agents represent between 4.7% and 8.1% of the total 

labor pool.  The algorithm also sets staffing levels such that the service level is very close to the 

target level.  However, because this is fundamentally a discrete optimization problem, the service 

level can not be set to an arbitrary level and is sometimes optimal to allow a small expected 

penalty cost.   

6.3.5 Optimal Cross Training with Uncertain Loads 

In the previous section I calculated the optimal staffing vector when arrival rates are known and 

constant.  We found that in all cases we examined the optimal staffing choice called for some 

level of cross trained resources, even though those resources are more costly than base level 

resources.  In this section I relax the assumption that arrival rates are known and examine how 

this impacts the optimal staffing vector.   
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I conducted an experiment similar to the experiment outlined in Table 6-7 with the exception that 

the arrivals rates are normally distributed around the original set points with a coefficient of 

variation of 0.1.   

A B C D N1 N2 N3 % Pooled
Average 

TSF 
Average 

Total 
Average 
Penalty 

1 - - - - 17 17 3 8.1% 77.7% 17,904 0
2 + - - - 17 32 4 7.5% 75.5% 25,632 0
3 - + - - 21 21 3 6.7% 89.5% 21,744 0
4 + + - - 21 40 4 6.2% 90.0% 31,392 0
5 - - + - 17 17 5 12.8% 84.4% 18,960 0
6 + - + - 17 32 6 10.9% 80.8% 26,688 0
7 - + + - 21 20 6 12.8% 94.1% 22,848 0
8 + + + - 21 39 7 10.4% 93.6% 32,496 0
9 - - - + 17 17 3 8.1% 77.7% 18,336 0

10 + - - + 17 33 3 5.7% 75.4% 26,016 0
11 - + - + 21 21 3 6.7% 89.5% 22,176 0
12 + + - + 21 40 3 4.7% 88.0% 31,308 12
13 - - + + 17 17 4 10.5% 83.6% 19,488 480
14 + - + + 17 33 5 9.1% 80.8% 27,360 0
15 - + + + 21 21 5 10.6% 93.8% 23,520 0
16 + + + + 21 40 6 9.0% 93.5% 33,312 0

Staffing VectorFactors Metrics

 
Table 6-8 Cross Training with Steady State Uncertain Arrivals – Experimental Results 

In the uncertain arrival case the level of cross training is in general increased, total costs in 

general increase, and the service level penalty is effectively eliminated.  The difference between 

these two experiments is summarized in the following table: 

A B C D N1 N2 N3 % Pooled
Average 

TSF 
Average 

Total Cost
Average 
Penalty 

1 - - - - 0 0 1 2.6% 7.5% 144.6 -383.4
2 + - - - 0 1 0 -0.1% 6.4% -60.7 -540.7
3 - + - - 0 0 0 0.0% 3.3% -127.8 -127.8
4 + + - - 0 1 0 -0.1% 4.9% 166.1 -313.9
5 - - + - 0 0 2 4.7% 10.5% 1,056.0 0.0
6 + - + - 0 0 2 3.4% 8.4% 879.5 -176.5
7 - + + - 0 -1 3 6.1% 7.9% 693.8 -410.2
8 + + + - 0 -1 3 4.3% 0.0% 0.0 -1,104.0
9 - - - + 0 0 1 2.6% 7.7% 216.4 -455.6

10 + - - + 0 1 0 -0.1% 6.2% -66.3 -546.3
11 - + - + 0 0 0 0.0% 3.3% -120.8 -120.8
12 + + - + 0 0 0 0.0% 3.0% -410.5 -410.5
13 - - + + 0 0 1 2.4% 9.9% 1,152.0 480.0
14 + - + + 0 1 1 1.5% 8.7% 1,021.9 -130.1
15 - + + + 0 0 2 4.0% 7.6% 936.0 -408.0
16 + + + + 0 0 2 2.8% 6.3% 1,286.7 -57.3

Average 0 0.1 1.1 2.1% 6.4% 422.9 -294.1

Factors Staffing Vector Metrics

 
Table 6-9 Comparison of Known and Uncertain Arrival Experiments 
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There are a few key observations from this analysis: 

• Uncertainty increases cost – the total cost of operation increased by an average of $422.  

The cost of service delivery increased significantly in the high penalty rate cases, where 

service level attainment is important.   

• Pooling is more effective in uncertain situations – more pooling was added in the 

uncertain arrival cases, and the service level penalty was effectively eliminated in the 

uncertain case.  With uncertain arrivals the probability of a capacity mismatch is higher, 

and therefore the benefits of dynamic capacity reallocation are higher.   

6.4 Optimal Cross Training with Time Varying Arrivals 

6.4.1 Overview 

In the previous section I analyzed the impact of pooling on steady state stationary behavior.  As 

described in Chapter 2, real call centers often face arrival rates that vary significantly across the 

course of the day and therefore must change the staff level throughout the course of the day.  In 

the call center projects I analyzed, staffing varies from two agents overnight, to as many as 70 

agents during peak hours.  On a 24 hour schedule, the call center may have shifts starting during 

any 30 minute period.  But because the vast majority of agents are scheduled to full time shifts, 

the call center can not vary the staff as quickly as demand varies.  The call center is therefore 

subject to periods of tight capacity and excess capacity in any given day.   

 

I investigate two alternative algorithms for calculating the three pool staffing plan.  In the first 

approach (Sim-Opt) I use simulation to find the optimal staffing levels in each individual time 

period.  This analysis generates a minimum staffing triplet in each individual time period.  I then 

use a weighted set covering algorithm to schedule each pool independently so as to satisfy the 

minimum staffing requirement.  The second approach (Opt-Sim) first performs a scheduling 

optimization on each project individually.  The resulting independent schedules are then merged 

in a simulation based optimization effort.   The two methods are outlined in more detail below, 

but first I review how I calculate the objective function value in a project based optimization. 
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6.4.1.1 Objective Function 

Conceptually, the objective of this optimization problem is to find the minimal cost staffing plan 

that meets the service level requirement with the appropriate level of confidence.  As in the 

models of Chapter 4, I implement the service level requirement by adding a penalty to any service 

level shortfall.  In the math programming formulation of Chapter 4 we also added several side 

constraints.  In particular I required that staffing was at least at a minimum level at all times 

(typically two agents) and that the level of staffing was such that at expected volumes we 

achieved some minimal service level (typically 50%).  While it is possible to modify the 

neighborhood structure to enforce these hard constraints, a more straightforward search 

mechanism results if we soften these constraints and add them as penalty terms to the objective 

function.  

6.4.1.2 The Simulation – Optimization Approach (Sim-Opt)  

In this approach I create a firm staffing vector for each resource pool via simulation, and then use 

a deterministic scheduling algorithm to assign shifts.  In the initial step I run the steady state 

simulation analysis for each time period (336 periods) to create a staffing vector triplet 

1 2 3( , , )i i ib b b , where 1ib represents the staffing requirement in pool 1 in period i.    

 

Given these firm staffing requirements I then execute a deterministic staffing algorithm to cover 

these requirements.  The resulting integer program is a standard weighted set covering problem 

which can be expressed as   

min j j
j J

c x
∈
∑   (6.6) 

    subject to 

ij j i
j J

a x b
∈

≥∑  i I∀ ∈  (6.7) 

 

Where jc is the cost of the jth schedule, jx  is the number of resources assigned to the jth schedule, 

and ija is the mapping of schedules to time periods.   
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6.4.1.3 The Optimization-Simulation Approach (Opt-Sim)  

In this approach I generate a preliminary schedule for each project independently using an 

optimization program and then run a local search via simulation to optimize the overall project.  

To implement the process I need to define an approach for generating an initial feasible solution 

and for selecting new candidate feasible solutions.   

 

To develop an initial feasible solution I run the optimization program (4.1) - (4.7) from Chapter 4 

for each project individually.  In this instance the model is configured to generate a schedule at a 

lower TSF and with a minimum staffing level of one instead of two agents.  This procedure 

creates a staff plan that is slightly understaffed.  The objective is to create an initial plan where 

selective cross training can create rapid improvement.   

 

To identify additional candidate solutions I implement a VNS as described in Figure 6-7.  

However, in this case the neighborhood structure is considerably more complex.  I define a nested 

neighborhood structure with five individual neighborhoods.   

 

Let J be the set of schedules to which an agent may be assigned and denote as jx the number of 

agents assigned to schedule j .  A staff plan is a vector of jx  values.  A staff plan is feasible if 

every jx  is non-negative and integral valued.  Assume that any complicating constraints, such as 

minimum staffing levels, have been moved into the objective function as a penalty term.  Denote 

the set of feasible staff plans as X .  Furthermore, define the sets iA J⊆ as the active schedules, 

for resource pool i; that is the schedules to which at least one resource has been assigned and let 

1 2 3A A A A= ∪ ∪ be the set of active schedules across pools. 

 

Now, for some arbitrary x X∈ , define a series of MaxK nested neighborhood structures such that  

 1 2( ) ( ) ... ( )
MaxkN x N x N x x X⊂ ⊂ ⊂ ∀ ∈  (6.8) 
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I define the following neighborhoods 

• 1( )N x : Active 1 Change: the set of all staff plans where an active assignment is updated 

by and additive offset, { }1,1iδ ∈ − .   

• 2 ( )N x : Active 2 Change: pick any two feasible schedules in iA and independently 

update each by  { }1,0,1iδ ∈ − .     

• 3( )N x : Feasible 1 Change: the set of all staff plans where a feasible assignment is 

updated by { }1,1iδ ∈ − .   

• 4 ( )N x : Feasible 2 Change: pick any two feasible schedules in J and independently 

update each by  { }1,0,1iδ ∈ − .     

• 5 ( )N x : Feasible 3 Change: pick any three feasible schedules in J and independently 

update each by  { }1,0,1iδ ∈ − .     

Figure 6-10 Project Based Neighborhood Structure 

I each neighborhood a new schedules is selected randomly and a large number of alternative 

schedules are evaluated at each iteration of the algorithm.  While a pure random search will likely 

find improving solutions if enough permutations are evaluated I have found that using certain 

heuristic methods in each neighborhood improves the rate of convergence.  In this modified 

approach each time a new neighbor is required the algorithm picks either a heuristic or a pure 

random permutation. 

   

The following table summarizes the heuristics utilized in each neighborhood: 

 

Neighborhood Heuristics 

1( )N x : Active 1 Change - Pool Support: select an active schedule in Pool 1 or Pool 
2 and staff an agent to the same schedule in the cross 
trained pool.   

2 ( )N x : Active 2 Change - Cross Train: select an active schedule in Pool 1 or Pool 2 
and change the agent’s designation to a cross trained 
agent. 

- Untrain: select a staffed schedule in pool three and 
change the designation to either 1 or 2. 
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3 ( )N x : Feasible 1 Change - Add Max Cover: find the set of feasible schedules that 
covers the most short-staffed periods and schedule an 
agent to one of those schedules.   

4 ( )N x : Feasible 2 Change - Active Time Shift: select an active schedule and shift the 
assignment forward or backward by one time period.  

5 ( )N x : Feasible 3 Change - Two for One: pick a schedule in Pool 1 or 2, then find the 
closest active matching schedule in the other pool, 
decrement each of these assignments and staff a super 
agent.  

Table 6-10 Neighborhood Search Heuristics 

 

The logic behind this neighborhood structure is relatively straightforward if we recall that we start 

with a near optimal solution generated from an optimization program designed to slightly under 

staff the projects.  First of all, the set of schedules selected in the optimization process will 

closely match the time profile of demand.  The set of active schedules will typically be a small 

subset of the total schedules.  Therefore it is reasonable to search these Active schedules first.  

Since the initial schedule is understaffed by design it is reasonable that additional staffing, 

particularly in the super agent pool, will decrease penalty costs more than the associated labor 

costs so it is reasonable to focus the search efforts here.  Neighborhood 1 is small enough that I 

can search it exhaustively.  In neighborhood 2 I test the benefits of changing agent’s skill 

designations.  By testing both training and untraining I make sure that the incremental cost of 

training is justified.   

 

When no improvements can be found in the set of active schedules the search is expanded to the 

full set of feasible schedules.  The heuristic in neighborhood 3 is designed to address the short 

staffing penalty found by not having at least 2 agents available for each project in each time 

period.  This heuristic is designed to test all of the schedules with the max cover and will often 

select a super agent as these agents provide cover for both projects.  In neighborhood 4 I allow for 

2 changes in the feasible schedule and specifically test for the impact of shifting a schedule 

forward or backward by 1 time period to potentially better cover a service level gap.  The logic of 

the neighborhood 5 schedule is based on the notion that if we have agents in each pool on the 

same schedule it might be beneficial to replace both of them with a single cross trained agent.  

This is beneficial when the service level is being met with high probability, and the penalty is 

low.  Making a two for one swap reduces labor cost and may not have a major impact on service 

level penalties.   
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In practice the largest number of improving solutions were found in neighborhood 1.  Improving 

solutions were found in every neighborhood, though not for every optimization.  In a typical 

optimization process improvements are found in three to four neighborhoods, though in some 

cases all neighborhoods generated improvements.  The number of solutions tested in each 

iteration clearly varies based on where an improvement is found.  By design most improvements 

are found in the first neighborhood.  In my experiment I required that at least 20 candidates were 

tested before the best was selected.  The max number varies with the number of active schedules, 

as neighborhood 1 is searched exhaustively.  Ina typical scenario bout 300 candidate solutions 

were tested in the final iteration of the algorithm, the iteration which found no improvements.  

 

The total number of iterations until termination is also random, and depends on the number of 

feasible schedules.  The total number of iterations tended to vary between 15 and 25.  All in all 

this implies that an optimization effort will evaluate somewhere in the range of 500 to 1,500 

different schedule combinations.  It was based on this need to evaluate a large number of 

schedules that I made the decision to code a simulation model in VB, rather than use the 

previously developed Automod code.   

 

In terms of the selection of the metaheuristic, there are a very large number of algorithms 

available including genetic algorithms, simulated annealing, and Tabu search as well as other 

approaches such as gradient based search or response surface methods.  Because the problem is 

discrete I decided not to pursue gradient or response surface methods as these algorithms are 

better suited to smooth response functions.  My choice of metaheuristic was driven by the 

combinatorial nature of the problem.  Technically the feasible set for the problem is unlimited.  

Assume we place a practical limit of η as the total number of agents assigned to any schedule, the 

number of feasible staff plans is 3 ηΝ where Ν is the number of feasible schedules for the 

scheduling option.  (see Table 4-10).  The least flexible option (A) has 336 feasible schedules.  If 

we set η as 10 then there are approximately 3010 feasible schedules.  For option F the number 

expands to more than 4010 .  I sought some algorithm that allowed other search heuristic (such as 

those in Table 10-10) to be embedded to  
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I rejected genertic algorithms because there was no obvious way to implement a crossover 

mechanism that would yield high quality solutions.  In addition a population based approach 

increases the number of solutions to be tested, and the simulation process makes evaluation 

relatively expensive.  The selection process is also more difficult when trying to select the best 

solution for a population vs. a sequential pairwise comparison.  Tabu Search is a viable approach 

and could in fact be added to the current algorithm to prevent repeated evaluation of the same 

solution which clearly happens in this algorithm.  Simulated Annealing is another alternative to 

facilitate the breakout from local optimum which is accomplished via expanded neighborhoods in 

this algorithm.   My overall objective was to find a relatively easy to implement algorithm that 

would lead to good solutions because my objective was to determine if pooling is beneficial.  

Having shown that it is I may investigate algorithmic efficiency in future work.   

6.4.2 Comparison of SimOpt and OptSim 

In this experiment I use each method described in the previous section to find the optimal staffing 

plan for a pair of projects.  In this analysis I examine pooling of the test Project J and O described 

in section 2.9 and analyzed in Chapter 3.  As was shown in Chapter 4 the cost of service delivery, 

and the quality of the solution algorithm depends on the flexibility of the workforce.  For this 

reason I test each approach for the five schedule options described in Chapter 4.   
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6.4.2.1 SimOpt Approach 

To test the SIMOpt approach I ran the simulation search algorithm to find the optimal staffing 

triplet for each of the 336 individual time periods for a Project J and S pairing.  The resulting staff 

plan is summarized in the following graphic: 

Period by Period Optimal Staffing
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Figure 6-11 Period by Period Optimal Staffing 

Visually we can see that optimizing period by period creates a highly variable staff plan. This is 

better illustrated in the following graph that shows only the staff plan for cross trained agents. 
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Figure 6-12 Period by Period Cross Training Requirements 
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The highly variable nature of this staffing plan is problematic, as the fixed staff covering model is 

likely to introduce a significant amount of slack into the resulting staff plan.  To test this I run a 

basic weighted set covering model, scheduling each pool independently.  I repeat this process for 

each schedule option with the results summarized in the following table. 

Direct 
Labor J

Direct 
Labor S

Total 
Labor

Pool 1 
Labor

Pool 2 
Labor

Pool 3 
Labor

Total 
Labor

DW 
Loss

% DW 
Loss

Sched A 11,280 30,960 42,240 10,000  24,000    14,500  48,500    16,320 50.7%
Sched B 10,800 30,320 41,120 9,200    21,600    13,000  43,800    11,620 36.1%
Sched C 10,944 30,384 41,328 8,720    21,120    12,800  42,640    10,460 32.5%
Sched D 10,844 30,092 40,936 8,400    20,120    11,800  40,320    8,140   25.3%
Sched E 10,720 30,096 40,816 8,080    19,820    10,725  38,625    6,445   20.0%

SimOpt ApproachNo Pooling - SCCS Optimization

 
Table 6-11 SimOpt Outcomes Projects J and S 

This table lists the direct labor costs for the independent optimization from Chapter 4 along with 

the labor costs from the SimOpt approach.  The simulation based optimization calculated a 

staffing model that costs $32,180; the difference between this figure and the total labor figure 

calculated is the result of excess staffing due to shift constraints; the deadweight loss.  We can see 

that staffing constraints add substantial cost to the resulting schedule, as much as 50% in the low 

flexibility case and 20% in the most flexible case.  Based on these results the SimOpt approach 

does not appear to be very promising, and I turn now to the alternative OptSim approach. 

6.4.2.2 OptSim Approach 

In the OptSim approach I begin with a baseline plan generated from the optimization model of 

Chapter 4.  Specifically I generated a schedule with a lower service level goal and a single agent 

minimum staffing requirement then apply the search process outlined in Figure 6-9 and Table 6-

6.  The idea is to create a staffing plan that is slightly under staffed.  In this situation single agent 

changes are likely to improve the staffing plan and since improving single staff changes are easier 

to find than improving dual changes, the algorithm should find improvements quickly.  
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As an initial test I ran this analysis for the pairing of projects J and S, testing each schedule 

option.  The results are summarized below.   

Direct 
Labor J

Direct 
Labor S

Total 
Labor

Pool 1 
Labor

Pool 2 
Labor

Pool 3 
Labor

Total 
Labor

% 
Savings

Sched A 11,280 30,960 42,240 9,600    25,200    6,500    41,300    2.2%
Sched B 10,800 30,320 41,120 9,200    24,000    7,500    40,700    1.0%
Sched C 10,944 30,384 41,328 9,280    23,280    7,800    40,360    2.3%
Sched D 10,844 30,092 40,936 8,920    23,860    7,375    40,155    1.9%
Sched E 10,720 30,096 40,816 8,880    23,000    8,450    40,330    1.2%

No Pooling - SCCS Optimization SimOpt Approach

 
Table 6-12 OptSim Outcomes Projects J and S 

This approach appears far more promising than the SimOpt approach outlined above.  In each 

case the algorithm finds a staffing plan with a total lower cost, in spite of the higher cost of cross 

trained agents.  Since the optimization effort here is global, the algorithm does not suffer from the 

deadweight loss issue faced by the OptSim approach.  Based on these preliminary results I went 

forward with a detailed analysis of the SimOpt approach.   

6.4.3 Detailed Evaluation of OptSim 

6.4.3.1 Overview 

In the previous section I investigated two alternative mechanisms for scheduling a pooled project 

pair and found that the OptSim approach appear to provide much better results.  In this section I 

examine in more detail the resulting savings.  I also examine how project characteristics impact 

the pooling decision.  In the previous section the preliminary screen looked only at the direct 

labor component, but a more complete analysis obviously requires the evaluation of total cost.  

Also, in order to make a fair apples-to-apples comparison we must evaluate single and pooled 

schedules optimized using the same approach.  For that reason I compared pooled project results 

to those found from the simulation based optimization fine tuning developed in Section 4.8. 

6.4.3.2 Pooled Optimization – Project J and S 

In this section I test the impact of pooling Project’s J and S.  Recall that Project J is a corporate 

project with relatively stable arrival patterns.  Project S is a retail project with somewhat volatile 

arrival patterns.  Since one project is corporate and one is retail these projects have different 
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seasonality patterns.  The busy period for project S extends later into the day, and the project has 

busier weekends.  Project S also has less of a lunchtime lull in call volume than Project J.   

 

The following table summarizes the results of the pooled optimization effort: 

Sched 
Set

Labor 
Cost

Expected 
Outcome TSF 1 TSF2

% Agents 
Pooled Labor Outcome TSF 1 TSF2

Labor 
Savings

Total 
Savings

% 
Savings

A 41,600 44,504 78.3% 83.5% 13.0% 41,356 42,560 83.2% 83.4% 244 1,944 4.4%
B 40,400 44,504 78.1% 84.7% 15.3% 40,769 41,873 84.4% 83.6% -369 2,631 5.9%
C 40,320 44,504 78.9% 85.0% 16.1% 40,424 41,171 83.0% 84.0% -104 3,333 7.5%
D 40,120 44,504 79.4% 84.4% 17.0% 40,732 41,537 83.0% 84.3% -612 2,968 6.7%
E 40,000 44,504 78.9% 85.3% 18.7% 40,197 41,664 81.4% 83.4% -197 2,840 6.4%

Individual Optimization Pooled Optimization Comparison

 
Table 6-13 Pooled Optimization – Projects J-S 

The data shows that even with a 25% premium for pooled agents, pooling reduces the overall cost 

of operation.  Cost savings vary from 4.4% to 7.5% depending on the scheduling set option.  In 

each case the number of labor hours drawn from the cross trained pool is less than 20%.  As was 

the case in the steady state analysis, pooling a relatively small percentage of the agents provides 

the optimal results.  Note that Project J, the smaller project, sees an improvement in service level 

in each case while the service level for Project S remains constant or declines slightly.  

Intuitively, in the single pool case Project S must carry safety capacity to hedge against costly 

spikes, which is evident by the average service level cushion or 3%-5%.  In the pooled case spare 

capacity can be allocated to Project J as necessary and each project has an average service level 

just above the targeted level.  Further insight can be gleaned from the graphical vies of the 

resulting staff plan. In the following figure I plot the staffing plan for schedule set C. 
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Figure 6-13 Pooled Staffing Plan 
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Pool 3 Staffing Plan - Project J-S Schedule Set C
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Figure 6-14 Cross Trained Agent Staffing Plan 

Cross trained agents are scheduled throughout the week but are most heavily deployed during the 

busy periods.   

6.4.3.3 Pooled Optimization Projects J-O 

Similar results are found for the pairing of Project J and Project O as summarized below.   

Sched 
Set

Labor 
Cost

Expected 
Outcome TSF 1 TSF2

% Agents 
Pooled Labor Outcome TSF 1 TSF2

Labor 
Savings

Total 
Savings

% 
Savings

A 23,200 24,606 78.3% 79.9% 14.3% 23,228 23,938 80.8% 81.2% -28 668 2.7%
B 22,800 24,606 78.1% 78.5% 14.5% 22,834 23,547 81.7% 81.4% -34 1,060 4.3%
C 22,800 24,606 78.9% 78.3% 21.2% 23,115 23,504 81.8% 82.3% -315 1,102 4.5%
D 22,540 24,606 79.4% 79.7% 19.0% 23,143 23,758 80.7% 82.8% -603 848 3.4%
E 22,460 24,606 78.9% 79.1% 18.8% 22,698 23,550 80.8% 81.5% -238 1,056 4.3%

Individual Optimization Pooled Optimization Comparison

 
Table 6-14 Pooled Optimization – Projects J-O 

In this case the savings are slightly less, in the range of 2.7% - 4.3% and the proportion of agents 

cost trained is slightly higher.  In each case labor costs are increased slightly resulting in a higher 

level of confidence that the service level goal will be achieved.  The average service level of each 

project improves in each case.  Recalling that these projects are of approximately the same size 

the benefits are roughly equally distributed.  The average service level for each project moves up 

from just below the target to just above the target.  Intuitively, since the incremental capacity can 
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be allocated to rather project as needed, the cost of incremental labor is offset by the reduction in 

penalty costs.   

 

6.4.3.4 Pooled Optimization Projects S-O 

In this final pairing I examine a pooling of Project S and Project O, both of which have retail 

oriented seasonality patterns. The results are summarized below:    

 

Sched 
Set

Labor 
Cost

Expected 
Outcome TSF 1 TSF2

% Agents 
Pooled Labor Outcome TSF 1 TSF2

Labor 
Savings

Total 
Savings

% 
Savings

A 41,600 44,387 83.5% 79.9% 10.1% 40,654 42,349 82.4% 80.4% 946 2,038 4.6%
B 40,800 44,387 84.7% 78.5% 13.7% 39,370 41,523 81.2% 80.6% 1,430 2,864 6.5%
C 40,400 44,387 85.0% 78.3% 15.4% 40,034 41,966 82.8% 80.3% 366 2,421 5.5%
D 40,540 44,387 84.4% 79.7% 14.5% 39,768 42,103 82.8% 79.8% 772 2,284 5.1%
E 40,620 44,387 85.3% 79.1% 13.7% 40,273 42,188 82.5% 80.7% 347 2,199 5.0%

Individual Optimization Pooled Optimization Comparison

 
Table 6-15 Pooled Optimization – Projects S-O 

As in the previous case pooling reduces cost of operation for these projects around 5% by pooling 

10%-15% of agents.  But unlike the two previous cases, this situation reduces total cost by 

reducing labor.  The intuition is that each of these projects is relatively volatile and must carry 

significant spare capacity to hedge against uncertainty.  By pooling, project spare capacity can be 

shared and the total amount of spare capacity is reduced.   

6.4.3.5 The Impact of Cross Training Wage Differential 

The analysis shows that cross training a portion of the workforce can reduce costs even if cross 

training resources is expensive.  In the analysis so far we have assumed that cross training creates 

a 25% cost premium.  In this section I examine the impact of varying the wage differential.   

 

For this experiment I test the same project and schedule pairs tested above, but allow the wage 

differential to vary.  I maintain the base agent wage at $10.00 per hour, but I test super agent 

wage rates of $11.25, $12.00, and $13.75.  Overall I find that cross training is a viable tactic over 

this range of costs.  The expected savings is naturally declining in the wage differential as is the 

proportion of agents cross trained – although the proportion of agents cross trained is less 

sensitive to the wage differential than one might expect.  The results are summarized in the 

following table 
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Pairing
Sched 

Set
Expected 
Outcome

% Agents 
Pooled

% 
Savings

% Agents 
Pooled

% 
Savings

% Agents 
Pooled

% 
Savings

J-S A 44,504 15.3% 7.1% 13.0% 4.4% 14.3% 3.9%
B 43,529 17.3% 5.7% 15.3% 3.8% 13.3% 3.7%
C 43,780 15.9% 6.9% 16.1% 6.0% 15.1% 4.0%
D 43,120 19.0% 5.4% 17.0% 3.7% 16.4% 2.6%
E 43,240 19.4% 5.5% 18.7% 3.6% 17.4% 0.9%

J-O A 24,606 14.3% 4.1% 14.3% 2.7% 10.7% 0.9%
B 24,643 19.6% 5.5% 14.5% 4.4% 16.1% 1.5%
C 24,597 22.9% 5.8% 21.2% 4.4% 15.4% 2.5%
D 24,396 28.3% 5.4% 19.0% 2.6% 14.9% 0.9%
E 24,513 20.1% 6.3% 18.8% 3.9% 18.3% 0.6%

S-O A 44,387 9.1% 6.3% 10.1% 4.6% 6.1% 5.2%
B 44,424 18.2% 5.9% 13.7% 6.5% 14.4% 3.3%
C 44,378 15.9% 7.4% 15.4% 5.4% 13.9% 3.4%
D 44,177 16.5% 6.1% 14.5% 4.7% 13.0% 3.3%
E 44,294 17.5% 5.6% 13.7% 4.8% 16.7% 1.9%

$11.25 $12.50 $13.75
No Cross 
Training

Cross Training Wage Differential

 
Table 6-16 - The Impact of Wage Premiums on Cross Training Results 

6.4.3.6 Conclusions 

Evaluation of these three project pairings shows that the ability to reduce operating costs by 

partial pooling is robust across different project combinations. The overall results in terms of 

savings of around 5% with a pooling of around 15% of agents are consistent across pairings.  The 

mechanism in which the savings are obtained is however different.  In some cases the aggregate 

service level is increased when adding more (pooled) agents allows efficient improvement in 

service level goal attainment.  In other cases pooling allows redundant capacity to be reduced 

through efficient sharing of spare capacity.  

6.5 Summary and Conclusions 

6.5.1 Summary 

In this model I examine the concept of partial pooling of agents in call centers.  The basic premise 

is that in cases where training is expensive, it is not practical to train all agents to handle multiple 

call types.  I investigate the option of training some agents to handle multiple call types and show 

that this approach can yield substantial benefits.   
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I first analyzed steady state performance, independent of costs, and showed that that pooling 

yields significant, but rapidly declining benefits.  I then investigated the optimal level of cross 

training in a steady state environment when cost training is costly.  I develop a straightforward 

and efficient simulation based optimization method for finding the optimal level of cross training.  

Finally I extend this method to a project oriented setting, where arrivals are nonstationary with 

day of week and time of day seasonality.   

6.5.2 Contributions 

This model makes a contribution by evaluating a pooling approach not previously analyzed.  A 

model very similar in concept to mine is (Wallace and Whitt 2005).  (I refer to this paper as 

W&W)  In the W&W model there are 6 call types and every agent is trained to handle a fixed 

number of those types.  The authors use a simulation based optimization model to find the ideal 

cross training level.  The paper’s key insight is that a low level of cross training provides “most” 

of the benefit.  Specifically, they find that training every agent in 2 skills provides the bulk of the 

benefit, while additional training has a relatively low payoff.  Although the general finding in our 

paper is similar, e.g. small levels of cross training give the majority of the benefit, the models are 

very different.  While their best solution has every agent cross trained in 2 skills, our model 

assumes that only a small proportion of agents are cross trained.  In our scenario cross training is 

very expensive and 100% cross training is not practical.  W&W show that adding a second skill 

gives most of the value, but they don’t analyze the cost associated with cross training.  In our 

model we include the cost of cross training and seek an optimal level.  Additionally, W&W 

examine cross training only in steady state, where arrival rates and staff levels are fixed.  Our 

analysis focuses on the case where both arrival rates and staff levels change dramatically during 

the course of the SLA period.  We are very interested in how the variable fit of capacity to load 

impacts the benefit of partial pooling.  At a detailed level the W&W model ignores abandonment 

- an important consideration in our situation.  The model presented here moves beyond the W&W 

model to examine the case where cross training is expensive and service levels are important.  

This model also allows for abandonment.   

6.5.3 Management Implications 

The clear implication for managers from this analysis is that cross training a limited number of 

agents is a cost effective option under a wide range of assumptions and conditions.  The model 

presented here provides a specific methodology for finding the appropriate level of cross training, 
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but also provides some basic insight.  Managers should seek to cross train a moderate level of the 

agent base to support multiple call streams.  In the case of multilingual call centers, managers 

need a few multilingual agents, but don’t need all agents to be multilingual.   

6.5.4 Future Research 

In this initial analysis I looked at a relatively simple case of two call types and three agent types.  

An natural extension is to examine a larger number of call type and additional pooling types.  

Consider the scenario depicted in the following graphic 
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Figure 6-15 Three Project Pooling Approach 

In this case three projects are pooled together.  The capacity for project 2 is now even more 

flexible as agents can be pushed out or pulled in from two other projects.  This configuration 

might be especially appropriate if Project 2 is highly volatile.  This configuration could be further 

modified if a 6th type of agent was added cross trained in Project’s 1 and 2.  This would allow 

capacity to adjust around the circle in a fashion similar to bucket brigades in manufacturing work 

cells.   

 

An alternative approach would be to create super-super agents, cross trained in three (or more) 

projects.  This type of configuration already exists in multilingual support.  In some of the 

projects I examined in Europe support must be provided in 10 or more languages and many 

agents speak three or more languages.  All of these opportunities present significant opportunities 

for the author to continue this research effort.   
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7 Summary and Conclusions 

7.1 Summary 

The focus of this dissertation has been on the impact of uncertainty on call center operations, a 

type of service supply chain.  The work is based on a project with an outsourced provider of call 

center based support services.  From a business perspective the specific problems addressed in 

this dissertation include: 

• How can we improve our staff scheduling process to lower labor costs while still making 

the monthly service level? 

• How can we improve the staffing process for new launches to avoid the common problem 

of very poor service levels during start-up? 

• What innovations are possible in project staffing to allow increased efficiency without 

sacrificing customer service levels? 

 

In the course of my work with this company we analyzed call arrival patterns in an effort to 

characterize the arrival process and better understand uncertainty.  We found that managers often 

mischaracterized variability and struggled to separate stochastic variability, seasonality, and 

trends.  Overall we found that after controlling for stochastic variability and weekly trends the 

data tends to be very stable.   

 

We also found that managers either did not consider or mischaracterized other key metrics.  

Managers intuitively understood that agents learn over time but had never conducted any formal 

analysis of the learning process and never explicitly factored learning into their models.  

Managers also believed that attrition rates were driven by burnout and that the longer an 

individual stayed the more likely they were to quit.  Our analysis showed that the probability to 

quit decreased significantly with tenure and that bad hiring was a bigger issue than burnout.   

 

We also analyzed scheduling and staffing processes and methods.  We found that while managers 

had access to relatively sophisticated scheduling tools, they often relied on manual processes with 

minimal automated support; for example, Erlang C calculators to identify basic requirements and 

manual scheduling via Excel.    
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The work in this dissertation sought to build on this analysis and develop decision support models 

to address various capacity management decisions.  The objective is to develop specific model 

that could in the future be converted into operational systems, but also to develop insights into the 

capacity management problem.   

7.2 Model Validation 

The analysis in this dissertation was validated throughout my work with the subject firm.   All of 

the statistical analysis in Chapter 2 was reviewed with managers at various levels in the 

organization, throughout the analysis process.  The optimization models were run in various early 

forms and the results were shared with managers.  All of the results were considered valid.   

 

Much of the work done to develop this dissertation was taking the project specific analysis done 

during the study, generalizing it, and studying it under various situations.  While none of the 

specific models developed in this dissertation are going to be adopted as operational software 

anytime soon, much of the insight developed during this analysis is being adopted.  For example: 

• Senior management has begun restructuring the management structure to better leverage 

cross project synergies.  Agents are being cross trained on several projects.   

• Managers have utilized a limited number of part time resources to better match the 

seasonality of demand.   

• The project launch process is being updated to account for attrition and learning by over-

engineering the launch; i.e. hiring agents above and beyond the steady state staffing 

projections.   

• Hiring practices are being revaluated to address the high failure rate of new agents.  

Given a new awareness of the cost of hiring and training agents turnover rates are being 

given more senior management attention.   
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7.3 Key Insights 

Abstracting away from the specific issues at this firm, some general insights that emerge from 

this analysis include the following: 

• Variability: call arrival patterns are much more volatile than the models in the literature 

assume.  Explicitly considering this variability has a material impact.   

• Seasonality: the seasonality of call patterns on many call types is very significant and 

significantly effects cost of service delivery.   

• Individual Learning: the rate of learning by individual agents in this application is 

substantial and has very significant impacts on operations.   

• A Little Flexibility Goes a Long Way: throughout this analysis I find that limited 

flexibility can lead to significant improvement.  A few part time agents achieve most of 

the benefit of universal part timers.  Similarly, cross training a few agents give most of 

the benefit of cross training all of them.   

7.4 Contributions 

This dissertation makes several important contributions to the applied Operations Research 

literature, including the following: 

• Integration of Server Sizing and Staff Scheduling: my scheduling model combines 

these two steps into a single optimization model in contrast with the existing literature 

that treats these as separate processes.  I show that the resulting schedule is lower cost.   

• Stochastic Call Center Scheduling Model: my scheduling model is, as far as I know, 

the first application of stochastic programming to the staff scheduling problem.  I show 

that considering variability lowers costs. 

• Partial Pooling Model: the cross training model I introduce is very practical and 

unexplored in the literature.    

• Non-stationary Problem: my analysis is one of the few that considers staffing a call 

center with non-stationary arrival rates and is perhaps the first to assess a realistic arrival 

pattern.    
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7.5 Future Research 

 The research in this dissertation can of course be extended and expanded.  I address specific 

extensions of each model in the associated chapter.  Some of the key areas for potential future 

research include the following: 

• Agent Heterogeneity: like most of the models in the literature most of the analysis in 

this dissertation assumes agents are statistically identical.  (I break from this slightly in 

the hiring model.)  The data indicates that agent productivity is highly variable, an area 

that has received very little attention in the OR literature.  

• More Complex Workflows: in this dissertation I consider very basic workflows, even in 

the cross training model.  In practice workflows are often very complex dues to skills 

based routing, escalation, etc. These models could be extended to address more complex 

call routing.   

• Multilingual Call Centers: I allude to this several time in this dissertation but the 

multilingual capacity management problem is quite difficult.  The firm studied in this 

dissertation has several European projects that must support more than 10 languages.   

• Variable Time Horizons: in this analysis I have dealt exclusively with the situation 

where SLAs are evaluated over a month long period.  An extension of this work would 

analyze the impact of different time horizons on operating cost.   

• Alternate Service Level Measures: in this analysis I have focused exclusively on a TSF 

based SLA.  It would be interesting to examine alternative SLAs, in particular multiple 

measure SLAs which are common in practice.  

• Contracting: a great deal of literature addresses contracting in supply chain operations.  

It would be interesting to extend that research to the call center environment and examine 

the impact of SLA structures on risk and profit sharing.   

• Supply Chain Operations: this analysis focuses on call center operations, but many of 

the concepts can be applied to other situations where service level agreements are used.  

In particular, fill rate SLAs in supply chains.   

• Forecasting Models: while I developed a general characterization of the call arrival 

process, forecasting remains an issue.  A more detailed analysis, including a closer 

examination of annual seasonality, could lead to better forecasting models for 

professional services.  
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8 Appendix 

8.1 Miscellaneous Technical Notes  

8.1.1 Simulation Model 

The simulation model used in this dissertation is a custom application developed by the author in 

Microsoft Visual Basic.NET.  The code was developed as a port of a model previously developed 

using Automod.  That application is described in (Robbins, Medeiros et al. 2006).  I ported the 

code to VB in order to have an increased ability to perform a neighborhood search for the purpose 

of optimization.  Porting the code to VB also allowed a common code base to be used for 

simulation and scenario generation.   

 

The code was developed completely from scratch implements a basic simulation model in an 

object oriented framework.  For random number generation the code implements a combined 

multiple recursive generator (CMRG) based on the Mrg32k3a generator described in (L'Ecuyer 

1999).  The generator was translated from C code posted on L’Ecuyer’s web site to VB by the 

author.  This number generator has excellent statistical properties and is considered one of the 

best generators available.  Source code is available from the author.   

8.2 Linear and Integer Programming 

The Linear and Integer programs described in the dissertation were all formulated using the 

GAMS modeling language and solved using CPLEX on a Unix host.  The models were run on 

various servers within the Penn State high performance computing environment.  Code for all 

models is available from the author.   
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