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We consider cross-training in inbound call centers with non-stationary, 

uncertain arrival rates and global Service Level Agreements. We investigate 

the option of cross training a subset of agents so that they may serve calls from 

two separate queues, a process we refer to as partial pooling. We develop a 

simulation-based search heuristic that finds near-optimal schedules for a pool 

of two different queue types. We analyze the benefits of partial pooling and 

characterize the conditions under which pooling is most beneficial. We find 

that cross training a modest portion of the staff yields significant benefits even 

when cross training is costly. 

Keywords: Call Center Scheduling, Simulation, Cross-Training, Simulation-
Based Optimization 

 

1. Introduction 

A call center is a facility designed to support the delivery of some interactive service 
via telephone communications, typically an office space with multiple workstations 
manned by agents who place and receive calls (Gans, Koole et al. 2003). Call center 
applications include telemarketing, customer service, help desk support, and 
emergency dispatch. Call centers are a large and growing component of the U.S. and 
world economy; the United States was estimated to employ 2.1 million call center 
agents by 2008 (Aksin, Armony et al. 2007). Large-scale call centers are technically 
and managerially sophisticated operations and have been the subject of substantial 
academic research.      

   Staffing is a critical issue in call center management as direct labor costs often 
account for 60-80% of the total operating budget (Aksin, Armony et al. 2007). This 
paper addresses the staffing problem in a call center with highly variable and 
uncertain arrival rates. Given two call types, each with a service level agreement, we 
seek to satisfy the service level objectives with high probability while minimizing 
overall staffing costs. Agents are normally dedicated to a single call type, but a 
subset may be cross-trained (at considerable expense) to answer calls of both call 
types.   

   A similar problem is found in Wallace and Whitt (2005) which admits multiple call 
types, with every agent trained to handle a fixed number of those types. In contrast, 
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our scenario has two call types and partial cross-training; 100% cross training is 
uneconomical. Wallace and Whitt find that training every agent in two skills 
provides the bulk of the benefit, while additional training has a relatively low payoff.  
We seek to find the appropriate number of agents to cross-train while explicitly 
considering the associated incremental costs. Wallace and Whitt (2005) examine 
cross training in steady state, where arrival rates and staff levels are fixed. We focus 
on the case where both arrival rates and staff levels change dramatically over time.  
With changing arrival rates, customer abandonment (losing patience while on hold 
and disconnecting the call) becomes an important issue.   

   This paper is motivated by work with a provider of outsourced technical support 
delivered via globally distributed call centers. The bulk of their business, and the 
focus of our research, is an inbound call center operation which provides help desk 
support to large corporate and government entities. While the scope of services 
varies from account to account, many accounts are 24 x 7 support and virtually all 
accounts are subject to some form of Service Level Agreement (SLA). There are 
multiple types of SLAs, but the most common specifies a minimum level of the 
Telephone Service Factor (TSF). A TSF SLA specifies the proportion of calls 
received that must be answered within a given time. For example, an 80/120 SLA 
specifies that 80% of calls received must be answered within 120 seconds. An 
important point is that the SLA applies to an extended period, typically a week or a 
month. Thus, a help desk is often staffed so the service level is sometimes 
underachieved, sometimes overachieved, and is on target for the week or month.   

    

 

 

 
 

Figure 1 Sample Daily Arrival Pattern 

 
   The key challenge involved with staffing this call center is meeting a fixed SLA 
with a variable and uncertain arrival rate pattern. The number of calls presented in 
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any half hour period is highly variable with multiple sources of uncertainty. Figures 
1 and 2 show daily call volume over a three-month period along with the range of 
hourly call volume over an 8-week period. These are representative samples from 
actual projects supported by this provider. 

   Both graphs show strong periodic variation in call arrivals.  Mondays tend to be the 
highest volume days with volumes decreasing over the course of the week.  Call 
volume on weekends is a small fraction of the weekday volume (the desk shown in 
Figure 1 is closed on Sundays).  Within a day, there are two demand peaks separated 
by a lunch break. Both graphs also reveal significant stochastic variability between 
and within days. In Figure 2 the inner region represents the minimum volume 
presented in each period, the overall envelope is the maximum volume presented, 
and the difference reflects the variability for the period.   

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Range of Call Volumes 

 
   The staffing challenge in this call center is to find a minimal cost staffing plan that 
achieves a global service level target with a high probability. The staffing plan must 
obviously be locked in before arrival rate uncertainty is revealed.   

   In this paper we apply a simulation based optimization heuristic to create near-
optimal call center agent staff plans that utilize partial pooling in the presence of 
random arrival rates to several “real world” cases. We analyze these staff plans to 
quantify the economic benefits of partial pooling and to characterize the conditions 
under which this partial pooling is most beneficial. 

   In Section 2 we briefly review the relevant call center literature.  Section 3 presents 
the basic call center configuration and cross training model examined in the rest of 
the paper along with a formal statement of the staffing optimization model. In 
Section 4 we outline our simulation-based search heuristic used to solve the problem. 
In Section 5 we present the results of numerical experiments that examine the use of 
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partial pooling in a realistic setting, applying the search algorithm to schedule sample 
call centers.  Section 6 provides extension and future directions for this research.   
 

2. Literature Survey 
Call centers have been the focus of significant academic research.  A detailed review 
of the call center literature is provided in Gans, Koole et al. (2003). More recent 
work is summarized in Aksin, Armony et al. (2007). Empirical analysis of call center 
data is provided in Brown, Gans et al. (2005). 

   Call centers are often analyzed using queuing theory, often as an M/M/n (Erlang-
C) queuing system. In many call center applications a non-negligible proportion of 
callers hang up (abandon) the queue prior to being served. Under these 
circumstances the Erlang-A model may be used since it models abandonment. The 
details of the Erlang-A model are provided in Mandelbaum and Zeltyn (2004). 
Methods for approximating Erlang-A results are described in Garnett, Mandelbaum 
et al. (2002). An assessment of the Erlang-A model to parameter sensitivity is 
provided in Whitt (2006a). 

   Customer service is an important consideration in call centers, and many centers 
are subject to SLAs. Milner and Olsen (2008) examine contract structures in call 
centers with service level agreements. Baron and Milner (2006) examine optimal 
staffing levels under various SLAs. These papers classify SLAs as Individual-based 
(IB), Period-based (PB), or Horizon-based (HB).  IB-SLAs assess a financial penalty 
for every customer not served within the specified service level. The PB-SLA 
specifies penalties for each time period in which the service level target is not 
achieved.  The HB-SLA specifies penalties for service level shortcomings over an 
extended period such as a week or month.  In this paper we examine scenarios where 
an HB-SLA has been specified with the horizon specified as one week. 

   Most call center scheduling models in the literature implement a hard constraint for 
service level on a period by period basis, i.e. a PB-SLA, but a few models are 
formulated to solve a global service level requirement, i.e. an HB-SLA. It is our 
experience that outsourcing contracts often specify an HB-SLA and all of the 
projects we examined were subject to this type of SLA. Koole and van der Sluis 
(2003) attempt to develop a staffing model that optimizes a global objective based on 
an HB-SLA using a local search algorithm. They require agent schedules with no 
breaks, and assume no abandonment. Their model also assumes a time varying, but 
known arrival rate. Cezik and L'Ecuyer (2008) solve an HB-SLA problem using 
simulation and integer programming; they use simulation to estimate service levels 
then solve the scheduling problem using integer programming. Their  model is an 
extension of the model presented in Atlason, Epelman et al. (2004). In a related 
paper Avramidis, Chan et al. (2007) use a local search algorithm to solve the same 
problem. A related model is presented in Avramidis, Gendreau et al. (2007).  
Fukunaga, Hamilton et al. (2002) describe a commercial scheduling application 
widely used for call center scheduling. Global service level targets are modeled as 
soft constraints while certain staffing restrictions are modeled as hard constraints.  
The algorithm uses an artificial intelligence-based search heuristic. Atlason, Epelman 
et al. (2008) develop an algorithm that combines server sizing and staff scheduling 
into a single optimization problem. This model explicitly considers the impact of 
staffing in one time period on performance in the subsequent period. The algorithm 
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utilizes discrete event simulation to calculate service levels under candidate staffing 
models, and a discrete cutting plane algorithm to search for improving solutions.   

   The issue of arrival rate uncertainty has been addressed in several recent papers.  
Both major call center reviews (Gans, Koole et al. 2003; Aksin, Armony et al. 2007) 
have sections devoted to arrival rate uncertainty. Brown, Gans et al. (2005) perform 
a detailed empirical analysis of call center data. While they find that a time-
inhomogeneous Poisson process fits their data, they also find that arrival rate is 
difficult to predict and suggest that the arrival rate should be modeled as a stochastic 
process. Many authors argue that call center arrivals follow a doubly stochastic 
process, a Poisson process where the arrival rate is itself a random variable (Chen 
and Henderson 2001; Whitt 2006b; Aksin, Armony et al. 2007). Arrival rate 
uncertainty may exist for multiple reasons. Arrivals may exhibit randomness greater 
than that predicted by the Poisson process due to unobserved variables; the weather 
may have an impact on emergency calls (Chen and Henderson 2001), the state of an 
organization’s IT infrastructure may have an impact on support center calls (Robbins 
2007), and TV advertising may have an impact on inbound volume to a sales center 
(Andrews and Cunningham 1995). Call volume exhibits periodic variability over the 
course of a day, week, month and year (Andrews and Cunningham 1995; Gans, 
Koole et al. 2003; Robbins 2007). Call center managers attempt to account for these 
factors when they develop forecasts, yet forecasts may be subject to significant error.  
Robbins (2007) compares four months of week-day forecasts to actual call volume 
for 11 call center projects. He finds that the average forecast error exceeds 10% for 8 
of 11 projects, and 25% for 4 of 11 projects. The standard deviation of the daily 
forecast to actual ratio exceeds 10% for all 11 projects. Steckley, Henderson et al. 
(2009) compare forecasted and actual volumes for nine weeks of data taken from 
four call centers. They show that the forecasting errors are large and modeling 
arrivals as a Poisson process with the forecasted call volume as the arrival rate can 
introduce significant error. Robbins, Medeiros et al. (2006) use simulation analysis 
to evaluate the impact of forecast error on performance measures demonstrating the 
significant impact forecast error can have on system performance.   

   Some recent papers address staffing requirements when arrival rates are uncertain. 
Bassamboo, Harrison et al. (2005) develop a model that attempts to minimize the 
cost of staffing plus an imputed cost for customer abandonment for a call center with 
multiple customer and server types when arrival rates are variable and uncertain.  
Harrison and Zeevi (2005) use a fluid approximation to solve the sizing problem for 
call centers with multiple call types, multiple agent types, and uncertain arrivals.  
Whitt (2006b) allows for arrival rate uncertainty as well as uncertain staffing, i.e. 
absenteeism, when calculating staffing requirements. Steckley, Henderson et al. 
(2004) examine the type of performance measures to use when staffing under arrival 
rate uncertainty. Robbins and Harrison (2009) develop a scheduling algorithm using 
a stochastic programming model that is based on uncertain arrival rate forecasts.   

   The issue of cross training in call centers is summarized in Aksin, Karaesmen et al. 
(2007). The cross training literature for call centers builds on the extensive cross 
training literature in the context of manufacturing and supply chain operations 
(Graves and Tomlin 2003; Hopp, Tekin et al. 2004; Hopp and Van Oyen 2004).  
Cross training is relevant in call centers where agents are segregated by skill set and 
skills-based routing is employed. Issues related to staffing and routing in multi-skill 
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call centers are summarized in Koole and Pot (2005).  Routing issues in the context 
of call center outsourcing are discussed in Gans and Zhou (2007). Models that 
address scheduling in multi skill call centers are provided in Avramidis, Chan et al. 
(2007), Avramidis, Gendreau et al. (2007), and Cezik and L’Ecuyer (2008). Iravani, 
Kolfal et al. (2007) develop a heuristic to evaluate the effectiveness of different cross 
training options.     

   Wallace and Whitt (2005) seek to find the best level of cross training in a call 
center with multiple call types. In this model there are six call types and every agent 
is trained to handle a fixed number of those types. The authors use a simulation-
based optimization model to find the ideal cross training level. The paper’s key 
insight is that a low level of cross training provides “most” of the benefit.  
Specifically, they find that training every agent in two skills provides the bulk of the 
benefit, while additional training has a relatively low payoff. In the Wallace and 
Whitt (2005)  model all agents are cross trained with the same number of skills.  
Robbins, Medeiros et al. (2007) examine the impact of partial pooling in steady state 
queuing systems with two call types. They find that cross training a small portion of 
the agents provides most of the benefit. Both of these models ignore the incremental 
costs associated with cross training and fail to find the optimal cross training level.  
Chevalier, Shumsky et al. (2004) study systems with specialized (single skilled) and 
fully flexible (multi-skilled) servers, recognizing that fully flexible servers are more 
costly than specialized servers. They model the call center as a loss system so that 
customers that cannot be served immediately are lost. They use an approximation 
procedure to calculate the rate at which calls overflow to flexible servers, and the 
rate at which overflow calls are lost. Their approximation finds the number of 
specialized and flexible servers that minimizes the staffing cost given a maximum 
steady state loss probability, although their approach does not apply an integrality 
restriction on the number of servers. Based on extensive experimentation they 
propose an “80/20 rule”, whereby 80% of budget dollars are spent on specialized 
(single skilled) agents and 20% on flexible agents. All these results are consistent 
with Property 5 in Aksin, Karaesmen et al. (2007); “Well designed limited resource 

flexibility is almost as good as full resource flexibility in terms of performance”.  
This suggests that in steady state, cross training more than a moderate proportion of 
the work force is sub optimal when cross training is costly.  
 

3. Pooling Model 

In this section we introduce our model of partial pooling. We first introduce basic 
terminology and notation used throughout the paper. We assume that in the baseline 
case the call center is segregated by queue and each queue acts as a separate Erlang-
A queuing system.  Each queue i receives calls that arrive at a time varying 

rate ( )i tλ . The average talk time is 1 iµ .We also assume that callers have 

exponentially distributed patience with mean1 iθ , where patience refers to the 

amount of time a caller is willing to wait on hold.  Callers will abandon the queue 
(hang up) if their call is not answered within their patience time. The call types in 
each queue are different and require agents with distinct skills.   
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3.1 Routing 

In our model we assume that the call center is staffed by two types of agents.  Base 
agents have the skills to service one call type.  Super agents are cross trained and 
may serve both call types.  We assume that cross-trained agents achieve the same 
proficiency as single-skilled agents (e.g. they have the same service time 
distribution), although this assumptions is easily relaxed.  We assume that the skills 
based routing system is configured as shown in Figure 3. 

1 3 2

1 2 Queues

Feasible Routings

Pools of Agents

Call Types

 
 

Figure 3 Basic Routing Structure 

 
   There are two call types, two queues, and three agent pools. Pools 1 and 2 are base 
agents.  Pool 3 is comprised of cross trained agents. Pool 1 agents have Skill 1 and 
service Queue 1.  Similarly Pool 2 agents service Queue 2. Pool 3 agents are cross 
trained and can service either queue.  

   We implement a very simple and standard base agent first routing model.  An 
incoming call is routed to a base agent if one is available. Only in the case where all 
base agents are busy is the call routed to a cross-trained super agent. As long as 
cross-trained agents remain available all calls will be serviced immediately and no 
abandonment will take place. If no qualified agents are available the call is queued to 
be served by the next available agent.  When base agents become available they take 
the longest waiting caller from their respective queue. If no calls are waiting they 
become idle.  When cross trained agents become available they take the call from the 
queue with the most calls. Örmeci (2004) shows that a base agent first routing policy 
is optimal in a two call type loss system if the specialized servers are at least as fast 
as flexible servers.  Chevalier, Shumsky et al. (2004) extend this proof to deal with 
more than two call types.   
 
3.2 Staffing 

Because arrival rates vary considerably call centers must change the staff level 
throughout the course of the day. During the course of a day agents are assigned to 
shifts, which specify the time they start and end work but do not explicitly account 
for breaks. A schedule specifies the shift and the days of the week an agent works.  
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The call center has a set of feasible schedules based on staffing policies. A staff plan 
specifies the number of agents assigned to each schedule.  

   In our call center, project staffing varies from two agents overnight to as many as 
70 agents during peak hours. A typical call center may have shifts starting at any 
time period. However, agents are scheduled to work a specified number of hours, so 
the call center can not vary the staff as quickly as demand varies. The call center is 
therefore subject to periods of both tight capacity and excess capacity in any given 
day.   
 
3.3 System Costs and Objective 

Our goal for this call center is to satisfy a service level objective for each call type 
with a high probability while minimizing overall staffing cost. Because call volume 
is stochastic it is not practical to meet the service level target with certainty. We 
therefore chose to implement the service level target as a soft constraint by applying 
a penalty cost to a realized service level below the target.   

   We specify an optimization problem with the following definitions: 

Sets 

I: time periods 
J: possible schedules 
K: agent types 
L: call types 

Decision Variables 

xjk: number of type k agents assigned to 
schedule j  
 
 

Deterministic Parameters 

cjk: cost of schedule j for agent type k 
aij: 1 if schedule j is staffed in time i, 0 
otherwise 
gl: global TSF SLA goal for call type l 
µl: minimum number of agents in any 
period for call type l 
rl:   per  point penalty cost of TSF 
shortfall for call type l 
 

Stochastic Inputs 

ξ : random arrival and service times 

Stochastic Outputs 

Sl: realized global TSF for call type l 
 

   The optimization problem can then be expressed as 

[ ]min ( )jk jk

j J j K

c x Eξ ξ
∈ ∈

+∑∑ Q x,                                                                         (2.1)

Subject to 

1 3 1ij j ij j

j J j J

a x a x µ
∈ ∈

+ ≥∑ ∑
 

i I∀ ∈                                                                         (2.2) 

2 3 2ij j ij j

j J j J

a x a x µ
∈ ∈

+ ≥∑ ∑
 

i I∀ ∈                   (2.3) 

jkx
+∈�
   

,k K j J∀ ∈ ∈                  (2.4) 

 
   The objective function (2.1) is the sum of the deterministic cost of agent staffing 

plus the expected cost of the implicit penalty cost function ( )ξQ x, . The penalty cost 
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is a function of the fixed staffing plan x, and the random vector ξ  of call arrival and 
service times. The cost function is a non-negative function that calculates a cost 
associated with failure to achieve the specified SLA. The cost function can be based 
on any combination of performance metrics desired; such as telephone service factor, 
average speed to answer, or abandonment. In our analysis we modeled the penalty 
function ( )ξQ x, as a multiple of the shortfall in the TSF SLA, with no benefit 

realized for over achieving the target service level.     

1 1 1 2 2 2( ) ( ) ( )r g S r g Sξ + += − + −Q x,    

   Note that the objective function does not include a direct cost of abandonment. 
However, the TSF is defined as the proportion of calls presented that are answered 
within the time limit.  Therefore, the effect of abandonment is to reduce the realized 
TSF. 

   Constraint (2.2) specifies the minimum number of agents that must be staffed to 
handle type 1 calls at any time. The minimum may be a combination of base and 
cross trained agents.  Constraint (2.3) applies the same restriction for type 2 calls.   
    
3.4 Call Arrival Process 

Multiple approaches are available for generating simulated arrival patterns. A 
thorough analysis is provided in Avramidis, Deslauriers et al. (2004). For our test 
problems we use a straight forward two-stage algorithm similar to the model in 
Weinberg, Brown et al. (2007). We use a multiphase, multiplicative model where the 
arrival rate is the product of a daily number of calls and the proportion of daily calls 
received in that time period, both of which are random. Details of the algorithm are 
presented in Figure 4, but it should be noted that the scheduling algorithm is in no 
way dependent on the model of arrivals. 
 

1. Generate a call volume for each day of the week using the mean and 

standard deviation specified for the day.   

2. For each time period in each day generate a random proportion of call 

volume based on the specified mean and standard deviation for the time 

period.   

3. Normalize the time period proportions so that they add to 1 for each day. 

4. Calculate the per period call volume by multiplying the daily total by the 

time period proportion.      

Figure 4 Simulated Call Generation Algorithm 

 

4. A Simulation-based Optimization Method 

Stochastic models that can be expressed in an analytical format can be solved via a 
variety of optimization methods. For models where it is difficult to accurately 
represent the system in closed form, simulation and simulation-based optimization 
(SBO) can be used.  Overviews of SBO are presented in Chapter 12 of  Law (2007) 
and in Fu (2002). 

   At the most general level, an optimization algorithm has two basic components: 
generating candidate solutions, and evaluating candidate solutions. In SBO the 
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solution evaluation step is performed by executing a discrete event simulation (DES) 
model. Using DES allows us to evaluate a very general model of our stochastic 
system. The literature on DES is vast; popular texts include Law and Kelton (2000), 
Banks (2005), and Law (2007). In SBO the bulk of the computational effort is spent 
on the evaluation step, but from an algorithm design perspective the challenge is 
developing a method to generate the next candidate solution. A common approach 
treats the objective function (simulation model) as a black box and simply searches 
the feasible space for better solutions. These search methods often employ 
randomization in the search process. There are a wide range of search methodologies 
available that are classified in the general category of metaheuristics (Fu 2002; Law 
2007).  Metaheuristics are “solution methods that orchestrate an interaction between  
local improvement procedures and higher level strategies to create a process capable 
of escaping from local optima and performing a robust search of a solution space” 
(Glover and Kochenberger (2003). Comprehensive reviews of various metaheuristics 
are provided in Glover and Kochenberger (2003) and Burke and Kendall (2005).  
Metaheuristics have been widely applied in deterministic combinatorial optimization 
problems (Nemhauser and Wolsey 1988; Papadimitriou and Steiglitz 1998; Wolsey 
1998). An introductory review of their application to SBO is provided in Fu (2002).  
Search methodologies include genetic algorithms (Reeves 2003; Sastry, Goldberg et 
al. 2005), Tabu search (Gendreau and Potvin (2005), and simulated annealing 
(Henderson, Jacobson et al. 2003; Aarts, Korst et al. 2005). Most metaheuristics 
implement some form of a neighborhood based search. Given a candidate solution x , 
the neighborhood ( )N x is a set of feasible points that are “close” in some sense to x .   

   We use a simulation-based local search algorithm guided by a Variable 
Neighborhood Search (VNS) metaheuristic. VNS is a metaheuristic that makes 
systematic changes in the neighborhood being searched as the search progresses  
(Hansen and Mladenovic 2001; Hansen and Mladenovic 2005). When using VNS, a 
common approach is to define a set of nested neighborhoods, such that  

1 2( ) ( ) ... ( )
Maxk

N x N x N x x X⊂ ⊂ ⊂ ∀ ∈                                                                  

   Figure 5 presents a graphical representation.   

 

N1DN1

N1D
N1D
N1
N1

N5

N4

N3

N2

 
Figure 5 Nested Neighborhoods 
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   Neighborhood 1 is the smallest neighborhood, i.e. it contains the fewest solutions.  
Neighborhood 2 is the next largest neighborhood, containing all the solutions in 
neighborhood 1, plus a set of additional solutions. Neighborhood 5 is the largest 
neighborhood and each of the other neighborhoods is a subset of neighborhood 5.  
The search process begins in Neighborhood 1 and only moves outward when an 
improving solution cannot be found, returning to Neighborhood 1 whenever an 
improving solution is found. The algorithm terminates when no improving solution 
can be found in Neighborhood 5.    

   The general structure of the VNS is then as follows: 

1 Initialization  

• Select the set of neighborhood structures ,kN for max1,...,k k=  

• Construct an initial incumbent solution, Ix ,using some heuristic 

procedure. 

• Select a confidence level α  for the selection of a new incumbent 

solution 

• Set Found = FALSE 

2 Search: repeat the following until Stop=True 

• Find 
mink

n candidate solutions, C
x that are neighbors of I

x  

• Simulate the system with each candidate and compare the results to the 

incumbent using a pair-wise T Test.  

• If any Cx is superior to Ix  at the α  level then set *
I Cx x= , where *

Cx is 

the best candidate solution. Set 1k = , and Found = TRUE  

Else, set 
mink

i n= , set Found = FALSE, and repeat until (
maxk

i n= or 

Found=TRUE) 

o Find a new candidate 
ik

x   

o Set 1i i= +  

o Simulate the system with the candidate and compare the results 

using a pairwise T Test.  

o If 
ik

x is superior to Ix  at the α  level then set ,
iI k

x x=  1k = , and 

Found = TRUE 

• If no new incumbent was found in neighborhood k then  

o Set 1k k= +  

o If maxk k> then Stop = TRUE 

Figure 6 General VNS Search Algorithm 

 
   This algorithm searches the neighborhood of the current incumbent evaluating at 
least 

mink
n points.  If no statistically significant improving solution is found, it 

continues to search the current neighborhood until either an improving solution is 
found or a total of 

maxk
n points have been evaluated. If no new incumbent is found the 

search continues in the next largest neighborhood. The search process continues until 
no improving solution is found in the largest neighborhood structure.   
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   Two important parameters for this search process are 
mink

n  and 
maxk

n , the lower and 

upper bounds on the number of neighbors to evaluate before moving to the next 
neighborhood. If the neighborhood is defined narrowly, these parameters can both be 
set equal to the total number of neighbors, and the neighborhood is searched 
exhaustively. In larger neighborhoods an exhaustive search is not practical and 
solutions are selected at random. In this case 

mink
n  is the minimum number of 

neighbors to evaluate.   
 

5. Numerical Experiments on Sample Call Center Projects 

In this section we examine the issue of finding optimal staffing plan for pairings of 
call types with different arrival and talk time characteristics. We apply the VNS 
approach defined in Section 4 to solve the optimization problem defined in Section 
3.  The arrival rates and talk time characteristics are based on three sample projects.   
 
5.1 Sample Call Center Projects  

Our numerical experiments are based on three sample call types or projects; i.e., 
outsourcing contracts we analyzed.  A project represents the calls generated from an 
outsourcing client.  Current operations segregate these projects, allocating them to 
separate queues each with dedicated staffing and dedicated management. We 
analyzed multiple projects but selected three for detailed analysis.   

   Type J calls are generated by a corporate help desk for a large industrial company 
averaging about 750 calls on weekdays. Type S calls are from a help desk that 
provides support to employees of a large national retail chain.  Call volume on this 
desk is about 2,000 calls on weekdays. Because this desk supports users in retail 
stores, as opposed to corporate offices, the daily pattern of call volumes is quite 
different from call type J. This company was making major changes in its IT 
infrastructure and as such call volume is very volatile and difficult to forecast. Type 
O calls are from a help desk that provides support to corporate and retail site users at 
another retail chain. This is a small desk with about 500 calls on weekdays.   

   Statistical models were developed for each of three sample call types. For each 
type we eliminated holidays from the data set. The day of week effect was then 
calculated by estimating the mean and standard deviation of arrivals on each 
“normal” day. We then estimated the proportion of calls received in each 30-minute 
period along with the associated standard deviation. A summary of the data for each 
of these model projects is shown in Table 1.  
 

Table 1 Call Type Summary 

 Call Type J Call Type S Call Type O 

Support Base Corporate Retail Corporate/Retail 

Hours of Operation 24x7 24x7 24x7 

TSF SLA (%/secs) 80/60 80/120 80/120 

Average Weekly Volume 3,825 10,600 3,000 

Average Talk Time (mins) 12.0 13.5 14.0 
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   While these estimates are based on several months of data, a more accurate model 
fitting would require a larger data set. Our intent is not to develop specific 
forecasting models for these projects; rather it is to develop representative and 
realistic models of projects that can be used to validate the decision models, and to 
generate insight into the operating characteristics of different classes of projects.   
 

5.2 The Optimization-Simulation Approach  

Our goal is to test the three potential pairings of these call types. We seek to find a 
near optimal staffing plan for the base and cross trained agent pools. To start the 
process we begin with a staffing plan that includes no cross-training. In this analysis 
we choose to generate the initial staffing plan for each call type independently using 
a stochastic optimization program described in Robbins and Harrison (2009). We 
configured the model to generate a staffing plan at a lower TSF and with a minimum 
staffing level of one instead of two agents. This procedure creates a staff plan that is 
slightly understaffed, i.e. we staff to a TSF of 75% vs. the required 80% and apply a 
minimum staffing level of one instead of two agents. The objective is to save time in 
the search algorithm by creating an initial plan which achieves a basic (but not 
adequate) level of service.   

   The next step is to utilize the VNS algorithm described in Section 4 to find a near-
optimal staffing plan that includes cross trained agents. Constraints (2.2) and (2.3) 
are added to the penalty term and the algorithm is configured to flag an error 
condition if these constraints are not satisfied. We define a nested neighborhood 
structure with five individual neighborhoods. In our neighborhood structure we make 
a distinction between active schedules – those schedules with at least one agent 
assigned in the current incumbent solution, and feasible schedules – all the schedules 
to which agents can be assigned.   

   We define the following neighborhoods 

• 1( )N x : Active 1 Change: the set of all staffing plans where an active 

assignment is incremented by ±1. (i.e. randomly select an active schedule xjk 
and either increment or decrement the staffing level by 1.)  

• 2 ( )N x : Active 2 Change: the set of all staffing plans where two active 

assignments are incremented by ±1. (i.e. randomly select two active 
schedules and either increment or decrement the staffing level of each by 1.)    

• 3( )N x : Feasible 1 Change: the set of all staffing plans where a feasible 

assignment is incremented by ±1. (i.e. randomly select a feasible schedule xjk 
and either increment or decrement the staffing level by 1.)  

• 4 ( )N x : Feasible 2 Change: the set of all staffing plans where two feasible 

assignments are incremented by ±1. (i.e. randomly select two feasible 
schedules and either increment or decrement the staffing level of each by 1.)    

• 5( )N x : Feasible 3 Change: the set of all staffing plans where three feasible 

assignments are incremented by ±1. (i.e. randomly select three feasible 
schedules and either increment or decrement the staffing level of each by 1.)      

   The neighborhood structure starts small, adding or reducing staffing levels on 
currently assigned schedules, then expands by considering multiple staffing changes 
simultaneously, and by considering all feasible schedules. In each neighborhood, 
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new staffing plans are generated by modifying the current best solution and a large 
number of alternatives are evaluated in each iteration of the algorithm. 

   Rather than using a pure random search in each neighborhood, we have 
implemented heuristic methods to guide the search. In this modified approach each 
time a new neighbor is required the algorithm generates the neighbor using either the 
heuristic for that neighborhood or a pure random permutation. Table 2 summarizes 
the heuristics utilized in each neighborhood and the minimum and maximum number 
of candidate solutions evaluated.   

 Table 2 Neighborhood Search Heuristics 

Neighborhood Heuristics mink
n  

maxk
n  

1( )N x : Active 1 

Change 

• Pool Support: select an active schedule in Pool 
1 or Pool 2 and staff an agent to the same 
schedule in the cross trained pool.   

20 NA 

2 ( )N x : Active 2 

Change 

• Cross Train: select an active schedule in Pool 1 
or Pool 2 and change the agent’s designation to a 
cross trained agent. 

5 60 

 • Untrain: select a staffed schedule in Pool 3 and 
change the designation to either 1 or 2. 

  

3( )N x : Feasible 

1 Change 

• Add Max Cover: find the set of feasible 
schedules that covers the most short-staffed 
periods and schedule an agent to one of those 
schedules.   

20 60 

4 ( )N x : Feasible 

2 Change 

• Active Time Shift: select an active schedule and 
shift the assignment forward or backward by one 
time period. (i.e. move the assignment to a 
schedule that starts 30 minutes earlier or 30 
minutes later.)   

1 75 

5( )N x : Feasible 

3 Change 

• Two for One: pick a schedule in Pool 1 or 2, 
then find the closest active matching schedule in 
the other pool, decrement each of these 
assignments and staff a cross trained agent.  

1 75 

 

   The logic behind this neighborhood structure and its heuristics is relatively 
straightforward if we recall that the initial incumbent solution is the result of an 
optimization designed to slightly under staff each base agent pool. First, the set of 
schedules selected in the optimization process (active schedules) will closely match 
the time profile of demand. The set of active schedules will typically be a small 
subset of the feasible schedules. Therefore we chose to search these active schedules 
first. Since the initial staff plan is understaffed by design, additional staffing, 
particularly in the super agent pool, will decrease penalty costs more than the 
associated labor.  Neighborhood 1 is small enough that we can search it exhaustively.  
In Neighborhood 2 we test the benefits of changing an agent’s skill designation. By 
testing both training and untraining, we make sure that the incremental cost of 
training is justified.   
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   When no improvements can be found in the set of active schedules the search is 
expanded to the full set of feasible schedules. The heuristic in Neighborhood 3 is 
designed to address the staffing penalty resulting from not having at least two agents 
available for each call type in each time period. This heuristic is designed to test all 
of the schedules with the max cover (i.e., the set of feasible schedules that covers the 
most short-staffed periods) and will often select a super agent as these agents provide 
cover for both call types. In Neighborhood 4 we allow for two changes in the 
feasible schedule and specifically test for the impact of shifting a schedule forward 
or backward by one time period to potentially better cover a service level gap. The 
logic of the Neighborhood 5 heuristic is based on the notion that if we have agents in 
each pool on the same schedule it might be beneficial to replace both of them with a 
single cross trained agent. This is useful when the service level is being met with 
high probability, and the penalty is low. Making a two-for-one swap reduces labor 
cost and may not have a major impact on service level penalties.   

   In practice the largest number of improving solutions was found in Neighborhood 
1. In a typical optimization process improvements are found in three to four 
neighborhoods, though in some cases all neighborhoods generated improvements. 
The number of solutions tested at each iteration clearly varies based on where an 
improvement is found. In our experiment we required that at least 20 candidates 
were tested before the best was selected. The “max” number varies with the number 
of active schedules, as Neighborhood 1 is searched exhaustively. In a typical 
scenario approximately 300 candidate solutions were tested in the final iteration of 
the algorithm.  

   The total number of iterations until termination is also random, and depends on the 
number of feasible schedules. The total number of iterations tended to vary between 
15 and 25. Overall this implies that an optimization effort will evaluate somewhere 
in the range of 500 to 1,500 different schedule combinations.   
 
5.3 Sample Pairing 

In this section we analyze the impact of partial pooling under real world situations.  
We attempt to find optimal plans for cross training agents based on the arrival and 
talk time characteristics of the three actual outsourcing projects whose summary 
information is shown in Table 1.    

5.3.1 Pooled Optimization – Call Types J and S 

First we test the impact of pooling call types J and S.  Call type J has relatively stable 
arrival patterns, while call type S exhibits more volatile arrival patterns. Since call 
type S is retail its busy period extends later into the day than that of call type J; call 
type S also has busier weekends and less of a lunchtime lull in call volume than call 
type J.   

   We implemented our approach by generating preliminary staffing plans for one 
week with a minimum coverage of one agent and a TSF of 75%. The base agent 
wage is $10.00 per hour, and $12.50 for cross trained agents reflecting incremental 
wages and training costs. The cost of failure to meet the TSF is $500 per percentage 
point below 80% for the week. We implemented the VNS as previously described 
and simulated each alternative for 10 replications. 
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Table 3 Pooled Optimization – Call Types J-S 

Sched 

Set

Labor 

Cost

Expected 

Outcome TSF 1 TSF2

% Agents 

Pooled Labor Outcome TSF 1 TSF2

Labor 

Savings

Total 

Savings

% 

Savings

A 41,600 44,504 78.3% 83.5% 13.0% 41,356 42,560 83.2% 83.4% 244 1,944 4.4%

B 40,400 43,529 78.1% 84.7% 15.3% 40,769 41,873 84.4% 83.6% -369 1,656 3.8%

C 40,320 43,780 78.9% 85.0% 16.1% 40,424 41,171 83.0% 84.0% -104 2,609 6.0%

D 40,120 43,120 79.4% 84.4% 17.0% 40,732 41,537 83.0% 84.3% -612 1,583 3.7%

E 40,000 43,240 78.9% 85.3% 18.7% 40,197 41,664 81.4% 83.4% -197 1,576 3.6%

Individual Optimization Pooled Optimization Comparison

 

We utilized common random numbers as a variance reduction technique. The 
simulation used doubly stochastic Poisson arrivals, exponential service times, and 
exponential patience times. A confidence level of 80% was used to compare the 
candidate and incumbent solutions.  
    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Pooled Staffing Plan 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Cross Trained Agent Staffing Plan 
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We compared the results of the pooled optimization to a simulation-based 
optimization run on each project individually. For each pooling we evaluated five 
separate levels of shift flexibility detailed in Tables 4 and 5. Table 6 summarizes the 
results of the pooled optimization effort. 

Table 4 Shift Patterns 

Pattern Description 
5 x 8 
4 x 10 
4 x 8 
5 x 6 
5 x 4 

5 days a week, 8 hours a day (40 hr week) 
4 days a week, 10 hours a day (40 hr week) 
4 days a week, 8 hours a day (32 hr week) 
5 days a week, 6 hours a day (30 hr week) 
5 days a week, 4 hours a day (20 hr week) 

 

Table 5 Schedule Patterns  

Pattern Shift Types Included Feasible Schedules 
A 5x8 only 336 
B 5x8, 4x10 1,680 
C 5x8, 4x10, 4x8 3,024 
D 5x8, 4x10, 4x8, 5x6 3,360 
E 5x8, 4x10, 4x8, 5x6, 5x4 3,696 

 
   The results show that even with a 25% premium for pooled agents, pooling reduces 
the overall cost of operation. Cost savings vary from 4.4% to 6.0% depending on the 
scheduling set option. In each case the number of labor hours drawn from the cross 
trained pool is less than 20%.  Note that call type J, the smaller volume type, sees an 
improvement in average service level in each case while the service level for call 
type S remains constant or declines slightly. Intuitively, without pooled agents call 
type S must carry safety capacity to hedge against costly spikes, which is evident by 
the average service level cushion of 3%-5% for the individual project. In the pooled 
case spare capacity can be allocated to call type J as necessary and each call type has 
an average service level just above the targeted level. Further insight can be gleaned 
from the graphical views of the resulting staff plan. In the figures 7 and 8 we plot the 
staffing plan for schedule set C. 

   Cross trained agents are scheduled throughout the week but are most heavily 
deployed during the busy periods.   

5.3.2 Pooled Optimization Call Types J-O 

Similar results are found for the pairing of call types J and O as shown in Table 6.   
 

Table 6 Pooled Optimization – Call Types J-O 

Sched 

Set

Labor 

Cost

Expected 

Outcome TSF 1 TSF2

% Agents 

Pooled Labor Outcome TSF 1 TSF2

Labor 

Savings

Total 

Savings

% 

Savings

A 23,200 24,606 78.3% 79.9% 14.3% 23,228 23,938 80.8% 81.2% -28 668 2.7%

B 22,800 24,643 78.1% 78.5% 14.5% 22,834 23,547 81.7% 81.4% -34 1,096 4.4%

C 22,800 24,597 78.9% 78.3% 21.2% 23,115 23,504 81.8% 82.3% -315 1,093 4.4%

D 22,540 24,396 79.4% 79.7% 19.0% 23,143 23,758 80.7% 82.8% -603 638 2.6%

E 22,460 24,513 78.9% 79.1% 18.8% 22,698 23,550 80.8% 81.5% -238 963 3.9%

Individual Optimization Pooled Optimization Comparison
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   In this case the savings are slightly less, in the range of 2.7% - 4.4% and the 
proportion of agents cross trained is slightly higher. In each case labor costs are 
increased slightly resulting in a higher level of confidence that the service level goal 
will be achieved. Recalling that these call types have approximately equal volume, 
the benefits are roughly equally distributed. The average service level for each call 
type moves up from just below the target to just above the target. Intuitively, since 
the incremental capacity can be allocated to either call type as needed, the cost of 
incremental labor is offset by the reduction in penalty costs.   

5.3.3 Pooled Optimization Call Types S-O 

In this final pairing we examine a pooling of call type S and call type O, both of 
which have retail oriented periodic patterns. The results are summarized in Table 7.    
   As in the previous case pooling reduces cost of operation for these call types 
around 5% by pooling 10%-15% of agents. But unlike the two previous cases, this 
situation reduces total cost by reducing labor. The intuition is that each of these call 
types are relatively volatile and must carry significant spare capacity to hedge 
against uncertainty. By pooling, call type spare capacity can be shared and the total 
amount of spare capacity is reduced.   
 

Table 7 Pooled Optimization – Call Types S-O 

Sched 

Set

Labor 

Cost

Expected 

Outcome TSF 1 TSF2

% Agents 

Pooled Labor Outcome TSF 1 TSF2

Labor 

Savings

Total 

Savings

% 

Savings

A 41,600 44,387 83.5% 79.9% 10.1% 40,654 42,349 82.4% 80.4% 946 2,038 4.6%

B 40,800 44,424 84.7% 78.5% 13.7% 39,370 41,523 81.2% 80.6% 1,430 2,901 6.5%

C 40,400 44,378 85.0% 78.3% 15.4% 40,034 41,966 82.8% 80.3% 366 2,412 5.4%

D 40,540 44,177 84.4% 79.7% 14.5% 39,768 42,103 82.8% 79.8% 772 2,074 4.7%

E 40,620 44,294 85.3% 79.1% 13.7% 40,273 42,188 82.5% 80.7% 347 2,106 4.8%

Individual Optimization Pooled Optimization Comparison

 
    
5.4 The Impact of Cross Training Wage Differential 

The analysis shows that cross training a portion of the workforce can reduce costs 
even if cross training agents is expensive. In the analysis so far we have assumed that 
cross training creates a 25% cost premium. In this section we examine the impact of 
varying the differential for wages and training. We maintain the base agent wage at 
$10.00 per hour, but we test cross trained agent rates of $11.25, $12.50, and $13.75.   

   The results are summarized in Table 8.  Overall we find that cross training is a 
viable tactic over this range of costs. The expected savings is naturally declining in 
the wage and training differential as is the proportion of agents cross trained – 
although the proportion of agents cross trained is less sensitive to the differential 
than one might expect.   

5.5 Conclusions 

Evaluation of these three call type pairings shows that the ability to reduce operating 
costs by partial pooling is robust across different combinations. The overall savings 
is approximately 5% with a pooling of approximately 15% of agents. These results 
are consistent across pairings. However, the mechanism by which the savings are 
obtained is different.  In some cases the aggregate service level is increased when 
adding more (pooled) agents allows efficient improvement in service level goal 
attainment. In other cases pooling allows redundant capacity to be reduced through 
efficient sharing of spare capacity.  
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 Table 8 The Impact of Wage Premiums on Cross Training Results 

Pairing

Sched 

Set

Expected 

Outcome

% Agents 

Pooled

% 

Savings

% Agents 

Pooled

% 

Savings

% Agents 

Pooled

% 

Savings

J-S A 44,504 15.3% 7.1% 13.0% 4.4% 14.3% 3.9%

B 43,529 17.3% 5.7% 15.3% 3.8% 13.3% 3.7%

C 43,780 15.9% 6.9% 16.1% 6.0% 15.1% 4.0%

D 43,120 19.0% 5.4% 17.0% 3.7% 16.4% 2.6%

E 43,240 19.4% 5.5% 18.7% 3.6% 17.4% 0.9%

J-O A 24,606 14.3% 4.1% 14.3% 2.7% 10.7% 0.9%

B 24,643 19.6% 5.5% 14.5% 4.4% 16.1% 1.5%

C 24,597 22.9% 5.8% 21.2% 4.4% 15.4% 2.5%

D 24,396 28.3% 5.4% 19.0% 2.6% 14.9% 0.9%

E 24,513 20.1% 6.3% 18.8% 3.9% 18.3% 0.6%

S-O A 44,387 9.1% 6.3% 10.1% 4.6% 6.1% 5.2%

B 44,424 18.2% 5.9% 13.7% 6.5% 14.4% 3.3%

C 44,378 15.9% 7.4% 15.4% 5.4% 13.9% 3.4%

D 44,177 16.5% 6.1% 14.5% 4.7% 13.0% 3.3%

E 44,294 17.5% 5.6% 13.7% 4.8% 16.7% 1.9%

$11.25 $12.50 $13.75

No Cross 

Training

Cross Training Wage Differential

 
 

6. Summary and Future Research 

In this paper we examine the concept of partial pooling of agents in call centers. The 
basic premise is that in cases where training is expensive, it is not practical to train 
all agents to handle multiple call types. We investigate the option of training some 
agents to handle two call types and show that this approach can yield substantial 
benefits.   

   This paper makes a contribution by evaluating a pooling approach not previously 
analyzed. Wallace and Whitt (2005) find that training every agent in two skills 
provides the bulk of the benefit, while additional training has a relatively low payoff.  
Although the general finding in our paper is similar, e.g. small levels of cross 
training give the majority of the benefit, our model assumes that only a small 
proportion of agents are cross trained. In our model we include the cost of cross 
training and seek an optimal level. Our analysis focuses on the case where both 
arrival rates and staff levels change dramatically during the course of the SLA 
period. We are very interested in how the variable fit of capacity to load impacts the 
benefit of partial pooling.   

   The clear implication for managers is that cross training a limited number of agents 
is a cost effective option under a wide range of assumptions and conditions. The 
model presented here provides a specific method for finding the appropriate level of 
cross training, but also provides some basic insight.  Managers should seek to cross 
train a moderate level of the agent base to support multiple call streams. In the case 
of multilingual call centers, managers need a few multilingual agents, but don’t need 
all agents to be multilingual.   

   Several extensions to this model are possible. While our model assumed base 
agents and cross trained agents are equally productive, we might want to consider the 
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possibility that different agent types might have different levels of productivity. In 
addition, we may wish to consider larger skill poolings. Multi-lingual call centers, 
for example, will often support a large number of languages with agents possessing a 
mix of multi-lingual skills.   
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